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Abstract: This paper examines the direction of arrival (DOA) es-
timation for polarized signals impinging on a sparse vector
sensor array which is based on the maximum interelement spa-
cing constraint (MISC). The vector array effectively utilizes the
polarization domain information of incident signals, and the qua-
ternion model is adopted for signals polarization characteristic
maintenance and computational burden reduction. The features
of MISC arrays are crucial to the mutual coupling effects reduc-
tion and higher degrees of freedom (DOFs). The quaternion data
model based on vector MISC arrays is established, which ex-
tends the scalar MISC array into the vector MISC array. Based
on the model, a quaternion multiple signal classification (MUSIC)
algorithm based on vector MISC arrays is proposed for DOA es-
timation. The algorithm combines the advantages of the qua-
ternion model and the vector MISC array to enhance the DOA
estimation performance. Analytical simulations are performed to
certify the capability of the algorithm.
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1. Introduction

Array signal processing is a basic theory in the fields of
radar, sonar, navigation, etc [1,2]. With the increasing re-
liability of vector sensors, polarization is added to the di-
rection of arrival (DOA) estimation as a basic informa-
tion attribute. Therefore, many researchers proposed
multi-component data processing algorithms. For polariz-
ation vector sensor arrays, multiple signal classification
(MUSIC)-like algorithms were introduced in [3] and es-
timation of signal parameter via rotational invariance
techniques (ESPRIT) were introduced in [4]. Nehorai et
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al. [5] studied the Cramer-Rao bound (CRB) for the vec-
tor-sensor arrays. In [6], a multiscale disambiguation al-
gorithm based on a multiscale sparse array of spatially
spread electromagnetic vector-sensor (SS-EMVS) array
was developed to attain high accuracy and unambiguous
DOA estimations. In [7], a joint estimation of DOA and
polarization of the signals was attained based on SS-
EMVS array, which can efficaciously decrease the com-
plexity of the four-dimensional space joint estimation.
Cao et al. [8] achieved the DOA estimation of correlated/
coherent signals using a uniform rectangular array (URA)
with electromagnetic vector-sensors. In [9], the proposed
algorithm based on a sparse rectangular spatially spread
crossed-dipole polarization sensitive array attained the
two-dimensional (2D) DOA estimation which used the
lowest components polarized vector sensor array and re-
tained low mutual coupling. Song et al. [10] proposed a
method which utilized the signals, inherent time-fre-
quency peculiarity to obtain better performance of DOA
estimation with a few snapshots for the underlying vector-
sensor array in a noisy and coherent situation. In [11],
Yang et al. proposed a hybrid L-shaped array of two
sparse scalar arrays and a single triangular SS-EMVS for
2D DOA estimation, which obtained a better estimation
performance. Ahmed et al. [12] proposed a fast quadrilin-
ear decomposition algorithm for DOA and polarization
estimation by an EMVS-URA, which kept rapid conver-
gence and accurate parameter estimation. In [13], an es-
timation algorithm of 2D DOA and polarization paramet-
er was proposed based on the three-parallel co-prime po-
larization sensitive array, which enhanced the estimation
accuracy even in low signal-to-noise (SNR) ratio situ-
ation.

However, these methods presume that the complex va-
lued data model represents incident signal frequency do-
main samples. The data covariance matrix is next de-
scribed as second order statistical magnitude between all
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sensor components. In the recent few decades, algori-
thms based on quaternion were introduced [14] for array
signal processing. A multidimensional complex signals
hypercomplex version [15] was also introduced by Biilow
et al. [16]. In [17], Miron et al. proposed a quaternion
data model algorithm based on vector-sensor array for es-
timation of DOA and polarization parameters, which de-
creased the data covariance model representation memory
size leading to an efficient algorithm. In [18], for L-
shaped array, the dimension reduction Q-MUSIC al-
gorithm was proposed to decrease the complexity. In
[19], a generalized rotation invariance based quaternion
multiple signal classification algorithm was proposed for
the estimation of polarization parameters and DOA,
which not only reduced the computation complexity con-
siderably, but also avoided the performance degradation
caused by the failure in parameters pairing. The DOA
could be estimated by biquaternion MUSIC in [20] to
achieve better angle measurement performance. A qua-
ternion-based ESPRIT-type algorithm called augmented
quaternion ESPRIT was proposed for DOA estimation
with a co-located crossed-dipole array in [21] to achieve
better performance in low SNR scenarios.

The main advantages of sensor arrays are their spatial
selectivity and their ability to decrease interference and
enhance signal quality. Traditional uniform linear arrays
(ULAs) are commonly used sensor arrays, in which the
spacing between elements does not exceed half wave-
length and is constant to avert spatial aliasing. However,
the traditional ULA degrees of freedom (DOFs) are
merely linear to the sensor number. For a ULA of N
sensors, the traditional subspace methods [22] may distin-
guish up to N—1 signals. For heightening the traditional
ULA DOFs, additional sensors are needed, resulting in an
extra complexity. Traditional ULAs also endure serious
mutual coupling influence from array sensors. The sparse
arrays, nonuniform linear arrays (NLAs), provide an in-
teresting resolution for these difficulties. In sparse arrays,
the mutual coupling influence can be decreased because
of the interelement spacing increase [23]. Latterly, the
sparse arrays advancement, for instance nested arrays
[24] and coprime arrays (CAs) [25], have attracted re-
searchers to review this subject because sparse arrays can
be methodically devised and their DOFs can be analytic-
ally offered from closed-form formulas.

The nested array can provide O(N2 ) DOFs with merely
N sensors, which is achieved via increasing interelement
spacing and incorporating two or more ULAs [24]. The
two-level nested array is composed of two ULAs. How-
ever, the nested array DOFs become lower than that of

the minimum redundancy array for a given sensors num-
ber. Yang et al. [26] introduced an improved nested array
(INA) by enlarging the outer ULA interelement spacing
and adding an additional sensor. The INA offer higher
DOFs and retain all the two-level nested array advant-
ages. The CA is another interesting sparse array. The CA
[25] includes two ULAs in which the first ULA is N'-

’”

sensor array with =N interelement spacing, while the

second ULA is N”-sensor array with - interelement
spacing, where A is signal wavelength and N’ and N” are
coprime integers. For the nested array, the mutual coup-
ling is further decreased in the CA. However, for the
same number of physical sensors, the DOFs provided via
a coprime array usually become smaller than that via a
nested array. For further enlarging the DOFs, Pal et al.
[27] proposed an extended CA via doubling the sensor
number in an ULA. Its difference coarray may achieve
consecutive lags between (-N'N”"—-N"+1) and
(N'N” +N” —1) via using (N’ + N” —1) sensors. In [28],
the CAs were derived from achieving two procedures.
One procedure is constricting the subarray interelement
spacing in the CA providing a compressed interelement
spacing (CACIS). The CACIS normally enlarges the
unique and consecutive lags number. To avoid a consider-
able number of overlaps of self-lags and cross-lags, in
[28], the second procedure was proposed for displacing a
subarray in the CA in order to offer a larger array aper-
ture, a higher unique lags number, and a much larger
minimum interelement spacing from the obtained CA
with displaced subarrays. In [29], Zheng introduced an
advanced array based on the maximum interelement spa-
cing constraint (MISC) principle, which provided a high-
er DOFs and mutual coupling influence reduction.

At present, MISC arrays are only composed of scalar
sensors and fail to display the polarization information of
signals. The MISC array is composed of vector sensors,
because it takes advantage of the array manifold, and
takes into account the signal polarization information,
which brings more benefits to DOA estimation. Based on
the above analysis, this paper proposes a quaternion MU-
SIC based on vector MISC array.

This paper consists of the following sections. In Sec-
tion 2, short quaternion descriptions are introduced and a
polarized signal model is given. The MISC array concept
is introduced and the characteristics of MISC array are
discussed in Section 3. In Section 4, a description of the
quaternion DOA estimation based on vector MISC array
is given. In Section 5, the algorithm performances are
evaluated by computer simulations. Finally, the conclu-
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sions are presented in Section 6.
2. Quaternion data model of polarized signals
2.1 Polarization model

Quaternions discovered by Hamilton in 1843 are four-di-
mensional (4D) hypercomplex numbers, which are com-
plex numbers extensions into 4D space. A quaternion is
defined via one real and three imaginaries, whose
Cartesian form can be described as

g=w+xi+yj+zk (D

where i’=7*=k*=ijk=-1, ij=k, ji=-k, ki=j, ik=
—j, jk=1, kj = —i.

Many books researched quaternions and their charac-
teristics. The hypercomplex numbers basics were intro-
duced in [30], while a comprehensive quaternions review
was introduced in [31]. Several complex numbers proper-
ties may be extended into quaternions: the conjugate
q" = w—xi—yj—zk; pure quaternion g = xi+yj+zk; qua-
ternion modulus ||lg|| = w?+x2+y?+z2; quaternion in-

*

2
llgll
noncommutative normed algebra, meaning

verse ¢! = . The quaternions set, noted H, forms a

9192 # 4241 (2

And conjugation over H is an anti-involution

(192) =541 )
In [32], a Cayley-Dickson form quaternion was ex-

pressed as: g = g, + ¢»j, where g, = w+xi and ¢, =y +zi.
That is

- : 9
m{ljﬂ%]. ©)

The joint expression of spatial domain and polariza-
tion domain of signals is modeled and the signal receiv-
ing model of electromagnetic vector sensor array is estab-
lished. This paper mainly studies fully polarized electro-
magnetic waves.

Assuming that there is a point signal source with eleva-
tion angle # and azimuth angle ¢ at a certain point in
space. The ideal transmission medium is transmitted to
the array along the direction of the Poynting vector, as
shown in Fig. 1.

The unit vectors pointing in the positive direction of x,
¥, and z axis are denoted as e,, e,, and e, respectively. The
coordinate origin serves as the reference phase point of
the electromagnetic vector sensor array, and the electro-
magnetic waves received are converted into baseband
electrical signals.

As can be seen from Fig. 1, the unit vector of the inci-

dent direction of the signal is the propagation vector of
the signal

epz[ —sinfcos¢ —sinfsing —cosf ]T 6)

where the superscript T represents the transpose.

x/
%

Fig.1 Characterization of fully polarized electromagnetic waves

The horizontal vector e;; and the vertical vector ey consti-
tute a set of standard orthogonal basis perpendicular to
the plane of the propagation direction:

eHz[ —sing cos¢ O ]T, 6)
ey :[ cosfcos¢ cosfsing —sinf ]T. N

For the electromagnetic wave at point P in space, the
complex analytical formula of the instantaneous electric
field vector is

E = En(t)en + Ev(tey = [en ev][ ?{8 } (8)

where
Eu() = Eye® 0
©)

Ey(f) = e

Equation (9) is the instantaneous projection of the
complex analytical formula of the electric field vector in
the horizontal and the vertical directions at time z. Ey,
and Ey,, are maximums in the horizontal and the vertical
directions, respectively. The signal polarization informa-
tion may be described via the instantaneous ratio of the
electric field amplitude and phase in the vertical and the
Ey

tany = —
EHm ’

horizontal

directions, and n=¢y—¢u,

ve [O,g] is polarization assist angle, and n € [0,2n] is
polarization phase difference. For a fully polarized wave,

its endpoint polarization trajectory is an ellipse with a
fixed long and short axial ratio and inclination. That is
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Euy() | _ Eu(®)| cosy |_
Ey(t) _cosy sinyei" N
cosy
E‘"’(t)[ sin-ye" } (10)

The coordinates of the electric field vector in the plane
rectangular coordinate system are

E
Eﬁg =| en e ][ cosy ]E(t). (11)
E.(1) sinye?t |

The coordinates of the magnetic field in the plane rect-
angular coordinate system are

H,
HA.Z; =[ e -ew ][ cosy ]E(t). (12)
HZ(t) sinye" ¢

The coordinates of a complete six-dimensional electric
and magnetic field in a plane rectangular coordinate sys-
tem are

E.(7) —sing  cosfcos¢
E,) cos¢ cos@sing
E@) | _ 0 —sinf

H.) | | cosfcosg sin¢

H, (1) cosfsing —cos¢

H.(1v) —sind 0

cosy
[ Sy ]Ecm (13)

where

AP(¢’ 0’77 77) :B((ﬁ’ O)P(}/, 77) =

—sin¢ cosfcos¢
cos ¢ cosfsing
0 —siné cosYy
cosfcosd sing [ sinye' ] ' (14)
cos@sing —Ccos¢
—sinf 0

Ap(¢,0,y,n) is the polarization steering vector and
B(#,0) shows the dependence of the polarization domain
scanvectorontheazimuthandelevationoftheelectromagne-
tic wave.

There is a uniform linear N electromagnetic vector
sensor array along the positive direction of the y-axis.
The electromagnetic vector sensor at the origin is used as
the reference element. The electric dipoles of the electric
field are orthogonal to each other, and the distance
between the electromagnetic vector sensor array ele-

. 4 D
ments is d, and d < —, which is used to ensure that there
is no array blur, that is, the expected direction of the in-

A
cident signal is only one value. When 3 is taken as the

value, the array element utilization rate is the highest and
the effect is guaranteed. 4 is the wavelength of the inci-
dent desired signal. The y-axis coordinate y, of the nth
electromagnetic vector sensor is (n—1)d,n =1, 2, -*-, N,
in Fig. 2. And make M(M<N) far-field expected signals
(fully polarized waves) incident on the array and the ele-
vation angle § = 90°. For the azimuth of the desired sig-
nal, the spatial phase delay between the nth element and
the reference element is

3 2n(n—1)dsing

=T 15
@ ; (15)

N &

and d
a, = —n(n—1)sing. (16)

The steering vector is
A= e e en] . (17)

The data received by the entire array is

ei“‘ApS(t) nl(t)
ei(yZApS(t) nz(t)
xo=| . |+ L=
e"’”f‘ ps(f) nI\;(t)
A (¢,0)® Ap(¢,0,y,m)s(1) + N(1) (13)

where n,(t) = [n,,(1) n,.(0]',(n = 1, 2, -, N) is the
noise vector in directions of y and z. ® represents the
Kronecker product. It is assumed that the noise is inde-
pendent between each array element, the noise is inde-
pendent between the vector components within each ar-
ray element, and the signal and noise are relatively inde-
pendent. Noise is an independent Gaussian white noise
with a zero mean and a ¢ variance.

Fig.2 Uniform linear array

2.2 Quaternions data model

Take the ¥ and Z direction electric field components in
(14) to obtain the polarization domain steering vector of
the m th signal received by this electromagnetic vector
sensor array
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AP (¢m70m”)/m’ nm) =

cos¢, cosf,sing, COSYp (19)
0 —siné,, siny, e |’

The elevation § = 90°, and after simplification

COS @, COS Yy,
AP (¢m7 Yms nm) = |: _ Slf'y ei:],"y :| . (20)

Apply (4) here. The quaternion Cayley-Dickson repre-
sentation synthesizes the polarization domain steering
vector in the complex number domain into a polarization
domain steering parameter in the quaternion domain,
namely

. COS ¢, COSY,,
p(¢m9Ymvnm):[ 1 J ][ —S(iﬁn)/ ei% :| (21)

After simplification, (21) becomes

p = cos ¢, COsYy,, —siny, cosn,j—siny,sinn, k. (22)

According to (18), it can be known that the mth signal
received by the entire electromagnetic vector sensor ar-
ray is

X,.() = As(¢m)p(¢m97m’nm) s+ N(1) (23)

where

A (@) =] o e e ]t 24

The quaternion noise is synthesized from the complex
noise vector by Cayley-Dickson representation as

m=[ 1] ][ ng ]zn,ly+nn,j. (25)

All signals received by the entire array can be ex-
pressed as

X0 =) A, @) PG Yosl) suD+N@D  (26)

m=1

where
T
Noy=[nm n ny |- 27)

Make a,, = A;(¢,) p(Pun>Ym>Nm), and write (26) as a
matrix

XO=[ Aa Ap - A |
D 51(2)

)23 5:(8)

Py iy su(®) Mx1

AS()+ N(@). (28)

A is called the spatial-polarization joint steering vector
matrix. In this way, a signal receiving data model of the
electromagnetic vector sensor array in the quaternion do-
main is established.

3. MISC array

3.1 Difference coarray

Sensor positions of an N-sensor nonuniform linear array
are given by n,,,d, in which n,, belongs to an integer set
S ={nym num=1,2--- N} andd = % denotes the mini-

mum distance between sensors. According to (24), the
mth signal array steering vector is

A@)=] e ]l (29)

where
2N umd SiN @,
;) .

The data model is still (28), but the steering vector is
(29). The covariance matrix of X(#) may be given by

Entoun = (30)

Ryx =E{X(HX'(0} =
AR A +E{N@ON (1)} =

M
> 2Pl Ay A, + 207 (31)

m=1

where E{-} is the statistical expectation operator,
Ry =E{S()S" (0} =
diag([o3lpilP.-- .o llpull’]) (32)

is the source covariance matrix, the superscripts < repre-
sents the quaternion conjugate transpose, diag(a) repre-
sents a diagonal matrix whose diagonal elements are a, I
denotes the NxN identity matrix.

Vectorizing Ryy yields

z=vec(Rxx) =

M
vec [Z 0',2,1||pm||2AxmA;m) +20°1 =

m=1

Bp+20°1 (33)

where vec(-) represents the vectorization operator by
stacking all columns of a matrix into a column vector one
by one, B=[b(@),.b@n)], b)) =A% 0A,,
p=[c2---,0%]", and 1=vec(y)=[17,---,15]" with

1,, being a column zeros vector except a 1 at the mth posi-
tion. By comparing (28) with (33), the vector z can be re-
garded as the data received from the coherent source sig-
nal vector p with a single snapshot, and 26°1 becomes a
deterministic noise term. The different rows of B behave
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similarly to the manifold of a virtual array with expanded
aperture, and the positions of its sensors are given by a
set of differences D in Definition 1. This virtual array is
known as the original array difference coarray [33]. As-
suming that U = [-L,,L,] is the D consecutive segment,
the corresponding measurements can be rearranged as

zv=Jz=Bp+20°T (34)

where L, is the maximum of consecntive segment, J rep-
resents a (2L,+1)XN? selection matrix, B’ is a
(2L, + 1)x M consecutive virtual ULA U manifold mat-
rix, and 1' is a (2L, + 1) X 1 zeros vector except a 1 at the
(L, + 1)th position. The steering vector of the original
matrix is shown in (24), and that of the virtual array is

Asvir (¢m) =

2ndsing,, . 2n2dsing,, 2nL,dsing,,
ZRASM P 2250 Pm R SO

T
1 ¢ 2 e 1 —e @7 . (35)

Definition 1 For a sensor position set S sparse array,
its difference coarray D is defined as

D={n1—n2|n1,n2€S}. (36)

Definition 2 [34] A sparse array S degrees of free-
dom is the difference coarray D cardinality.

Definition 3 [34] For a sparse array S, let U repre-
sent the difference coarray D maximum consecutive seg-
ment. The U cardinality is referred to as S uniform
DOFs.

3.2 Mutual coupling

The received signal in (28) does not consider the sensor
mutual coupling. However, in practice, the small separa-
tion mutual coupling effect cannot be neglected. After
considering the mutual coupling effect, (28) can be
viewed as

X(@)=CAS()+N() 37)

where C represents an NxN mutual coupling matrix.

The C expression is rather complicated. [35]. In ULA,
C can be approximated by a B-banded symmetric Toep-
litz matrix [36] as

Ciny-my)> M1 =1l < B
<C>n|,nz = . (38)
0, otherwise

where (), ,, denotes the (n,, n, )th matrix element, n,,
n, €8 and ¢, ¢, ", cg are coupling coefficients satisfy-
ing c,=1>|c,[>|c,/>* - ~>|c;|. The coupling coefficients mag-
nitudes are inversely proportional to their sensor separa-
tions, |c,/c/| = l/g for g, I > 0 [36]. For the mutual coup-
ling effect evaluation, the weight function and coupling
leakage are usually employed.

Definition 4 An array S weight function w(/) is

defined as the sensor pair number that leads to coarray in-
dex I.

w(b) = [{0r1,m) € 82, =, = 1 (39)

The weight function w(/) for any linear array with N
sensors [35] satisfies

w(O)=N,Zw(l):N2,w(l)=w(—l). (40)
leD
Definition5 Forasensor number, the coupling leakage
[35] is defined as the energy ratio:
||C - diag (O
L=————F 41
ICll “h
where ”C—diag (C)”F is all the off-diagonal components
energy, characterizing the mutual coupling level, and ||-||¢
represents the Frobenius norm. A small value CL indica-
tes the less significant mutual coupling.

3.3 Array structure

In this subsection, MISC array based on maximum in-
terelement spacing constraint will be introduced. These
arrays have many advantages. First, their sensor loca-
tions and the DOFs can be expressed in a closed form. In
addition, the MISC arrays difference coarrays are hole-
free. Most importantly, MISC arrays possess less mutual
coupling effect and a higher DOF.

For an arbitrary sensor number, the MISC arrays are
constructed by the given interelement spacings. Denote
the maximum interelement spacing as D, and the associa-
ted interelement spacing set as A. Specifically, MISC ar-
rays D and A4 are defined as

Dzzgju, N5, 42)

Awisc ={1,D-3,D,---,D,2,---,2,3,2,--- 2}, (43)
~——— —— ——

N-D D-4

2 2

where |-] denotes the integral part of the rational number
in the square brackets.

The MISC array minimum sensor number is 5, N > 5.
D increases as N increases.

The MISC array sensor position set is

SMISC = {O,I,D_Z,ZD—Z,"' ,(N—D+1)D—2,
(N-D+1)D,--- ,(N-D+2)D-6,(N-D+2)D -3,
(N-D+2)D-1,---,(N-D+3)D-T7}. (44)
The MISC array sensor locations are shown in Fig. 3.

Since D is decided by N, for an arbitrary sensor, MISC
arrays have sensor positions closed-form expressions.
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First ULA  N-D sensors

d (D-3)d, Dd Dd | 2d |
|

Second ULA  (D—-2)/2 sensors

Third ULA  (D—2)/2 sensors
| 3d | 2d |

|
1
L]
D-2 2D-2

-~
L L L] L] L]
0 1

(N-D+1) D=2 (N-D+1)D  (N-D+2) D-6 (N-D+2) D-3 (N-D+2) D-1

(N-D+3) D=7

Fig.3 MISC array configuration

3.4 Array analysis

In this subsection, we analyze the performance of MISC
array and compare them with some other arrays. It is
mainly analyzed from two aspects, which are DOFs and
weight functions. The coprime arrays DOFs are calcu-
lated instead of uniform DOFs.

(1) Uniform DOFs

For the integer set Sysc, the MISC array difference set
is provided by (N—D+3)D+7 and (N—D+3)D-7 con-
secutive set

Dyisc ={-(N-D+3)D+7,---,
-2,-1,0,1,2,--- ,(N=D+3)D-"T}. (45)

The uniform DOFs of the MISC array is
uDOFsyysc =2(N-D+3)D—13. (406)
Substituting D in (46) with (42) yields

2

N| N N
uDOFsMISC=4NhJ—8[ZJ +4N—4[ZJ—9. (47)

For uniform DOFs, MISC arrays have closed-form ex-

N
pressions. Using 7 instead of { J (47) can be approxi-

mately expressed as
2

N
uDOFSMISC ~ 7 +3N-9 (48)

where the approximation does not alter the magnitude
orders.

For comparison, the DOFs of arrays, such as ULA,
CA, and INA are described below. For ULA, the uniform
DOFs are calculated. The ULA uniform DOFs array is

uDOFSULA = ZN— 1. (49)

For the coprime array, the zeroth position element can
be shared, so there are (N’ + N” — 1) elements

uDOFsc, ¥ N'N”, N'+N" =N. (50)

The INA provides hole-free difference coarrays [26].
This indicates that the MISC array is sparser and has a
larger array aperture than the improved nested array, thus
it is much less sensitive to mutual coupling effects. The
uniform DOFs for the improved nested arrays are given by
N? 7
— +2N—-—=, Nisodd

2 2

! . (51
N
7+2N—3, N is even

uDOFSINA =

From (48), the MISC array uniform DOFs has the N
magnitude order. Therefore, the MISC array has a higher
uniform DOFs than the INA. At the same time, the DOFs
of MISC array is higher than that of the coprime array,
and much higher than that of the ULA.

(i1) Weight function

MISC array’s another advantage is less mutual coup-
ling. For mutual coupling effects, the weight functions at
small separations are more important [37]. The first three
weight functions, w(1), w(2), and w(3), provide a major
influence on the mutual coupling, and w (1) has the
greatest influence [34].

According to the interelement spacing set Ayysc and
the weight function definition, its weight functions w(1),
w(2), and w(3) are

w(l)=1,w2) = 2{§J—2,

w(3)={ 1, N#8,9,10,11

2. N=8.9.10.11 (52)

In comparison, the first three weight functions for ULA
are

w(l)=N-1,wQ2)=N-2,w(3)=N-3, (53)
and those for the coprime array are
w(l)=w@)=w3)=2. (54)

For improved nested arrays, D and A are calculated
when N is small, that is

N=2,D=2,A={1}
N=3,D:3,A { ’ }
N=4,D=3,A={1,3,2}
N=5D=4A={1,1,4,3} . (55)
N=6,D=4,A={1,1,4,4,3}
N=7,D=5A={1,1,1,5,5,4}
N=8,D=5A={1,1,1,5,5,5,4}
For INAs, the first three weight functions are
1, N=2
N+1 .
w(l)= -1, Nisodd; N >3 (56)
g—l, Niseven; N >4
2 1, N=3,4 57
W)= 0, otherwise’ 57



SHAO Shuai et al.: Polarization quaternion DOA estimation based on vector MISC array 771

3) = 1, N=4,5,6 (58)
W)= 0, otherwise

Through w(1), w(2), and w(3), the mutual coupling ef-
fects of the MISC array is compared with two other
sparse arrays. Although the coprime array provides a
smaller w(2) value, there are holes in the difference coar-
ray. The MISC array is sparser than the improved nested
array from the weight functions, so that the mutual coup-
ling is greatly reduced.

4. Quaternion based DOA estimator
4.1 Quaternion spectral matrix

The spectral matrix [38] is proved by second order auto-
moments and cross-moments of all antenna sensors for
scalar-sensor arrays. For vector-sensor array, quaternion
spectral matrix (QSM), which is the equivalent second or-
der representation, 2 € HVV is

Q=E{XX"} (59)
where X € HY is the quaternion observation vector from

(28). Replacing (28) in (59) and using (3), £ can be ex-
pressed as

Q=E{(AS+N)(AS+N)'} =
E{(AS+N)(S°A"+ NY)}. (60)
Assume that the decorrelation between sources them-

selves and between the noise and the sources, and the
quaternion spectral matrix is

Q=E({ASS'A}+E{NN"} = Q, + Q, (61)

where

M
Q, = AE(SS*} A" = Zafnmr =
m=1

M
D TPl ALAL, (62)
m=1
and 2y = E{NN"} is a matrix containing noise second or-
der statistics. In (61), £ is the signal part and 0',2”||p,,,||2 is
the mth source power.
The vector sensor array X € HY output can be expre-
ssed because of the complex-valued outputs X, X, € C¥
of the two components as

X=X1+X2j. (63)

The quaternion vector transpose-conjugate X can be
described by complex vectors transpose-conjugates X, X,
as

X =Xx"-jx¥ (64)

where the superscript H represents the conjugate trans-
pose. Introduce (63) and (64) into (59), 2 is

Q=E{(X, + Xuj) (X} - jx¥)) =
E{X, X} - E{X,jX}} + E{X,jX}'| + E{X,X}}.  (65)

In (65), X, X, are i-complex vectors and j and i multiplic-
ation is not commutative. In (65), for the two vector ar-
ray components, auto-covariance and cross-covariance
matrices mean that QSM contains all the second-order in-
formation intrinsically. The QSM noise-free part becomes
a Toeplitz matrix [17]. Assuming the data (see (28)) noise
component is spatially nonpolarized and white, the noise
part is a real diagonal matrix and the diagonal entries in-
dicate the N sensors noise power.

4.2 Subspace method

(1) Quaternion vector orthogonality

The received polarization components data of the elec-
tromagnetic vector sensor arrays are arranged in order
and combined into a long vector data in the complex do-
main. The advantage of this is that the data can be placed
in the complex domain and the complex algebra can be
used for operations. However, the polarization compo-
nents vector structure is destroyed because the data model
in the complex domain does not take into account the or-
thogonality between the polarization components and just
stacks the data into a long vector. The data is synthesized
into a quaternion and the inherent orthogonality can ac-
curately describe orthogonality between the received
components in the quaternion domain instead of simply
stacking up the data in the complex domain.

It can be seen that modeling in the quaternion domain
can describe the polarization information more com-
pletely and accurately than modeling in the complex do-
main. The quaternion orthogonality has a stronger con-
straint than the complex one [17]. Theoretically qua-
ternion orthogonality or long vector orthogonality are
identical only if sources have identical polarizations or if
there is only one source. Otherwise, these two methods
obtain different results. Compared to the long vector
method, the quaternion vector orthogonality to estimate
the signal subspace improves estimation accuracy. The
signals energy can be more precisely concentrated on a
quaternion vector orthogonal basis than on a long vector
one.

(i1) Quaternion eigenvalue decomposition

Eigen-structure methods are based on the vector space
decomposition using energy criteria in orthogonal sub-
spaces. Researchers in areas such as quantum mechanics
[39], vector-signal processing [40], and color image pro-
cessing [41] pay attention to singular value decomposi-
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tion and eigenvalue decomposition (EVD) of quaternion
matrices. In this paper, the quaternion eigenvalues and ei-
genvectors are utilized for right eigenvalues and eigen-
vectors. The quaternion spectral matrix £ estimation is
proved by statistical average

T
e % ; X, X2, (66)
where T is the total of snapshots, X,,, is receiving array
data at each snapshot and sam is the snapshot index.
QSM becomes quaternion Hermitian 2° = € by construc-
tion. Quaternion Hermitian matrix eigenvalues are real-
valued [42]. Quaternion spectral matrix becomes

N
o= Z A (67)
n=1

where /1, represents the real eigenvalue and u, represents
the N orthonormal quaternion eigenvector.

By recognition of (61) with (67), the first M eigenva-
lues correspond to the signal part and the rest N—M cor-
respond to the noise part. And M is a priori known. The
QSM can be expressed as

Q=AZA+Qy (68)

with A € H™ including the M source vectors and
X € R 3 diagonal matrix including the sources powers.
Assuming that noise is not polarized, its covariance ma-
trix is diagonal and real: 2y = 20?1, where 25" is the
noise power. The 2 EVD is

Q=UDU" (69)

with U=[u,, --,uy] € H"" including the quaternion-
valued N eigenvectors of 2 and D € R™¥| the eigenva-
lues diagonal matrix.

(ii1) Quaternion MUSIC
Define two matrices Us € HV™ and U; € HMV-M ag
US:[ul""’uM]9 (70)
U =[upy, - ,uyl. (71)

U, includes the signal subspace eigenvectors and Ug
includes the noise subspace eigenvectors. By multiplying
(68) on the right, we get

QU; = AZAU; +20°Us. (72)

QSM can also be indicated according to U and U;; as

Q=U;DsU; +20°UUL, (73)

where Dy =diag{A,,---,4y}. The noise power is equal
for all array sensors, therefore the last N—M eigenvalues
are 20 Replace (73) in (72), and use the vectors ortho-
gonality between Uy and Uy, and the relation is obtained

20°Uq = AZA U +20°Ug (74)
which implies
AU; =0. (75)

If (75) is multiplied on the right by (A*U;)", (75) can
be expressed using columns of 4 as

a:UsUsa, =0 (76)

for all {¢,,,6,,Vm N} sets corresponding to M signal
sources parameters. ITy = UsUs" € HYV is the noise sub-
space projector. In reality, this projector estimation, ITy,
results from the estimated spectral matrix £ EVD.

The quaternion DOA estimation based on vector MISC
array is then calculated via projecting the quaternion
steering vector d,, (G, s Vim>1m) € HY,

g

R

am = p (¢”‘l’ 9m7 y777’ nm) (77)

eiénay
where &,,,,.. 18 (30), on the noise subspace as

SPQ (¢17179m’7/nv77m) = A; (78)
a.llya,

A quaternion estimation is similar to the scalar MU-
SIC algorithm. Equation (78) has maxima for {¢,,, 6,,
Yms I} S€ts corresponding to signal sources. Varying
Oms Ous Ym> M, @ 4D hypersurface is calculated. The
Oms Oy Ym»> M €Stimation values are the maxima coordi-
nates on this hypersurface. The first ¥ maxima corres-
pond to the M signal sources. The ¢,,, 8,,, ¥y, 1, €Stima-
tion process is quasi-unsupervised. In this paper, the
DOA estimation of the signal is mainly concerned and the
polarization of the signal is known. For the model de-
scribed above, the elevation angle is 90°, and only the
azimuth angle needs to be estimated.

4.3 Computational complexity

For long vectors and quaternion algorithms, this subsec-
tion addresses the computational complexity, only focus-
ing on the covariance matrix estimation. As it indicates
repetitive operations, this procedure best indicates the two
algorithms’ complexity difference. The method complex-
ity is evaluated regarding memory traffic, memory re-
quirements, and basic arithmetical operations: real num-
bers addition (A), multiplication (M) and division (D).

Consider a two-component vector sensor array e, and
e.. A snapshot is proved by two complex vectors
X,,X, €C". The observation quaternion form X € HV
has the expression proved by (63) and the long vector
representation X € C2 is
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X:[ X } (19)
The corresponding covariance matrices are
Q=E{XX"} e H, (80)
2 =E{XX" ec?™. (81)
Averaging over T the covariance matrix is used for es-
timation:
1 & 1 &
2= ; XX = ; Q. (82)
Q= 1 ZT] XX = 1 ZT: Q.. (83)
T 2 =T 2 sam

Each 2,,, matrices include N’ quaternion entries and
can be expressed for 4N’ real fields machine memory,
while the @,,, matrices have complex entries, corres-
ponding to 8N’ real values. For the data covariance mo-
del, the quaternion algorithm reduces by half the memory
requirements, resulting in memory traffic operations dimi-

nution by 3 approximately and a proportional speed gain.

Evaluate the basic arithmetical operations number for
covariance matrix estimation. Each quaternion entries of
Q... is a result of two quaternions multiplication. It im-
plies 16 real (M) and 12 real (A), and the total number of
operations of the whole matrix are 16N (M) and 12N
(A). 16N (M) and 8N (A) are calculated for the com-
plex matrix Q... Thus, the summation £ have a total of
16N°T (M) and 16N'T-4N" (A) while € requires 16N'T
(M) and 16N°T—-8N° (A). The division by 7 means 4N°
real numbers (D) for quaternions and 8N’ (D) for long
vectors.

Regarding the real values elementary operations num-
ber, the quaternion model needs 4N° (A) and 4N° (D) less
than the long vector model. The division computational
complexity is several times more important than addition,
meaning higher computational cost for long vectors.

The quaternion eigenvectors computation of the estima-
ted matrix 2 € H" can be executed by complex num-
bers or quaternions. The complex numbers methods diago-
nalize the 2 complex adjoint matrix, a 2Nx2N complex-
valued matrix [43]. In [44], working in quaternion do-
main enhances the algorithms convergence speed com-
pared to the complex method. This heightens the idea that
the quaternions can enhance the algorithms’ performance.
The quaternion algorithms reduce computational efforts
because of compact data handling.

5. Simulation results

In this section, numerical examples imply the superiority

of the vector arrays based on quaternion over the scale ar-
rays in terms of weight functions, mutual coupling
matrices, and DOA estimation performance. Assume that
the source number is known. For evaluating the results,
the DOA root mean square error (RMSE) is defined as a
100 independent trials average:

100 M

RMSE = J ﬁ » (éb(i) - c})z (84)

i=1 m=1

where ¢ is the ith trial ¢ estimate.
5.1 Weight functions and mutual coupling matrices

In the simulation example, the weight functions and mu-
tual coupling matrices of the MISC array [29], the ULA
[22], the CA [25], and the INA [24] are compared. For all
these arrays, we consider that the number of sensors is
11. For the coprime array, the parameters are N’ =5 and
N” =7. Here, the mutual coupling model (38) is de-
scribed by ¢; = 0.05¢'™*, B=100, and ¢, = ¢;e"“"""8/] for
2 <I<B. Fig. 4 indicates the weight functions of four
kinds of arrays.

12 T 12 T 12 T 12

10} {1 10 g 4 10} 1 10}

8 81 d 8 8

=6 26 {=z6 =6

41 4 4t 4

2t bplag 4 2H d 2 ppmmmmEg 2 o
Lininnin | 0| )
OTHI.IITT o UL 0 ( | il .hf
-10 0 10 -10 0 10 -10 0 10 -10 O 10
Coarray index Coarray index Coarray index Coarray index
(a) MISC array (b) ULA (c) CA (d) INA

Fig. 4 Weight functions

In Fig. 4, the ULA has the largest weight functions
(w(1) =10, w(2) =9, w(3) = 8). The improved nested ar-
ray exhibits larger weight functions (w(1) = 5, w(2) = 4,
w(3) = 3), due to the dense inner ULA. The coprime ar-
ray provides smaller weight functions (w(1) =w (2) =
w(3) = 2) because of sparser configuration. The weight
functions (w(1) = 1, w(2) = 2, w(3) = 2) are even smaller
for the MISC array.

Fig. 5 indicates the mutual coupling matrices mag-
nitudes. The blue color indicates less energy. The nested
array suffers from the severest mutual coupling effect.
The MISC array and CA suffer from less mutual coup-
ling effect.
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(a) MISC array (b) ULA (c) CA

(d) INA

Fig. 5 Mutual coupling matrices

5.2 DOA estimation in the absence of mutual coupling

In the simulation example, in the absence of mutual coup-
ling, the DOA estimation performance is compared
among the MISC array, the ULA, the CA, and the INA.
For all arrays, sensors number is 11. The MUSIC search
interval is 0.01° and the incident angle is 30°. The phase
difference of the polarization signal is 0 and the constant
mode ratio is 0.5. The simulations analyze the RMSE per-
formance about the input SNR, and the snapshots num-
ber respectively. The fixed parameter setting is 7= 1024
snapshots. Fig. 6 displays the DOA estimation RMSE
versus the input SNR.
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Fig. 6 RMSE of normalized DOA estimates versus the SNR
without mutual coupling

All the RMSEs decrease as the SNR increases. When
the SNR is higher than —4 dB, RMSEs attain a steady
level. Moreover, the RMSE of the MISC array is smaller
than that of the other arrays especially based on the qua-
ternion algorithm.

Fig. 7 displays the DOA estimation RMSE about the
snapshots number. All DOA estimations are more stabili-
zed and accurate as the snapshots number increases, and
the MISC array is better than other arrays. The overall
quaternion-based algorithm is better than similar algo-
rithms no matter how many snapshots are observed.
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Fig. 7 RMSE of normalized DOA estimates versus the number of
snapshots without mutual coupling

5.3 DOA estimation with mutual coupling

In the simulation, in the presence of mutual coupling,
DOA estimation performance of the MISC array, the
ULA, the CA, and the INA are compared. The sensors
number is 11 and the incident angle is 30°. The RMSE
performance about the input SNR, the snapshot number,
and the coupling coefficient ¢, are analyzed. The DOA
estimation RMSE about the SNR is displayed in Fig. 8.
The quaternion algorithm for vector arrays exhibits bet-
ter performance than for scale arrays. The three arrays
outperform the ULA against mutual coupling effect.
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Fig. 8 RMSE of normalized DOA estimates versus the SNR with
mutual coupling
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In Fig. 9, the DOA estimation RMSE about the snap-
shots number is displayed. The RMSE is reduced rapidly
for the arrays, as the snapshots number increases. For the
quaternion algorithm, the RMSE results are reduced
rather stably. The RMSE about |¢,] is displayed in Fig. 10.
Along with the |c|| increase, the RMSE increases for any
array. More severe mutual coupling effect is introduced
by a higher value of |¢,|. The CA has a better perform-
ance when |c/| is larger than 0.1.
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Fig. 9 RMSE of normalized DOA estimates versus the number of
snapshots with mutual coupling
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5.4 Other aspects of simulation analysis

(i) CRB of the designed method

The CRB of the design method is analyzed. In order to
highlight the design approach, it is taken out separately,
and the approach is very close to its CRB. See Fig. 11 for
details.
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Fig. 11 CRB of the designed method

(i1) Influence of the minimum scan interval

The effect of the minimum scan interval is simulated
and analyzed, as shown in Fig. 12. The simulation para-
meters are the same as before, using three scanning inter-
vals, which are 0.01°, 0.05°, and 0.1° respectively. The
incident angle is 30°. The smaller the interval, the more
accurate the estimation, but the search time will also be
longer. Therefore, keep scan intervals as small as pos-
sible, as computer power permits. Since the angle corres-
ponding to the maximum value is directly selected as the
estimate value in the search process, the quantization er-
ror is about half of the interval.
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Fig. 12 Influence of minimum scan interval for designed method

(iii) Relationship between the probability of success
and the SNR

In this section, the incident angle is 30°. DOA is esti-
mated successfully if RMSEs are less than 0.05. Simula-
tion parameters are the same as before, and a 0.01 inter-
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val is used. The simulation results are shown in Fig. 13.
As the SNR increases, the probability of success in-
creases, and the quaternion algorithm has a better per-
formance.

100 I .
/ _’/ e
'._.’ T s

g

90 r

8O+
0t/

50 t
/'/
40 | /

Success probability/%

30 #

20 . . . . s . s

-10 8 -6 -4 -2 0 2 4 6
SNR/dB

—+— : MISC (quaternions); —#—: MISC (scalar);

—+— : MISC (long vector).

Fig. 13 Relationship between the probability of success and the SNR

(iv) Direction finding ability of the designed method
for coherent sources

The performance of the algorithm in the case of cohe-
rent sources is analyzed by simulation. The incident
angles of the two sources are 40° and 60° respectively.
These two sources are coherent sources with the same
signal form but slightly different polarization modes. As
can be seen from the spectrum in Fig. 14, this method can
distinguish sources but traditional methods cannot. It can
be seen that the quaternion-based algorithm designed in
this paper has a better performance.
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Fig. 14 Spectrum

6. Conclusions

In this paper, the combination of vector sensor array and
quaternion algorithm shows advantages: higher DOFs,
mutual coupling effect reduction, signals polarization

characteristic maintenance, and computational burden re-
duction. For a given sensors number, the DOFs and the
sensor locations in MISC array are uniquely determined
and can be described via closed-form expressions. The
quaternion data model based on vector arrays is estab-
lished, which extends the scalar array into vector array.
Based on the model, a quaternion MUSIC algorithm
based on vector MISC arrays is proposed for DOA estima-
tion. The algorithm combines the advantages of the qua-
ternion model and the vector array to enhance the DOA
estimation performance. The quaternion model has a
lower RMSE. Coprime arrays also have good results un-
der mutual coupling conditions. Analytical simulations
are operated to certify the capability of the algorithm.
Overall, the vector MISC array based on quaternion has a
good effect.
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