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Abstract: Unauthorized operations referred to as “black flights” of
unmanned aerial vehicles (UAVs) pose a significant danger to
public safety, and existing low-attitude object detection al-
gorithms encounter difficulties in balancing detection precision
and speed. Additionally, their accuracy is insufficient, particu-
larly for small objects in complex environments. To solve these
problems, we propose a lightweight feature-enhanced convolu-
tional neural network able to perform detection with high preci-
sion detection for low-attitude flying objects in real time to
provide guidance information to suppress black-flying UAVs.
The proposed network consists of three modules. A lightweight
and stable feature extraction module is used to reduce the com-
putational load and stably extract more low-level feature, an en-
hanced feature processing module significantly improves the
feature extraction ability of the model, and an accurate detec-
tion module integrates low-level and advanced features to im-
prove the multiscale detection accuracy in complex environ-
ments, particularly for small objects. The proposed method
achieves a detection speed of 147 frames per second (FPS) and
a mean average precision (MAP) of 90.97% for a dataset com-
posed of flying objects, indicating its potential for low-altitude
object detection. Furthermore, evaluation results based on mi-
crosoft common objects in context (MS COCO) indicate that the
proposed method is also applicable to object detection in gene-
ral.
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1. Introduction

Unmanned aerial vehicles (UAVs) have been widely
adopted in a variety of industrial, consumer, and military
applications with significant effects on society as a
whole, owing to their unique capabilities in terms of im-
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proving national defense [1] and convenience for civilian
use. However, as yet UAV-related laws have not been
perfected in existing legislation, the phenomenon of black
flights occurs frequently, violating personal privacy and
public safety, or even national security [2]. Given the in-
creasing number of UAVs (particularly small UAVs), it is
becoming increasingly difficult to monitor them effect-
ively in complex or low-light environments. In addition,
it remains challenging to guarantee accurate detection of
UAVs under conditions of abundant low-altitude interfer-
ing objects such as birds and kites. Therefore, to protect
public property, provide effective air traffic control in-
formation, and suppress the phenomena of black flights,
it is essential to develop methods able to perform highly
accurate real-time detection of UAVs under a wide vari-
ety of environmental conditions.

A variety of approaches to detecting low-flying ob-
jects have been developed in recent years [3—6]. How-
ever, existing object-detection algorithms cannot guaran-
tee the detection of multiscale objects in dark and com-
plex environments, especially small objects. Currently
existing methods have significant difficulty in detecting
objects of small volumes at low altitudes, in poor light-
ing without sufficient extracted features. Additionally,
low-altitude object-detection algorithms should perform
both accurately and rapidly, which is crucial for accu-
rately identifying unauthorized unmanned vehicles and
allowing appropriate authorities to respond quickly.
Hence, low-altitude object-detection algorithms must
detect the various types and positions of objects precisely
in real time.

To address these problems, we propose an end-to-end
lightweight detection network architecture based on a fu-
sion of multiscale features for the detection of small ob-
jects flying at low attitudes, called LSL-Net, based on
YOLOv4-tiny. The network improves object detection
performance in complex environments, particularly for
small objects; moreover, it requires less detection time.
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The proposed method comprises three simple but signi-
ficant modules, including a lightweight and stable feature
extraction module (LSM), an enhanced feature pro-
cessing module (EFM), and an accurate detection mo-
dule (ADM). The LSM reduces the size of images and
enhances information related to low-level features, while
the EFM achieves a more powerful feature extraction by
inserting a proposed new attention mechanism and a spa-
tial pyramid pooling-network (SPP-Net) [7]. The ADM
specially identifies a scale for more accurate detection of
small objects in particular after the feature information is
extracted by the lightweight network block (LNB). The
proposed model, composed of these simple but effective
modules, balances detection speed and accuracy well, and
our experimental results demonstrate its excellent per-
formance on the task of detecting low-altitude objects.

The contributions of this study are summarized as fol-
lows.

(i) We present an end-to-end multiscale lightweight ob-
ject-detection network called LSL-Net offering a good
balance between detection accuracy and speed, com-
prised of three modules, including LSM, EFM, and
ADM. The LSM extracts stable low-level information
and reduces the overall computational load, while the
EFM extracts more effective information to perform more
accurate detection, and the ADM achieves a higher preci-
sion for low-altitude objects at different scales, particu-
larly small objects.

(i1) Techniques such as a cross-stage partial network
(CSPNet) and an attention mechanism are used to im-
prove detection precision. For an input image with a size
of 416 x 416 pixels, our model achieves a mean average
precision (mAP) of 90.97% and a detection speed of 147
frames per second (FPS). Comparative experiments show
that the improvement in mAP over the benchmark me-
thods is 6.71% higher than YOLOv4-tiny alone. Moreover,
detection accuracy for UAV targets, is improved by
1.79% compared with prior methods, which indicates
more accurate detection of small objects in low-altitude
environments.

(iii) The experimental results show that LSL-Net
demonstrates excellent performance in terms of balan-
cing detection accuracy and speed. With an input size of
416 x 416 pixels, the forward inference speed is more
than three times faster than that of a single-shot multibox
detector (SSD), according to the experimental results on a
low-attitude dataset. The proposed method demonstrates
the ability to perform accurate real-time detection in di-
verse weather conditions and suppress UAV black flights.

The remainder of this study is organized as follows.
Section 2 summarizes related work. Section 3 presents
the proposed LSL-Net in detail, and Section 4 presents
experimental results comparing the proposed network and

various widely used models. Finally, Section 5 presents
our conclusions.

2. Related works
2.1 Traditional object-detection algorithms

In recent years, research on object detection has been ex-
tensively conducted, and may be divided into traditional
detection algorithms and methods based on deep learning,
which has been extensively investigated. Most traditional
detection algorithms achieve feature extraction and object-
category detection with a combination of AdaBoost [8],
the histogram of oriented gradients (HOG) [9] algorithm,
and support-vector machines (SVMs) [10]. Nagahashi et
al. [11] proposed parameterized AdaBoost, which
achieved a faster training convergence by modifying
parameters. However, its detection speed was insuffi-
cient, and its multi-class object detection accuracy in
complex scenes could not be assured. Wang et al. [12]
used AdaBoost to detect UAVs after extracting bright-
ness, orientation, and regional contrast features. Omid-
Zohoor et al. [13] used the illumination invariance of the
HOG algorithm to enhance the detection capabilities of
their proposed method. These two methods improve in
detection accuracy; however, their real-time performance
is poor as a result of excessive computational complexity,
and their ability to detect small objects has not been veri-
fied. Liu et al. [14] analyzed motion characteristics and
local features of small moving objects to achieve better
detection of small UAVs based on a random forest me-
thod. Li et al. [15] designed an SVM-based detector by ex-
tracting three different features to strengthen its ability to
detect small objects. Nevertheless, the types of extracted
features overwhelmingly relied on the experience of de-
signers, and room for improvement in the model’s per-
formance remained owing to the size limit of their data-
sets. Bazi et al. [16] exploited the state-of-the-art SVM to
ensure precision of recognition for a limited number of
training images. However, the recognition ability of this
model in rough environments still remains to be tested.
Overall, the generalization and robustness of these tradi-
tional algorithms largely do not meet the industrial re-
quirements. These methods require large datasets to
achieve high accuracy, so the high computational com-
plexity results in poor real-time performance. Therefore,
such methods are limited in their ability to realize accu-
rate real-time detection in low-altitude environments.

2.2 Object-detection algorithms based on
deep learning

Self-adaptive feature extraction algorithms based on con-
volutional neural networks (CNNs) [17] have achieved
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promising successes with the development of deep learn-
ing, overcoming the feature extraction limitations of over-
reliance on designers’ experience. Among these al-
gorithms, single-stage and two-stage versions have been
developed. Two-stage methods, such as continuously im-
proving region-CNN (R-CNN) series [18-21 ], generate
candidate regions first and then perform object detection.
Computationally expensive calculations significantly re-
duce their real-time performance, despite their high de-
tection accuracy. Single-stage algorithms such as SSD
[22] and YOLO [23-26] predict object positions and ca-
tegories directly by means of regression, and thus they
have more concise structures, and have demonstrated real-
time detection capabilities. However, their detection ac-
curacy remains low compared to two-stage methods. For
example, the detection accuracies of CenterNet [27] and a
full convolutional one-stage object detector (FCOS) [28]
are higher than those of SSD and YOLO. However, their
detection speed remains insufficient to meet the require-
ments of real-time detection. Li et al. [29] proposed two
recognition algorithms for UAVs. They first pursued high
detection accuracy and sent identified UAV images (de-
tected by SSD) to AlexNet [30] for fine tuning. Nonethe-
less, their real-time performance could not be guaranteed
in variable low-altitude environments. Another approach
uses the k-nearest neighbors algorithm for classification
after obtaining the position of a UAV with an SSD. The
method assures real-time performance at the cost of low
accuracy, especially for small targets. To significantly
improve detection accuracy for small objects, deconvolu-
tional single shot detector (DSSD) in [31] added decon-
volutional and prediction modules based on SSD. The re-
fined feature pyramid network-fully convolutional one-
shot object detector in [32] extracted more abundant fea-
tures by optimizing a feature pyramid network (FPN)
structure. However, the detection speed decreases signi-
ficantly compared to prior methods. Fan et al. [33] added
a fully connected layer and a deconvolution layer to the
SSD and performed UAYV detection on low-resolution im-
ages. FII-CenterNet in [34] improved detection accuracy
by introducing information on the location and scale of
image foregrounds. These models are designed to bal-
ance detection accuracy and speed, whereas the ability to
detect small objects in complex environments is not con-
sidered. Ma et al. [35] improved UAV detection stability
by optimizing the ResNet block of YOLOv3. Cui et al.
[36] adopted k-means clustering [37] to refine the an-
chors of YOLOv3 for a higher accuracy on UAV detec-
tion tasks. Although the detection speed is improved
compared with SSDs, the real-time performance is insuf-
ficient efficiently to detect low-altitude UAVs. Wei et al.
[38] improved the detection speed of YOLOV3 by redu-

cing scales and concatenating features. However, the
small object recognition ability of the model is nonethe-
less insufficient.

In summary, traditional methods for low-attitude ob-
ject detection cannot self-adaptively extract or guarantee
accurate identification in complex environments. How-
ever, object detection algorithms using deep learning can
extract features adaptively. The detection results of deep
learning-based approaches are generally better than those
of traditional methods; however, it remains difficult to
balance detection speed and accuracy. Additionally, the
accuracy of automated systems detecting small objects at
low altitudes should be improved to meet the evolving of
industry requirements. To solve these problems, we pro-
pose a low-altitude small object detection model using a
lightweight feature-enhanced CNN LSL-Net, realizing an
excellent compromise between detection accuracy and
speed, and improving object detection accuracy in harsh
environments, particularly for small objects. The net-
work is based on a light backbone consisting of group
convolution and CSPNet [39] to balance the detection ac-
curacyandcalculatecomputationalload.Ourexperimentalre-
sults show that the proposed model can efficiently detect
the movements of small, flying objects at low attitudes.
Thus, the proposed method can achieve high-precision,
real-time detection of UAVs in complex low-altitude en-
vironments.

3. Proposed network framework

We develop a new end-to-end adaptive feature informa-
tion extraction and lightweight detection network in-
spired by YOLOv4-tiny, enabling high-precision real-
time detection of flying objects at low attitudes. The net-
work consists of three modules, including LSM, EFM,
and ADM. LSM and EFM constitute the backbone of the
network. The LSM reduces the computational load and
improves detection speed and EFM fully extracts fea-
tures and improves detection accuracy through an atten-
tion module, while ADM allows high-precision multis-
cale detection and strengths the system’s ability to detect
small objects.

3.1 Lightweight and stable feature
extraction module

The low-level features of an image are invariably de-
graded to the point that they must be ignored when a fea-
ture map is significantly reduced. To prevent low-level
feature information loss during image downsampling, the
LSM is designed to perform better feature extraction by a
muti-branch method and reduce the size of the input
image. Its structure is shown in Fig. 1.
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Fig.1 LSM

In this module, the input image is reduced by a 3 x 3
convolution with two strides, and the image features are
extracted at the same time. Multi-branch networks are
then used to acquire different receptive fields. 1x1 convo-
lutions are used to reduce the parameters and integrate in-
formation. Finally, we concatenate the information to pre-
pare for the subsequent feature extraction step. To ana-
lyze the computations of the LSM and the traditional
methods, floating point operations per second (FLOPs)
are used to compute the computational complexity, which
can be expressed as

S
FLOPs = )" M2-K2-C,,-C, (1)
n=1
where S represents the sum of convolutions, M? is the
size of an output feature, K? is the kernel size, and C,_,
and C, respectively represent the number of input chan-
nels and output channels. Hence, the FLOPs of the tradi-
tional convolution used in YOLOv4-tiny are given by

FLOPs = 104% x 32 x 32 x 64 = 1.994 x 108, 2)
The FLOPs of the LSM is given by

FLOPs = 2082 x 1> x32x 16+ 104> x3*x 16 X 16+
1042 % 17X 16 X324+ 104> x32x 22+ 104> x 12 x 32 x 32+
2082 x 32 x 32 x 3= 1.025 10°. 3)

Compared with the traditional low-level feature extrac-
tion method, the computational complexity of LSM is
nearly reduced by two times which indicates that the
LSM improves the feature-representation capability of
the system and achieves stable downsampling without in-
creasing the computational load. Taking multiple factors
into consideration, such as the small objects in the data-
set collected at low-attitude, as well as the accuracy and
speed of detection, we obtain fixed-size images (such as
416 x 416) through data processing. By sending input
data to the LSM before the EFM, we can enhance the fea-
ture extraction ability of the network without introducing
additional calculations.

3.2 EFM

The feature extraction network model structure is a cru-
cial factor in achieving good detection results. Many net-
work models have been proposed, such as ResNet [40]
and ResNext [41], which can achieve high accuracy or
real-time detection in different scenarios.

However, in the context of the present work, the phy-
sical environment and the legal framework involved are
complex and present considerable challenges to efficient
detection. To achieve the subsequent high-precision ob-
ject detection, the requirement of model feature-extrac-
tion ability is more stringent. According to the character-
istics of the scenario under consideration, an EFM in-
spired by CSPNet is proposed, as shown in Fig. 2. The
EFM is composed mainly of three CSP blocks and an at-
tention module. Each CSP block achieves adequate fea-
ture extraction and reduces the size of the feature map by
max-pooling. Furthermore, the attention module reorgan-
izes the feature information to prepare for the powerful
feature extraction of CSP-SPP.

104x104x64
Input feature map

52x52x128

CSP-1 Output feature map
26x26%256

CSp-2 Output feature map
Attention 26%26x256

module Output feature map
13x13%512

CSP-SPP Output feature map

Fig.2 EFM

The structures of the CSP-1 and CSP-2 layers are
shown in Fig. 3. After a 3 x 3 convolution, the output
channels are divided into two groups. To achieve a good
compromise between detection accuracy and speed, the
group of unprocessed feature maps is concatenated with
the other group processed by various convolutions directly.

Conv 3%3 Concat |—>|C0nv 1x l|

Concat

image

Fig.3 Frame of CSP-1 and CSP-2
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Attention mechanisms are designed to increase the
weight of significant information and reduce that of un-
important information to improve the detection ability of
computer vision models. Because various channels cor-
respond to different responses, the channel attention
mechanism shown in Fig. 4 is added before the final CSP-
Net, encoding semantic information between channels to
improve the detection accuracy.

HxWxC ¢ ¢
1x1xC/2 Global avg Global max Ix1xC2
pooling pooling

1x1xC

1x1xC/2
I1x1xC/4

Ix1xC/4

IxX1xClr

Ix1xC

Fig. 4 Attention module

We first generate two different spatial context
descriptors using both average- and max-pooling. Then,
we concatenate the feature maps to integrate different in-
formation extracted by these pooling operations. A resi-
dual block is used to enhance the performance of this mo-
dule, in which a 1x1 convolution is used to reduce the in-
put feature dimensions, and a 3x3 convolution is adopted
to enhance the feature expression ability of different
channels. H and W represent the height and width of the
feature map, respectively, while C and r respectively sig-
nify the channel and the ratio. To maximize the perform-
ance of the attention module performance, we set C=256
and =16. Finally, we redistribute the weights of the dif-
ferent channels and prepare the data for the CSP-SPP.

The design of CSP-SPP aims to greatly enhance the
feature extraction ability of the proposed model. The net-

work is still divided into two groups shown in Fig. 5.
Path A does not perform any image processing, whereas
Path B uses SPP-Net and diverse convolutions to per-
form more comprehensive feature extraction. Eventually,
we concatenate the two paths together, attaining a fusion
of different information.

| 3x3,256, stridel, conv | 26x26x256

Path B
| 3x3, 128, stridel, conv | 26x26x128
v
Path A | 1x1,64,stridel, conv | 26x26x64
|
v
| 3x3, 64, stridel, conv | 26%x26x64

| 1x1, 32, stridel, conv | 26x26%32

| 1x1, 64, stridel, conv | 26x26x64

| 3x3,256, stridel, conv | 26x26x64

26%26%128

Concat 26x26%512

2x2, stride2
Max pooling

v

13x13%x512

| 1x1,256, stride], conv | 13x13x256

Fig.5 Structure of CSP-SPP

To reduce the computational load, a 1x1 convolution is
used to reduce the feature dimension before the data is in-
put to the SPP-Net. As shown in Fig. 6, SPP-Net per-
forms feature extraction from various receptive fields,
and our results show that this network element is able to
improve the detection accuracy effectively.

26%26x32

v v v
A s ' v
5x35, stridel 9x9, stridel 13x13, stridel

Max pooling| |[Max pooling Max pooling

26x26x128

A\

Fig. 6 Structure of SPP-Net
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3.3 Accurate detection module

Object-detection networks generally have a two-part
structure, involving feature extraction and object detec-
tion. LSM and EFM are first applied to achieve light-
weight and efficient feature extraction. ADM is a multi-
scale detection module designed for a higher detection
accuracy. Considering that many target objects at low
altitudes are small, ADM is added as a scale for detect-
ing small flying objects, particularly compared with
YOLOv4-tiny. Moreover, a lightweight network block
(LNB) is presented before the final detection at each
scale, as shown in Fig. 7. The block effectively improves
the detection performance of the model with only a rela-
tively insignificant increase in the amount of computa-
tion required.

| 1x1x128 |

3x3x%32
3x3x%32

3x3x64

[ 1xixase |

Fig.7 LNB

To enable the model to perform more accurate detec-
tion, we adopt k-means clustering to redefine the size of
anchors, which can enable the anchors to encode more
representative prior information and perform more accu-
rate prediction after regression. An example of the initial-
ized centers and sizes of the bounding boxes is shown in
Fig. 8.

1.0

Height
S
o
S

N
~
T

0 0.2 0.4 0.6 0.8 1.0
Width

Fig. 8 Bounding and anchor distribution

Then, we iterate the cluster centers as follows:
d (box, centroid) = 1 —IoU (box, centroid). 4)

In this formula, IoU means intersection over union of
the truth boxes and the predicted boxes. The box and the
centroid represent the sizes of the bounding boxes and the
center of each cluster, respectively.

As shown in Table 1, three different sizes of feature
maps are used, including 13 x 13, 26 x 26, and 52 x 52
maps. Large anchor boxes (155 x 128), (196 x 237), and
(320 x 321) are used in the feature map with a size of
13 x 13 and 64 x 64 receptive fields to detect large ob-
jects. Medium-sized anchor boxes (55 x 126), (82 x 86),
and (98 x 186) are applied to the 26 x 26 feature map
with a 16 x 16 receptive field to detect objects of a medi-
um volume. In the largest 52 x 52 feature map with an
8 x 8 receptive field, small anchor boxes (13 x26), (33 %
48), and (56 x 64) are used to detect small objects.

Table 1 Specific size and distribution of anchor boxes

Feature-map size Receptive field size Anchor box size

13x13 32x32 320, 321, 196, 237, 155, 128
26 x 26 16 x 16 98, 186, 82, 86, 55, 126
52 %52 8§x8 56, 64,33, 48, 13, 26

LSL-Net uses regression to optimize the detection
problem, and the loss function contains three parts, which
can be expressed as follows:

loss = loss; + loss, + 10ss; %)

where loss,, loss, and loss; are the confidence, classifi-
cation, and bounding box regression loss functions, re-
spectively. The confidence loss function is expressed as
follows:

loss; = —iilﬁ}”j [Cljlog(a)+(1 —a)log(l —C{)]—
=0 j=0
22 D1 [Cl108(G) (1~ o1 )
=0 j=0

(6)

where S? is the value of the input image grid numbers, B
is the number of bounding boxes in a grid, and Il.”/.hj indi-
cates whether the object appears in the jth bounding box
of the ith grid. If there is an object in the grid, its value is
1; otherwise I,."jbj =0. C/ and C/ are the confidence scores
of the ground truth and predicted boxes, respectively,
while A,,.,; 1s a weight parameter.

The classification loss function is given as follows:
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loss, = — Z Z I"b’

C
D [Pl @tog(pl (@) (1-B]@)og(1-p/@)] ()
c=1

In this formula, p,’ (c) and 'ﬁ{(c) are the prediction
probability and the truth probability belonging to the jth
bounding box of the ith grid, respectively.

2 gt
% +ap ®)
where b and b* represent the center points of the bound-
ing box and the ground truth, respectively, p?(b,b*) is
the Euclidean distance between the two center points be-
longing to the bounding box and the ground truth, and ¢
indicates the diagonal distance of the minimum closure
area that includes them, « is a tradeoff parameter, and 3
reflects the consistency of the length-width ratios. The
formulas for calculating @ and S are as follows:

g P
1-ToU+8’

loss; =1 —IoU +

©)

4 s :
B= (arctan i arctan vh_v) (10)

where w and / represent the width and the height of the

208x208 104x104

847

bounding box, respectively, and w* and Ah* represent
those of the ground truth box.

3.4 LSL-Net overview

We propose an object detection network called LSL-Net
consisting of an LSM, an EFM, and an ADM, as shown
in Fig. 9. The model makes only one forward calculation
to generate sufficient anchor boxes, similar to the YOLO
algorithm. After assessing the confidence of each ca-
tegory, the eventual outcome is determined by using non-
maximum suppression (NMS). The proposed method
uses various effective image-enhancement techniques and
fixes the resolution of images of different sizes. First, im-
ages are stably downsampled by the LSM (Fig. 1), enhan-
cing the feature extraction performance without introdu-
cing additional calculations. The EFM (Fig. 2) then uses
group convolution, CSPNet (Fig. 3), the attention mech-
anism (Fig. 4) and CSP-SPP (Fig. 5) to construct a paral-
lel stacked identical topology with a strong feature ex-
traction ability. The LSM and EFM achieve down-
sampling and extraction of high-quality image features.
In the detection module, the detection scale, particularly
for small objects, is added to the ADM. Moreover, the
LNB (Fig. 7) and k-means clustering (Fig. 8) are adopted
to achieve high-precision real-time detection.

Convl R-Conv2

Input images
416x416

i »{ csp-spp }1; FM
I
\

|

| |

I A 4 I

: Conv-1 < Conv-2 «¢ Conv- ‘ :

| |

| + |

| Upsample¢—— LNB ||

' |ADM

: LNB :

: ¢—Upsample ¢—| :

| |

I v I
DET for small object 4————  — LNB |

I .

\ 4
DET for large object

Fig. 9 Architecture of the LSL-Net

4. Tests and results

We build a new dataset by sampling low-altitude scenes

to evaluate the detection capability of our model. The ex-
periments are performed using a Ubuntul6.04 system, an
Intel® CoreTM 17-6950X CPU, and four NVIDIA Ge-
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Force GTX 1080Ti graphics cards with 11 GB of
memory each. A graphics processing unit (GTX1080Ti)
is used for training and testing.

4.1 Data preparation

Currently, numerous public datasets such as the Pascal
visual object classes (VOC) and common objects in con-
text (COCO) datasets are available for object detection in
general scenes, but are not effective in low-altitude envir-

onments. We create a new dataset called LA2021, con-
taining different types of weather at low altitudes. We an-
notate 6 904 images, including various possible low-alti-
tude flying objects. The collected images are divided into
three categories, including kites, birds, and UAVs. Birds
and kites are relatively similar objects to UAVs at low
altitudes. The purpose of identifying them is to perform
UAV targeting tasks better. Fig. 10 displays a portion of
the low-attitude dataset.

Fig. 10 Images of low-attitude environments

4.2 Results for LA2021

We use the stochastic gradient descent method to opti-
mize the model. The batch size in the training process is
64, and the momentum is 0.9. The maximum number of
batches is 1.2x10’. For the first 10 000 iterations, we set
the learning rate to 0.000 1 and the weight decay to 0.000 5.
Then, at 1.8x10" and 2x10" iterations, we set the learning
rate to 0.000 5 (a reduction by a factor of 0.1). Moreover,
the mosaic data-enhancement method is applied to our

model to enhance and extend the dataset.

4.2.1 Comparison of various frameworks on LA2021

We enumerate the detection results of LSL-Net com-
pared to those of other models used in the Video Object
Tracking Realtime Challenge 2019 (VOT-RT2019). To
intuitively compare these several methods, we use the
mAP and FPS as model performance evaluation indices.
Table 2 presents the detection results of widely applied
models.

Table 2 Comparison of test results for LA2021

Component  Faster SSD Mbv2-SSD  YOLOv3  YOLOv3-tiny FOCS  Center Net YOLOv4 YOLOv4-tiny LSL-Net
Bird 0.8976 0.8354 0.7115 0.9410 0.803 9 0.9376 0.934 4 0.962 8 0.836 0 0.905 4
Kite 0.7851 0.7292 0.679 4 0.8617 0.685 6 0.880 7 0.867 1 0.916 7 0.757 4 0.8714
UAV 09256 09125 0.8165 09513 0.894 0 0.967 5 0.9570 0.9813 0.934 4 09523
mAP 0.8695 0.8257 0.7358 09180 0.794 5 0.928 6 09195 0.953 6 0.842 6 0.909 7
FPS 12 43 81 77 334 42 89 49 287 147

The experimental results in Table 2 indicate that LSL-
Net strikes the best compromise between detection speed
and accuracy, in contrast to other methods. Its detection
accuracy and real-time performance are better than those
of Faster-RCNN, SSD, and MobileNetv2-SSD, enabling
it to identify low-altitude objects efficiently and accur-

ately. Moreover, it includes a powerful UAV detection
capability. The UAV detection accuracy of LSL-Net is
2.67% and 3.89% higher than that of Faster-RCNN and
of SSD, respectively. Although its detection accuracy is
lower than that of YOLOv3, YOLOv4, CenterNet, and
FOCS, the detection speed of the proposed network is ap-
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proximately double, three times, 1.5 times, and 3.5 times
that of the other network models, respectively. The detec-
tion speed of LSL-Net is slower than that of YOLOvV3-
tiny and YOLOv4-tiny. However, the detection accuracy
of LSL-Net is 11.52% and 6.71% higher than that of
YOLOv3-tiny and of YOLOv4-tiny, respectively, and its
real-time performance is sufficient to the industrial re-
quirements. The results indicate that LSL-Net balances
detection speed (147 FPS) and accuracy (90.97%) well
and is the most suitable model for the detection of low-
altitude flying objects.

We present the detection results of different light-
weight models on the same dataset of low-attitude ima-
ges in Fig. 11, showing that LSL-Net has the best per-
formance in all the object categories. Each column
presents the original image and the detection results of
YOLOv3-tiny, YOLOv4-tiny, and LSL-Net from left to
right. The first row of images shows a multitude of birds
flying at low attitudes. YOLOV3-tiny misses more than
half of the objects. The missed detection rate for birds of
YOLOv4-tiny is obviously reduced, but there are still
some omissions. However, LSL-Net is able to detect all

(a) Origin images (b) YOLOV3-tiny

the objects effectively, even if they were crowded toge-
ther, and the confidences are superior to the previous two
models. In the second row, the scale of the object changes
slightly. YOLOv3-tiny misses a kite, whereas both
YOLOvV4-tiny and LSL-Net demonstrate better detection
performance. However, the detection accuracy of LSL-
Net is higher owing to its powerful detection capability.
In the third row, there is only one UAV in the picture.
However, the entire UAV is not visible in the detection
frame owing to background interference. LSL-Net effect-
ively identifies the UAV with accuracies 1.9% and 1.43%
higher than those of YOLOv3-tiny and YOLOv4-tiny, re-
spectively, which highlights the object detection ability of
the model in complex background environments. In the
images of the last row, there is a small UAV in the dim
light. As indicated by the test results, LSL-Net is still able
to perform efficient and accurate detection, and the test
result is optimal. The results indicate that LSL-Net has a
good robustness and can accurately determine the loca-
tions of objects, ensuring a high detection accuracy at low
attitudes, particularly for small targets.

(c) YOLOvA4-tiny (d) LSL-Net (ours)

Fig. 11 Detection results of different models

4.2.2 Robustness tests in different environments

Fig. 12 shows typical detection results for LSL-Net un-
der various low-attitude scenarios. The network could de-

tect low-altitude flying objects precisely, ensuring the
successful completion of anti-UAV missions even for
small targets in low-light environments (as shown in
Fig. 12(a)), exhibiting the strong multi-object detection
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ability of the proposed model at low attitudes (Fig. 12(b)).
Although low flying objects tend to be very small, the
low-attitude detection ability of LSL-Net remains effect-
ive (Fig. 12(c)). Experimental results on the robustness of
the proposed model show that LSL-Net can detect differ-
ent object locations accurately in various scenes with
high robustness, satisfying the requirements for anti-UAV
tasks, and ensuring the safety and security of public pro-

perty.

(c) Minimal objects of multiple flyings

Fig. 12 Robustness test results

4.2.3 Ablation experiments

To evaluate the efficiencies of the LSM, EFM, and ADM,
we design and test three diverse models. In a model
called EA-Net, the LSM is omitted. For a mode called
LA-Net, the EFM is omitted. For the final LE-Net, the
ADM is omitted. Omitting the abovementioned modules,
the structure of the original network (YOLOv4-tiny) is
replaced. The experimental results are in Table 3. First,
we add an LSM to EA-Net. The mAP is increased by
0.35% when the detection speed is increased. It is thus
obvious that the LSM can improve the precision of low-
flying object detection and reduce the loss of the original
input image information. Then, the original feature ex-
traction network in LA-Net is replaced with an EFM. As
a result, we enhance the detection accuracy by 2.02%
without increasing the computational load. These results
indicate that the EFM implemented by various optimiz-
ing convolutions and attention mechanisms allows the ex-
traction of more feature information and effectively im-
proves the detection accuracy of the proposed model. Fi-
nally, we add the ADM to LE-Net. The detection accu-
racy of LE-Net is relatively low compared to the other
methods, and is then significantly improved with the ad-
dition of the ADM, particularly for small objects. The ex-
perimental results indicate that the EAM significantly im-
proves object detection performance. Although YOLOv4-
tiny has the highest detection speed among the models
tested, its poor detection accuracy cannot meet the re-
quirements in complex low-altitude environments. In
contrast, LSL-Net operates with an excellent balance
between detection speed and accuracy, and can satisfy the
application requirements for the detection of low-altitude
flying objects.

Table 3 Effects of various design choices

Component YOLOv4-tiny EA-Net LA-Net LE-Net LSL-Net
LSM — — J v V
EFM — v — v v
ADM — J v — v
Bird 0.836 0 0.900 5 0.8717 0.8312 0.905 4
Kite 0.757 4 0.8683 0.856 2 0.806 2 0.8714
UAV 0.934 4 0.949 8 0.940 6 09315 09523
mAP 0.842 6 0.906 2 0.889 5 0.8563 0.909 7
FPS 287 141 169 253 147

4.3 Results on MS COCO dataset

To verify the migration ability of LSL-Net, we test our
model on the MS COCO [42] (test-dev2017) dataset, and
a comparison of the test results with other state-of-the-art

models is shown in Table 4. In contrast to the UAV data-
set, the MS COCO dataset includes a total of 80 classes
of objects with larger object scales and more small ob-
jects, which means more complex environments and
more challenging detection tasks. It is proven experi-
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mentally that LSL-Net realizes the best compromise
between the detection speed and the accuracy of the al-
gorithm. The detection speed and the accuracy of LSL-
Net are very significantly higher than those of YOLOV3.
Although the detection accuracy of LSL-Net is reduced
by 3.2% compared with YOLOv4, the detection speed is
almost four times that of YOLOv4, enabling better ob-
ject detection in real time. The results show that LSL-Net
has good generalization and can be applied to complex
scenes. Partial detection results of LSL-Net on the MS

COCO dataset are shown in Fig. 13. The results indicate
that LSL-Net can be effectively applied in a detection
scene with multi-class objects (Fig. 13(a) and Fig. 13(d)).
Even in intensive object detection environments
(Fig. 13(c)) and dim environments (Fig. 13(f)), LSL-Net
is still able to detect objects accurately. In particular,
there is no missed detection of aircraft (Fig. 13(b)) by us-
ing LSL-Net, and even small kites could be accurately
identified (Fig. 13(e)).

Table 4 Results on MS COCO

Method Size mAP/% FPS
Faster R-CNN[21] — 39.8 9
SSD[22] 300%300 25.1 43
SSD[22] 512x512 28.8 22
YOLOvV3-SPP[25] 608%608 36.2 20
YOLOV4[26] 608%608 435 33
CenterNet[27] — 41.6 28
FCOS[28] — 44.7 —
LSL-Net(ours) 416x416 384 135
LSL-Net(ours) 512x512 39.1 126
LSL-Net(ours) 608%608 40.3 118

(d) Multi-class objects
with occlusion

(c) Intensive objects

(e) Small kites

(f) Objects in the dark
Fig. 13 MS COCO results of LSL-Net

5. Conclusions

We propose LSL-Net to perform high-precision detec-
tion of low-altitude flying objects in real time to provide
information as guidance to suppress black flight of
UAVs. The model comprises three simple and efficient
modules, including LSM, EFM, and ADM. The LSM re-
duces the image input size and the loss of low-level fea-
ture information. The EFM improves the feature extrac-
tion ability of the model by using an attention mecha-
nism and CSPNet, and the ADM increases the detection
accuracy, especially for small objects. A dataset of low-
altitude flying objects containing multi-class and
multiscale objects is constructed to evaluate the perform-
ance of the proposed network. In an experiment, LSL-Net
achieves an mAP of 90.97% and a detection speed of 147
FPS on an NVIDIA GTX1080Ti (6.71% higher than
YOLOV4-tiny and 98 FPS faster than YOLOvV4, respect-
ively). The results of numerous experiments indicate that
LSL-Net, which has a good robustness and an excellent
generalization ability, can effectively perform detection
of different weather conditions and satisfy the require-
ments of low-altitude flying object detection for anti-
UAV missions. Moreover, experiments on MS COCO in-
dicate that LSL-Net is also suitable for object detection in
other complex scenes. In the future, we will design an im-



852

Journal of Systems Engineering and Electronics Vol. 32, No. 4, August 2021

proved model that can be adapted to devices such as em-
bedded mobile terminals, and further enrich the dataset,
adding object categories in more complex backgrounds to
make it more representative.
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