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Abstract: An  automatic  method  for  classifying  frequency  shift
keying  (FSK),  minimum  shift  keying  (MSK),  phase  shift  keying
(PSK),  quadrature  amplitude modulation  (QAM),  and orthogonal
frequency division multiplexing (OFDM) is  proposed by simulta-
neously  using  normality  test,  spectral  analysis,  and geometrical
characteristics  of  in-phase-quadrature  (I-Q)  constellation  dia-
gram. Since the extracted features are unique for each modula-
tion, they can be considered as a fingerprint of each modulation.
We  show  that  the  proposed  algorithm  outperforms  the  pre-
viously published methods in terms of signal-to-noise ratio (SNR)
and  success  rate.  For  example,  the  success  rate  of  the  pro-
posed  method  for  64-QAM  modulation  at  SNR=11  dB  is  99%.
Another  advantage  of  the  proposed  method  is  its  wide  SNR
range;  such  that  the  probability  of  classification  for  16-QAM  at
SNR=3  dB  is  almost  1.  The  proposed  method  also  provides  a
database  for  geometrical  features  of  I-Q  constellation  diagram.
By comparing and correlating the data of the provided database
with  the  estimated  I-Q  diagram of  the  received  signal,  the  pro-
cessing  gain  of  4  dB  is  obtained.  Whatever  can  be  mentioned
about  the  preference  of  the  proposed  algorithm  are  low  com-
plexity,  low  SNR,  wide  range  of  modulation  set,  and  enhanced
recognition at higher-order modulations.

Keywords: automatic modulation classification, in-phase-quad-
rature  (I-Q)  constellation  diagram,  spectral  analysis,  feature
based modulation classification.
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1. Introduction
Modulation classification as an intermediate step between
signal detection and demodulation can play a critical role
in  several  applications.  Recognition  of  the  modulation
type of the received signals is the most important task of
modulation classification systems. Classification modula-
tion is  a challenging issue,  especially in non-cooperative
communication  systems  with  unknown  parameters  such
as  carrier  frequency  and  time  duration  of  the  samples.

Noise removal and estimation of carrier frequency, sym-
bol duration, and signal and noise powers are usually per-
formed  in  the  pre-processing  steps.  Classification  al-
gorithms  are  grouped  into  two  general  methods:  likeli-
hood-based  (LB)  methods  and  feature-based  (FB)  me-
thods [1−4]. The LB methods compare the likelihood ra-
tio of each possible hypothesis against a threshold, which
is derived from the probability density function (PDF) of
the  received  signal.  Multiple  likelihood  ratio  test  (LRT)
algorithms  have  been  proposed  among  them:  average
likelihood ratio test (ALRT) [5,6], generalized likelihood
ratio  test  (GLRT)  [5,7],  hybrid  likelihood  ratio  test
(HLRT)  [5,8],  and  quasi-hybrid  likelihood  ratio  test
(Quasi-HLRT) [5,9].

LB methods  providing  the  advantage  of  optimal  solu-
tions  have  high  complexity.  In  addition,  to  use  these
methods,  the  received  signal  must  be  statistically  well
known.  It  means  that  some  prior  information  must  be
known, which is practically impossible. An LB classifica-
tion  method  considers  a  problem  of  composite  hypothe-
sis  by assigning each type of modulation to the received
signal  and  then  by  using  the  likelihood  function  to  de-
termine  the  correct  modulation.  Extraction  of  specific
characteristics from the received signal and decision mak-
ing based on separation of  the received data  are  the me-
thods  used  in  the  FB  techniques.  It  can  be  said  that  the
implementation of these methods is easier by creating op-
timal  sub-solutions  and  does  not  require  prior  informa-
tion  of  the  received  signal.  In  addition,  FB  can  provide
near  optimal  solutions  if  it  is  well  designed.  Generally,
FB methods consist of two steps of extracting the charac-
teristics of the received signal, and then selecting the ap-
propriate  classifiers  to  detect  the  type  of  modulation.
Therefore, both steps affecting the performance of the FB
method  are  features  extraction  and  decision  making[10].
FB  techniques  have  less  computational  complexity  than
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LB  methods  [7−11].  The  ability  of  modulation  recogni-
tion in low signal-to-noise ratio (SNR) conditions by us-
ing short observation intervals is the most important eva-
luation criteria of classifiers [12−15]. The classifiers must
also be robust against processing errors and able to classi-
fy  large  number  of  modulations  in  different  propagation
conditions. In addition, real-time operation and low com-
putational complexity should be considered [16−20].

In  this  paper,  a  method  for  modulation  classification
based  on  the  received  signal  features  is  presented.  The
proposed  method  is  designed  based  on  the  intrinsic  pro-
perties  of  the  modulated  signals  with  low  SNR and  low
sampling time. It is robust against channel noise and pro-
cessing errors. In comparison to current methods, our al-
gorithm  has  low  complexity,  low  SNR,  wide  range  of
modulation set, and enhanced recognition at higher-order
modulations.

The geometrical  structure and distances between sym-
bols  in  in-phase-quadrature  (I-Q)  constellation  diagram
are extracted as one part of features in this algorithm. Addi-
tionally,  our  method  combines  the  derived  results  from
the  I-Q constellation  diagram with  the  results  of  norma-
lity  test  and  spectrum  features  of  the  received  signal  as
another part of features. In other words, the extracted fea-
tures which are used in the proposed method are as follows: norma-
lity  test,  spectrum  analysing,  and  the  geometrical  struc-
ture of the I-Q constellation diagram. Since the combina-
tion of these features is unique for each modulation, they
can be considered as a fingerprint of any one. Our results
show that the proposed algorithm outperforms the previ-
ously presented modulation classifiers.

Following this introduction in Section 1, related works
are  presented  in  Section  2.  Next,  the  basis  of  the  pro-
posed  technique  is  explained  in  Section  3.  This  section
includes a diagram of the main algorithm of the proposed
method.  The  feature  extraction  techniques  are  also  ex-
plained in this section. In Section 4, simulation results of
the  proposed  method  as  an  automatic  modulation  classi-
fier  are  discussed.  The final  section  presents  the  conclu-
sions. 

2. Related works

In  FB  approaches,  modulation  recognition  is  carried  out
in two modules. The first module is the feature extraction
subsystem,  in  which  features  are  extracted  from  the  re-
ceived  signal.  The  second  module  is  the  pattern  recog-
nizer or the decision maker subsystem, which determines
the modulation format [10].

In the first module of the feature-based automatic mo-
dulation classification (FB-AMC),  some features  are  un-
der  more  attention  in  literatures  that  generally  include
statistical,  spectral,  cyclo-stationary,  and  time-frequency
features.

First,  the  statistical  features  involve  the  diverse  range
of  cumulants  and  moments.  For  instance,  in  [11,21−23]
different  orders  of  cumulants  were  extracted  as  features
of received signals. Some studies used high order cumu-
lants as features in their algorithms [24−26]. In addition,
moments’ extraction was implemented in [27], and a mo-
ment  matrix  technique  was  used  for  AMC  in  [28].
Second, the spectral features are obtained from three ba-
sic parameters, i.e., amplitude, phase, and frequency. For
example,  in  [29,30]  the  variance  of  the  centerd  normali-
sed  signal  amplitude,  phase,  and  frequency  were  con-
sidered as features. In [31], the features consisted of statisti-
cal and spectral features to AMC. Third, most of the modu-
lated  signals  have  some  parameters  which  change  with
time. In digital communications, these parameters may be
amplitude, frequency and phase. Most of the signals have
the  cyclo-stationary  property  which  can  be  exploited  for
classification  of  modulation  formats.  For  instance,  in
[32,33] the cyclo-stationary properties such as cyclic fre-
quency  and  phase  were  obtained.  Fourth,  frequency  and
time features  are  extracted by the aid of  short  time Fou-
rier transform. In [31], discrete Fourier transform and in-
stantaneous autocorrelation were used to recognize modu-
lation  types.  Furthermore,  I-Q  constellation  diagram
properties are extremely noticed in researching. For exam-
ple,  some studies were performed based on constellation
shape  properties  in  [34,35].  In Table  1,  summary  of  re-
lated  FB  approaches  are  described.  It  informs  algorithm
references,  feature  types,  decision  making  methods,  ex-
tracted features in each algorithm, and modulation set that
can be recognized by any algorithm.

In the second module of  the FB-AMC, some methods
are  reported  for  decision  making  [10].  Several  common
approaches, such as decision tree (DT) [22−24,30], artifi-
cial  neural  networks  (ANNs)  [27,32],  machine  learning
(ML) and support vector machine (SVM) [25,29,34−36],
k-nearest  neighbour  (KNN)  [26,33],  genetic  program-
ming (GP) [25,26,31], PDF-based algorithm [11], particle
swarm  optimization  (PSO)  [36],  principal  component
analysis  (PCA)  [27],  and  combinations  of  some  tech-
niques have been used for decision making. The decision
making  schemes  of  these  algorithms  can  be  seen  in
Table 1. 
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Table 1    Summary of related FB approaches

Algorithm Feature type Decision making Extracted feature Modulation set

[36] Time-frequency
Naive Bayesian and

SVM

Discrete Fourier transform Binary phase shift keying (BPSK), quadrature phase shift keying
(QPSK), 16-QAM, LFM, SF, 2-FSK, 4-FSKInstantaneous

autocorrelation

[29] Spectral
Extreme learning

machine
Amplitude

BPSK, QPSK, 8-PSK, 16-QAM, 64-QAM, 4-ASK
Phase information

[37] Statistical Genetic programming Original cumulants BPSK, QPSK, 8-PSK, 16-QAM, 64-QAM

[11] Statistical PDF-based Fourth-order cumulants BPSK, 4-ASK, 16-QAM, 8-PSK, V32, V29, V29c

[32] Cyclo-stationary ANN
Cyclic frequency

2-ASK, 2-FSK, 4-FSK, 8-FSK, BPSK, QPSK, MSK
Spectral

[31]
Spectral and

statistical
SVM with PSO

Higher-order
2-ASK, 4-ASK, 2-FSK, 4-FSK, 2-PSK, 4-PSK

Statistical and wavelet

[25] Statistical GP and SVM Higher-order cumulants 16-QAM, 64-QAM

[27] Statistical PCA and ANN
Mean value and variance 4-ASK, 8-ASK, 16ASK, 2-PSK, 4-PSK, 8-PSK, 16-PSK, 4-FSK, 8-FSK,

16-FSK, 8-QAM, 16-QAM, MSK, on off keying (OOK)Central moments

[30] Spectral DT
Amplitude

2-ASK, 4-ASK, 8-ASK, 2-FSK, 4-FSK, 8-FSK, 2-PSK, 4-PSK, 8-PSK
Phase and frequency

[22] Statistical DT Fourth-order cumulant BPSK, QPSK, FSK, MSK

[23] Statistical DT
Fourth-order QPSK, offset quadrature phase shift keying (OQPSK),

8-PSK, 16-PSKZero-conjugate cumulant

[24] Statistical DT
Instantaneous amplitude

2-ASK, 4-ASK, 8-ASK, BPSK, QPSK, 8-PSK
Higher-order cumulants

[33] Cyclo-stationary KNN Cyclo-stationarity BPSK, QPSK, FSK, MSK

[26] Statistical GP and KNN Higher-order cumulants BPSK, QPSK, 16-QAM, 64-QAM

[34] Time-frequency ML Constellation 4-QAM, 16-QAM, 32-QAM, 64-QAM, 128-QAM, 256-QAM.

[35] Time-frequency ML Constellation 16-QAM, 32-QAM, 64-QAM
 
 

3. Basis of the proposed FB approaches
The proposed method is mainly based on the extraction of
the signal features. In this research, I-Q constellation dia-
gram, normality test, and frequency spectrum analysis are
used  to  uniquely  classify  orthogonal  frequency  division
multiplexing  (OFDM),  phase  shift  keying  (PSK),  quad-
rature  amplitude  modulations  (QAM),  frequency  shift
keying  (FSK),  and  minimum-shift  keying  (MSK) modu-
lations  schemes.  The  three  steps  of  the  proposed  feature
extraction  procedures,  i.e.,  normality  test,  spectrum ana-
lysing,  and  geometrical  analysis  of  the  I-Q  diagram  are
shown in Fig.1.

In  fact,  in  the  proposed  method,  a  unique  set  of  para-
meters including normality test, spectral features and geo-
metrical  structure  of  the  I-Q  diagram,  acts  as  a  finger-
print  for  each  modulation  scheme.  With  appropriate  de-
termination  of  these  parameters,  an  accurate  classifica-
tion would be possible. In the following, the steps of the
proposed algorithm are explained. 

3.1    Normality test

In an OFDM modulation, a great number of dense spaced

orthogonal sub-carrier signals with overlapping spectrum
are  transmitted  simultaneously  [38,39].  Thus,  the  trans-
mitted  signal  can  be  considered as  a  combination  of  nu-
merous  independent  identically  distributed  (IID)  random
variables.  Therefore,  due  to  the  central  limit  theorem
(CLT)  the  distribution  of  the  received  IID  signal  is  nor-
mal  [40,41].  Thus,  this  modulation  is  easily  distinguish-
able from other carrier modulations by performing a nor-
mality  test.  Based on this  explanation at  the  first  step of
the proposed algorithm, the normality test is performed to
discriminate OFDM from other modulation schemes, as it
is  shown  in Fig.1 .  In  other  words,  the  normality  test  of
the  received  signal  is  used  to  discriminate  single-carrier
modulations  from  multi-carrier  modulations  [19,20].  In
this  paper,  we  assume  that  multi-carrier  modulation  ca-
tegory includes only OFDM, and single-carrier modulation cate-
gory includes QAM, PSK, FSK, and MSK. Therefore, the
normality  feature  extraction  step  can  distinguish  OFDM
signals clearly. For other modulations, complete recogni-
tion will be done in the next steps.  
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Fig. 1    Proposed feature-based automatic modulation classification algorithm
 

3.2    Frequency spectrum analysis

Spectrum  analysis  of  the  modulation  classification  has
been previously considered in [42−45]. In this paper, we
propose an approach that uses spectrum analysis in modu-
lation classification. In our method, the spectrum analyz-
er  performs  an  initial  classification  based  on  spectrum
features.  It  classifies  single-carrier  modulations  to  two
groups,  regular-shape  and  irregular-shape  spectrum  mo-
dulations.  Modulations  with  regular-shape  spectrums  al-
ways have a fixed and deterministic pattern, while the ir-
regular-shape  modulations  do  not  have  such  properties.
For instance, 4FSK modulation always has four peaks in
its  spectrum while QAM and PSK spectrums have seve-
ral variable peaks with erratic frequency distances. Also,
we define N for the number of peaks in the regular-shape
spectrum  of  modulation.  Thus,  4-FSK  has N =4,  and  2-
FSK and MSK have N=2. Besides, their branches in Fig. 1
are  indicated  by  their  number  of  peaks  resulted  in  spec-
trum analyzing. For more conceptual understanding, Fig. 2
shows spectrums of 16QAM, 16PSK, and 4FSK. 16QAM
and 16PSK modulated signals have irregular-shape spec-
trum, and 4FSK modulated signal has regular-shape spec-
trum.  Moreover,  the  order  of  modulation  that  is  deter-
mined by the number of the different symbols that can be
transmitted using it is defined by M.

According  to Fig.  1,  we  can  discriminate  between
single-carrier  modulations  by  estimating  and  extracting
the peaks of  the frequency spectrum of the received sig-
nal  and  then  comparing  the  results  with  the  frequency
spectrum  of  each  modulation.  In  the  next  step,  the  pro-
posed  method  classifies  the  irregular-shape  spectrum
modulation group to QAM or PSK subgroups. Then con-
sidering  the  number  of  peaks,  it  classifies  regular-shape
spectrum modulation signals to FSK or MSK subgroups.
Furthermore,  frequency spectrum analysis  is  done consi-
dering  the  number  of  peaks,  to  distinguish  between
4FSK,  2FSK,  and  MSK  in  the  regular-shape  spectrum
subgroups, as it is shown in Fig. 3. For example, a signal
with four peaks in its spectrum belongs to 4FSK modula-
tion.  Equation  (1)  can  be  used  to  identify  MSK  and
2FSK,  However,  both  of  them  have  two  peaks.  In  this
situation, we need to use another characteristic to differen-
tiate  between  MSK  and  2FSK.  As  we  know,  MSK  is  a
continuous phase frequency shift keying (CPFSK) modu-
lation with the minimum frequency difference between its
two peaks [46]. In fact, the decision rule in (1) is used to
discriminate  between  2FSK and  MSK in  frequency  ana-
lysis.
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Fig.  2      Baseband  frequency  spectrum  of  16PSK,  16QAM,  and
4FSK in the spectrum analyzer
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Fig.  3      Baseband  regular-shape  frequency  spectrum  of  MSK,
2FSK, and CPFSK in the spectrum analyzer

Modulation =
{

MSK, d = Tb

FSK, d > Tb
(1)

Tb

d is  the  frequency  difference  between  detected  peaks  in
the modulation spectrum and  is the time interval of a
bit in the modulated data frame. 

3.3    Using I-Q diagram

In  this  step,  the  last  and  accomplishing  part  of  the  al-
gorithm  is  performed.  We  use  k-center  and  k-means  al-
gorithms to  extract  the  I-Q diagram of  the  signal  in  low
SNRs  [39].  An  example  of  using  this  method  for  QAM
modulation with SNR equal to 8 dB is shown in Fig. 4. In
this figure, blue and red dots denote the symbols of the I-
Q  constellation  diagram  of  the  received  signal,  and  the
estimation results of symbols centers using k-center and k-
means  algorithms,  respectively.  Considering  the  estima-
ted  centers  as  a  constellation  is  an  appropriate  bench-
mark for modulations classification.
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In  our  method,  the  Euclidean  distances  between  esti-
mated symbols in I-Q diagrams are measured from a speci-
fic coordinate in a noiseless condition. Then, the measu-
red results are saved and recorded as sequences in a data
base.  This  procedure  is  done  for  all  types  of  considered
modulations  in  the  proposed  method,  as  reported  in
Table  1.  In  the  following,  the  specific  coordinate,  saved
sequences,  and  recorded  data  base  are  called  reference
coordinate,  reference  sequences,  and  I-Q  features  bank
information,  respectively.  This  bank information used as
modulated signals is received. In the case of noisy chan-
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nel, the centers of I-Q diagram of the received signal are
estimated using k-means and k-center algorithms.

In  the  next  step,  a  maximum-likelihood  based  al-
gorithm is  used to measure distances between calculated
centers. Like the noiseless situation, in noisy channel, the
distances are measured from the mentioned reference co-
ordinates  in  the  I-Q  constellation  diagram.  Then  the
measured  distances  are  stored  in  other  sequences  as  I-Q
features of the received signal. Finally, a search-based al-
gorithm compares the sequences of the I-Q features of the
received  signal  with  the  bank  information  presented  in
Table  2.  In  other  words,  the  comparison is  done by cor-
relating between the  reference  sequence which is  named
d and saved in the I-Q features bank information and the

S ′

S ′

S ′

extracted I-Q features of the received signals.  For exam-
ple, Fig. 5(a) shows how the reference sequence from the
coordinate  (1,  1)  is  measured  by  the  proposed  method.
The  reference  sequence  in  the  noiseless  condition  recor-
ded in data base is S= {2 2 2.82} for 4-QAM modulation.
Fig. 5(b) shows how the sequence, = {q1 q2 q3} where
qi (i=1, 2, 3) is the estimated Euclidean distance between
estimated  symbols  in  I-Q  diagram,  for  4-QAM  received
modulated signal in a noisy channel is measured from re-
ference  coordinate  (1,1). Fig.  5 identifies  the  I-Q  dia-
gram of the received signal,  estimated centers of the I-Q
diagram,  and .  If  the  correlation  search-based  al-
gorithm  results  in  a  correlation  value  more  than  a
threshold, it means that S and  are matched adequately.
Thus, the algorithm detects 4-QAM modulation.

 
 

Table 2    Reference sequences for each modulation that are extracted and saved in an I-Q features bank information

Modulation
type

Sequence
length

Reference
coordinate

Reference sequence

64-QAM 64 (1,1)
d={0.0 2.0 2.0 2.0 2.0 2.82 2.82 2.82 2.82 4.0 4.0 4.0 4.0 4.47 4.47 4.47 4.47 4.47 4.47 4.47 4.47 5.65 5.65 5.65 5.65
6.0 6.0 6.0 6.0 6.36 6.32 6.32 6.32 6.32 6.32 6.32 6.32 7.21 7.21 7.21 7.21 7.21 7.21 7.21 7.21 8.0 8.0 8.24 8.24 8.24

8.24 8.48 8.48 8.48 8.48 8.94 8.94 8.94 8.94 10.0 10.0 10.0 10.0 11.31};

32-QAM 32 (−3, −5)
d={0.0 2.0 2.0 2.8 2.82 4.0 4.0 4.47 4.47 4.47 5.65 6.0 6.0 6.32 6.32 6.32 7.21 7.21 8.0 8.24 8.24 8.24 8.48 8.94 8.94

10.0 10.0 10.0 10.19 10.77 11.31 11.66};
16-QAM 16 (3,3) d = {0.0 2.0 2.0 2.82 4.0 4.0 4.47 4.47 5.65 6.00 6.32 6.32 6.0 8.48 7.21 7.21}

8-QAM 8 (3,3) d={2.0 2.82 4.0 4.47 4.47 5.65 6.32  7.21}

4-QAM 4 (1,1) d={0 2.0 2.0 2.82}

4-FSK Variable (0,0) , · · ·Sequence with any elements ={1, 1, 1, 1, 1 }

2-FSK Variable (0,0) , · · ·Sequence with any elements ={1, 1, 1, 1, 1 }

MSK Variable (0,0) , · · ·Sequence with any elements ={1, 1, 1, 1, 1 }

4-PSK 4 (0,0) d ={0.0 1.41 1.41 2.0}

8-PSK 8 (0,0) d={0.0 0.76 0.76 1.41 1.41 1.84 1.84 2.0}

16-PSK 16 (0,0) d={0 0.39 0.39 0.76 0.76 1.11 1.11 1.41 1.41 1.66 1.66 1.84 1.84 1.96 1.96 2.0}
 
 
 

: Recieved 4-QAM signal; : Estimated center.: 4-QAM symbols center;
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Fig. 5    Symbol centers of 4-QAM constellation
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4. Simulation results
In this section, simulation results are presented. 

4.1    Frequency spectrum analysis simulation results

As an example, frequency spectrum analysis is simulated
for  MSK,  2-FSK,  and  4-FSK  modulated  signals.  Con-
sequently,  according  to  (1),  signals  with  two  detected
peaks belong to MSK or 2-FSK and signals with four de-
tected  peaks  belong  to  4-FSK.  Results  of  spectrum  ana-
lysis and extraction of the peaks of power spectral dens-
ity for 2-FSK and 4-FSK are shown in Fig.  6.  It  is  clear
that spectrum analyzer can detect spectrum features well.
As  a  result,  this  step’s output  is  an  effective  part  of  the
fingerprint criterion in the proposed algorithm.
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Fig.  6      Spectrum  analysis  and  extraction  of  the  peaks  of  power
spectral density for 2-FSK and 4-FSK
  

4.2    I-Q diagram features extraction simulation results

As shown in Fig.  1,  after  the frequency analysis  and the
peaks detection, we applied k-means and k-center cluster-
ing  algorithms to  the  I-Q diagram of  the  received signal
to  estimate  centers  of  symbols.  In  the  next  step,  the  se-
quence  of  distances  between  symbols  is  generated  and
then  compared  to  the  I-Q  diagram  of  features  bank  in-
formation  presented  in Table  1.  As  previously  stated,  a
correlation  search-based  algorithm  generates  correlation
of  measured  sequence  with  sequences  in  the  data  base.
Finally,  if  the  maximum  correlation  value  is  larger  than
or equal to a threshold, the algorithm determines the type
of the modulation and its order. For instance, Fig. 7 indica-
tes I-Q diagram features extraction for 16-QAM modula-

tion at  SNR=5 dB. Fig.  7(a) is  the I-Q diagram plotting,
Fig.  7(b) shows centers  estimating  of  symbols, Fig.  7(c)
shows  distances  sequence  generating,  and Fig.  7(d)
presents the comparison distances sequence with the I-Q
diagram features bank information in Table 1. At the first
step, I-Q diagram is plotted (blue spots in Fig. 7(a)), then
the  center  of  each  cluster  or  symbol  is  estimated  (red
spots in Fig. 7(b)). Next, at the third step the distances se-
quence  is  constructed  (blue  rings  around  red  spots  in
Fig.  7(c)),  and  finally  the  generated  sequence  is  com-
pared  to  the  reference  sequences  (black  arrows  in  data
base  in Fig.7(d) ).  Finally,  the  comparison  can  determine
the type of modulation and its order.
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Fig. 7    I-Q diagram features extraction for 16-QAM modulated signal
  

5. Proposed algorithm results
In  this  section,  comparison  results  are  presented  in  two
parts. The first part is dedicated to presenting the success
rate  of  the  proposed  algorithm  in  classification  of  the
modulations,  and  the  second  part  is  focused  on  compar-
ing the performance of  the proposed method with recent
published modulation classifiers. 

5.1    Success rate

One of the important  criteria  of  modulation classifiers  is
the  success  rate.  The success  rate  presents  the  reliability
of  the  classification.  Different  modulated  signals  have
different features in their signaling, I-Q constellation dia-
gram, and geometrical construction. In this situation, dif-
ficulty  of  features  extraction  is  not  equal  in  all  types  of
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modulations,  and it  depends on the SNR levels.  In  other
words,  there  is  a  trade-off  between  difficulty  of  features
extraction  and  SNR levels.  Moreover,  the  required  SNR
to achieve a specific success rate is different in each mod-
ulation. In other words, different modulations need differ-
ent SNRs to obtain any success rate.

105

In  this  section,  in  order  to  evaluate  the  proposed  al-
gorithm we  aim at  success  rate  levels  of  99% and  80%.
Fig. 8 shows the success rates of classification named Ps
in terms of SNR. These curves are analyzed in Table 3. In
addition, the number of symbols and the number of itera-
tions are set as 103 and 105, respectively, where the num-
ber  of  symbols  indicates  the number of  symbols  that  we
receive from the modulated signal, and the number of ite-
rations  is  the  number  of  the  proposed  algorithm  repeti-
tion to classify modulated signals.  Additionally,  equival-
ent  symbol  number  provides  similar  conditions  in  the
modulated signals sampling. The large number of repeti-
tions (iterations),  for any classification, can improve
the  reliability  of  the  classifier  results.  Iteration  does  not
have  any  influences  on  the  success  rate,  but  it  can  im-
prove  the  reliability  and  the  preciseness  of  the  achieved
success rate.
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Fig.  8      Success  rate  of  proposed  algorithm  in  terms  of  SNR  for
different modulations
  
Table  3      Different  SNRs  for  the  proposed  algorithm  at  99% and
80% success rates

Modulation
type

SNR/dB (99%
success rate)

SNR/dB (80%
success rate) Symbol Iteration

64-QAM 11 10 103 105

32-QAM 9 8 103 105

16-QAM 3 2 103 105

4-QAM 3 2 103 105

4-FSK 5 4 103 105

2-FSK 7 6 103 105

MSK 7 6 103 105

8-PSK 9 8 103 105

16-PSK 13 12 103 105

As Table  3 shows,  the  proposed  method  achieves  a
99% success rate at SNR as low as 3 dB for 4-QAM and
16-QAM  modulations.  In  QAM  modulation  classifica-
tion, from 4th order to 64th order, the required SNR for a
99% success rate increases from 3 dB to 11 dB.

Moreover, the worst case for a 99% success rate is for
the 16-PSK modulation that is not detectable at SNRs be-
low  13  dB.  For  a  99% success  rate,  8-PSK  and  both
2-FSK and MSK modulations are detected at SNR=9 dB
and  SNR =7  dB,  respectively.  Success  rate  results  show
that  higher  orders  of  modulations  would  need  higher
SNRs  to  achieve  the  same  success  rates,  except  in  FSK
modulation that 4FSK can be detected with about a 2 dB
lower SNR than 2FSK.

As a  result,  in  this  section we fix  two success  rate  le-
vels in order to evaluate the proposed algorithm. We also
report  the  required  SNRs  to  achieve  these  success  rates
for  any  modulation  categories  of  QAM,  PSK,  FSK,  and
MSK.  It  is  shown  that  the  required  SNRs  are  different
for the sake of different difficulties in features extraction. 

5.2    Performance comparison with previous AMCs

In Table 4, we compare the proposed classifier with other
algorithms  in  AMC  approaches,  modulation  set,  SNR,
success  rate,  complexity,  advantages,  and disadvantages.
Since  our  criterion  for  AMC  performance  is  near  99%,
we  compare  the  proposed  algorithm with  the  algorithms
that  report  their  success  rates  near  99%.  Thus,  results  in
Table 4 are provided according to whatever are reported
in literature.

The first column of Table 4 indicates the names of al-
gorithms  and  their  references.  In  the  next  column,  the
AMC approaches of all algorithm are informed. For more
evidence, we try to compare the proposed algorithm with
both  of  the  LB  and  FB  approaches.  For  instance,  the
ALRT, HLRT, and Quasi-HLRT reported in [5] used LB
approaches  to  AMC.  Additionally,  the  FB  based  al-
gorithms that  are  compared with  the  proposed algorithm
are  reported  in  [5,11,26,27,29,34−36].  The  third  column
demonstrates  the  modulation  set  that  any  algorithm  can
recognize.

Most current methods identify a limited set of modula-
tion types,  whereas  the  set  of  modulations  considered in
this paper are OFDM, M-QAM, M-PSK, M-FSK, where
M is the order of them, and MSK types in total. The mo-
dulation  set  of  the  compared  algorithms  can  be  seen  in
Table 4.

In  addition, Table  4 describes  the  complexity  of  the
proposed  algorithm  against  others.  Complexity  clearly
means  the  volume  of  mathematics  and  the  number  of
steps required to recognize modulation types.  In this  pa-
per,  our  algorithm has  a  low complexity  computation  in
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comparison with current methods since we use triple low
complexity  processes  in  features  extraction.  This  al-
gorithm  first  involves  spectral  analysing.  Spectral-based
features can be calculated simply and instantaneously, so
it  can  improve  the  recognition  accuracy  for  different
modulation schemes at low SNR.

This  paper’s AMC algorithm benefits  k-means  and  k-
center  techniques.  They  are  simple  classifiers  and  are
defined  as  a  nonparametric  approach  that  does  not  re-
quire information about data distributions [47]. Thus, utili-
zing  a  cascade  of  k-center  and  k-means  algorithms  can
lead  to  the  achievement  of  much  higher  accuracy  in  de-

termining the type of the modulation and also reduce the
complexity of the process [20]. Furthermore, in the third
process,  implementing  correlation-based  function  is  not
complicate  at  all.  According  to  what  was  described  pre-
viously, using I-Q diagram is based on features informa-
tion bank prepared and saved as sequences in a data base.
Therefore, the algorithm only correlates the achieved I-Q
diagram of the received signal with what was saved in the
database.  As  a  result,  there  is  no  complicated  process  in
the last process of the proposed algorithm. Consequently,
our algorithm has low complexity in terms of implementa-
tion.

 
 

Table 4    Performance comparison of the proposed algorithm with other automatic classifiers

Algorithm classification AMC Modulation set Complexity
Success
rate/%

SNR for
16QAM/dB

Advantage Disadvantage

Proposed algorithm: FPMC FB

OFDM, 2FSK, 4FSK,
MSK, 4QAM, 16QAM,
2QAM, 64QAM, 8PSK,

16PSK

Low 99 3
Low SNR

Wide modulation set
Recognition of higher-

order QAM
−

ALRT [5], L=1, ηA=1
L=likelihood ratio; ηA=
average likelihood ratio

LB
BPSK, QPSK, 16QAM,

32QAM, 64QAM
High 99 7

Maximum probability of
classification

Multidimensional
integration

Impractical [48]

HLRT [5],
μ, H not specified μH=
hybrid likelihood ratio

LB
BPSK, QPSK, 8PSK,

16PSK, 16QAM,
64QAM

High 99 9
Treated as deterministic

known
Overcome to nested

Constellation
Un-conditional PDF

Quasi-HLRT [5],
threshold = 1

LB
16QAM, 32QAM,

64QAM
Low 99 19 Low-complexity

Enhanced performance
Require high SNR

Disabled in high-order
QAM

Cumulant-based [11],
Nm=2, μH=−0.68

Nm=Number of modulation
FB

2ASK, 2FSK, 4FSK,
8FSK, BPSK, QPSK,

MSK
Low 99 9

Low SNR
Robust in phase and

frequency

Sub-optimal
performance [37]

AMC with ELM [29] FB
BPSK, QPSK, 8-PSK, 16-
QAM, 64-QAM, 4-ASK

Low 99 7
High accuracy

Low SNR levels
Robustness

Impractical
Limited modulation set

GPOS [37], symbol length
4096

FB
BPSK, QPSK, 8-PSK, 16-

QAM, 64-QAM
Low 99 15

Accelerate the feature
process

Satisfactory performance
Stronger robustness

Limited
modulation set

[26] FB BPSK, QPSK,
16QAM, 64QAM Low 98 11 Good performance

Disable in high-order
QAM

AMC with HMLN [36] FB  BPSK, QPSK, 16QAM,
LFM, SF, 2FSK, 4FSK Low 99.26 30 Wide modulation set Requires high SNR

[27] FB

4ASK, 8ASK, 16ASK,
2PSK, 4PSk, 8PSK,
16PSK, 4FSK8FSK,

6FSK, 8QAM, 16QAM,
MSK, OOK

Low 100 20 Reduced complexity
Large set of
modulations

Need high SNR
Need many features

[34] FB
4QAM, 16QAM,

32QAM, 64QAM,
128QAM, 256QAM

Low 100 15 Enhanced recognition
Higher-order QAM Require high SNR

[35] FB
16QAM, 32QAM,

64QAM
Low 100 15 Enhanced performance

Without prio information
Need high SNR

Disable in high-order
QAM
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The low computational complexity was reached in [11]
by statistical  features.  The authors in [29] stated that  the
low complexity of their algorithm is due to the reduction
of  dimension.  It  also  occurs  because  of  programming  at
high  SNR  scenarios.  It  can  reduce  the  computational
complexity  without  any performance loss.  Subsequently,
benefiting  from  instantaneous  autocorrelation  in  [37]
resulted a less complex method.

Similarly,  other  FB  methods  can  obtain  suboptimal
solutions  with  a  low  computational  complexity  and  do
not  depend  on  prior  information.  For  example,  in  [36],
the advantage of the instantaneous autocorrelation is hav-
ing less complexity compared to the high-order cyclo-sta-
tionarity  approach.  The  features  subset  selection  using
PCA in [27] is used to reduce the complexity of the used
neural network through the selection of the best features.

In  [34],  the  subtractive  clustering  algorithm,  in  which
the  number  of  cluster  centers  was  adaptive,  was  used.
This  idea  greatly  reduced  computational  complexity.
Also,  k-means clustering in [35] is  applied,  which needs
to calculate the number of clustering centerpoints.  It  can
lead to simpler I-Q diagram features extraction. Using GP
to  reduce  the  computational  time  in  k-means  clustering
techniques was done in [26].

The  complexities  of  LB  methods  are  presented  in
Table 4. Although LB methods can theoretically achieve
the  optimal  solution,  they  have  a  high  complexity.  For
prime  instance,  ALRT  [5]  experiences  a  high  computa-
tional  complexity  in  the  case  that  unknown  parameters
are  increased.  In  addition,  due  to  un-conditional  PDF in
HLRT  [5],  it  has  a  high  computational  complexity.  To
achieve less complexity in the LB method a sub-optimal
algorithm namely Quasi-HLRT [5]  is  used by the  aid  of
observation conditional PDF.

Next, according to what were reported in literature, the
success  rates  and  their  required  SNRs  are  stated  in  the
fifth and the sixth columns of Table 4. As can be seen, in
FB-AMC,  the  algorithm  of  extreme  learning  machine
(ELM) needs SNR=7 dB to achieve a success rate of 0.99
while the proposed method needs SNR=3 dB.

The AMC with ELM method uses an ELM as a classi-
fier, which has a faster learning process and a better per-
formance  than  conventional  machine  learning  methods.
Additionally,  a  method for classifying the electromagne-
tic signals of a radar or communication system according
to  their  modulation  characteristics  has  been  presented  in
[36]. It identifies 16-QAM with a success rate of 99.26%
and SNR=30 dB. In addition, in [36] a method based on
genetic  algorithm  has  been  proposed  that  it  needs
SNR=15 dB for a success rate of 99%.  The SNR=15 dB
was  reported  in  [34,35]  for  the  success  rate  100%.  One
more example,  a good performance was reached by [26]

with SNR=11 dB for a success rate near 99%.
More  importantly,  the  success  rate  and  the  SNRs  for

the  LB-AMCs  are  informed  in Table  3.  The  SNR=7  dB
and  the  success  rate  99% were  attained  by  ALRT while
HALRT  could  reach  the  same  success  with  SNR=9  dB.
However,  the  Quasi-HLRT  having  a  low  computational
complexity  reached  a  99% success  rate  of  recognition
with  SNR=19  dB.  From  these  results  it  can  be  under-
stood that  the proposed algorithm with SNR=3 dB leads
to a 4 dB processing gain in comparison with the best pre-
viously  published  results  in  ELM  [29]  with  SNR=7  dB.

For  more  clearance  in  this  paper,  we  summarized  ad-
vantages  and  disadvantages  of  compared  methods  in  the
last two columns of Table 4 based on what were reported
in  their  references.  What  can be  reasoned about  the  pre-
ference  of  the  proposed  algorithm  are  low  complexity,
low SNR, wide range of modulation set, and enhanced re-
cognition at higher-order QAM. 

6. Conclusions
In this  paper,  a  new automatic  modulation detection and
classification algorithm has been proposed based on a set
of  unique  properties  of  modulations.  At  first,  normality
test  of  the  received  signal  is  used  for  OFDM  detection.
Then the separation between FSK and MSK modulations
from  PSK  and  QAM  modulations  is  performed  using
primitive  spectrum  analysis.  The  next  steps  include  the
analysis  of  the  spectrum,  the  estimation  of  the  I-Q  con-
stellation  diagram  of  the  received  signal  using  k-means
and  k-center  methods,  the  extraction  of  the  geometric
properties  (Table 2),  and then the calculation of  the cor-
relation  of  the  received  signal  with  the  data  recorded  in
the database that is saved in the memory of the algorithm
to  recognize  the  type  of  modulation.  The  simulation  re-
sults show a high success rate of the proposed algorithm.
SNR range  is  also  compared  to  the  previously  proposed
methods. For example, it can be understood that the pro-
posed  algorithm  with  SNR=3  dB  leads  to  a  4  dB  pro-
cessing gain in comparison with the best previously pub-
lished results in ELM [29] with SNR=7 dB. In this paper,
our algorithm has a low computation complexity in com-
parison  with  current  methods  since  we  use  triple  low
complexity processes in features extraction. What can be
reasoned about  the preference of  the proposed algorithm
are low complexity, low SNR, wide range of modulation
set, and enhanced recognition at higher-order QAM.
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