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Abstract: Most of the near-field source localization methods are
developed with the approximated signal model, because the
phases of the received near-field signal are highly non-linear.
Nevertheless, the approximated signal model based methods
suffer from model mismatch and performance degradation while
the exact signal model based estimation methods usually involve
parameter searching or multiple decomposition procedures. In
this paper, a search-free near-field source localization method is
proposed with the exact signal model. Firstly, the approximative
estimates of the direction of arrival (DOA) and range are ob-
tained by using the approximated signal model based method
through parameter separation and polynomial rooting opera-
tions. Then, the approximative estimates are corrected with the
exact signal model according to the exact expressions of phase
difference in near-field observations. The proposed method
avoids spectral searching and parameter pairing and has en-
hanced estimation performance. Numerical simulations are pro-
vided to demonstrate the effectiveness of the proposed method.
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1. Introduction

Source localization is of practical importance in many as-
pects of array signal processing, for example, radar, so-
nar, speech, and seismology [1—5]. When a source is lo-
cated in the Fresnel region of an array, the near-field, its
wave front is spherical and the phase difference among
sensors is non-linear. Therefore, both direction of arrival
(DOA) and the range are necessary for the localization of
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near-field sources.

Most of the near-field source localization methods are
based on an approximated signal model for simplifica-
tion [6—8]. The phase difference is usually approximated
as a linear term which contains only the DOA, like in the
far-field, and a quadratic non-linear term which contains
both the DOA and the range. Several source localization
methods aim at the elimination of the quadratic non-li-
near term to reduce the computational complexity, which
only needs several one-dimensional (1-D) search. This
type of 1-D spectral methods includes the covariance ap-
proximation method [9], the weighted linear prediction
method [10], the rank reduced (RARE) method [11], the
second order statistics (SOS) method [12], the reduced-
dimension method [13], and the high order statistics
based methods [2,14—16].

Unfortunately, the approximated model based methods
suffer from model mismatch, resulting in systematic es-
timation bias in practical environment [17—19]. In the lite-
rature, there are two main approaches dealing with the
exact signal model in near-field source localization. One
is to directly estimate the DOA and the range with the ex-
act model, including the maximum likelihood estimator
(MLE) method [20], the Fourier transform method [21],
the parallel factor (PARAFAC) decomposition method
[22], and the cumulant based method [17]. However, di-
rect estimation methods generally require multi-dimen-
sional or 1-D search, or multiple decomposition, which
brings much computational load. The other approach per-
forms an initial estimate of DOA and range by using the
approximated signal model based methods, followed by
error correction procedures [22,23]. Although the family
of the approximated model based methods [7,9—16] per-
form reduced-dimension estimation, they still need seve-
ral 1-D search or parameter pairing operations, which
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have an influence on the estimation accuracy and effi-
ciency.

In this paper, a search-free near-field source localiza-
tion method is proposed with the exact signal model by
using the correction method. The contributions of this
work are as follows:

(i) Reduce the computational complexity of the ap-
proximated model based near-filed source localization
methods. Unlike [23], the proposed method obtains the
estimates of DOA and range with the approximated sig-
nal model through parameter separation and the polyno-
mial rooting, which is free of searching and pairing.

(ii) Improve the parameter estimation accuracy in near-
field source localization. Compared with the spectral
methods, rooting procedures are more effective in para-
meter estimation problems [24]. Besides, the implementa-
tion of error correction also contributes to the reduction
of systematic estimation error with the approximated sig-
nal model.

The rest of this paper is organized as follows. Section 2
presents the signal model. Section 3 describes the pro-
posed method. Section 4 gives the theoretical analysis.
Section 5 shows its performance with numerical data.
Conclusions are drawn in Section 6.

2. Signal model

Consider K independent narrow band signals impinging
on a uniform linear array (ULA) with elements, as shown
in Fig. 1.

The kth source

-M 0 M

Fig. 1 ULA configuration in near-field source localization

Taking the Oth element as reference, the received sig-
nal at the mth sensor can be expressed as
K

%, ()= D s (e +m, (1) (1)
k=1

where n,, (f) is the additive white Gaussian noise at the
mth sensor with zero mean and variance o?; s, (¢) is the
signal emitted from the kth source and received by the
mth sensor at time ¢, t € [1,L]; L denotes the number of
snapshots; 6, denotes the phase difference of the kth sig-
nal between sensors m and 0:

S = 2771 ( \/ 12+ (md)’ — 2mdsin6, — r, (2)

where 6, denotes the DOA of the kth source, 6, €

[—g, g], r, is the range of the kth source, which is with-
in the Fresnel region ry€[0.62(D*/1)'?,2D?*/1]; D is
the array aperture; A is the wavelength of incoming sig-
nals; and d denotes the distance between two adjacent
elements of ULA.
The phase difference in (2) is usually approximated by
using the second-order Taylor expansion [25,26]:
2nd d
Sop ~ |~ =2 sing, |m + | cos?6, | m* ~
A /lrk
wam+ g’ 3)
. 2nd ?
with w; = —%sm&k and ¢, = T/;—coszek.
T
The vector of the received signal can be written as
x(t)=As®+n() “4)

where x (1) = [x_ (1), X_pp1 (1), -+, xu (D], 8(0) =[5, (1),
5(0),-++ sk O] n(0) = [y (8, npgd (1), oy (D], A =
la(r,0)),a(ry,0,),---,a(rg,0k)] is the steering matrix;
a(r,6;) = [eo,-- ,ejém]T, where 6_,; can either be the
exact or the approximated phase differences.

The covariance matrix of the received signals is

R=E|x(t)x" ()| = ARA" +0°T 5)

where R, =E[s(¢)s"(¢)] is the covariance matrix of the
source signals, E[-] denotes the ensemble average, and I
is the identity matrix.

The eigenvalue decomposition (EVD) of R is

R=UAU" (6)

where A is a diagonal matrix whose elements are the ei-
genvalues of R in descending order, A; >---> A >
Agsi=--=Ady=0*and U =[u,,u,,---,uy] contains the
corresponding eigenvectors.

3. Methodology

For the source localization with the exact signal model,
we propose to firstly apply an approximated signal mo-
del based method to obtain the initial approximative esti-
mates of DOA and range, and then perform error correc-
tion with respect to the exact phase difference and signal
model. The approximated estimation of DOA and range
is achieved by the polynomial rooting procedure with the
approximated signal model.

3.1 Polynomial rooting with approximated
signal model

In approximated signal model based methods, the steer-
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ing vector can be represented by using parameter separa-
tion in the following split form [13]:

[ ei-Mw
ei-M+hw
ejMzaﬁ
. ej(M—1)2d>
a(r,6) = 1 : @)
1
eiM-Dw
eiMw b(¢)
I'(w)

where I' (w) only contains the information of DOA while
b (¢) contains both the information of DOA and range.

With the split of DOA and range, the searching spec-
trum of multiple signal classification (MUSIC) with the
approximated signal model becomes

Pyusic (1,0) = miﬁnaH(r,G)UnU,Ifa(r,H) =

mi(tan () I'" (w)U,U,T () b($) 8)
W, N——

O(w)
where U, = [ug,1,Ugs,- ,Uy].

According to the Rayleigh quotient theorem [27], the
minimum of the quadratic function in (8) over w and ¢ is
equal to the minimum eigenvalue of Q (w). Since Q(w) is
with the quadratic form, its eigenvalues are always non-
negative [28]. When w corresponds to the true DOA of a
near-field source, the minimum eigenvalue is equal to
zero and the determinant of Q (w) reaches zero as well.

Assume z = e I'(w) can be represented as

- ]
Z(—M+])

rw=r@-= B )

(M-1)

| Z(M)

Therefore, the angle information of the near-field
sources can be obtained by finding the values of z satisfy-
ing

det[Q ()] = det[I'" (") U,UST 2)] (10)

where det[-] denotes the determinant.

Since I'(w) is a symmetric matrix, it is easy to find
that the expression of det[Q (w)] is an even function. Ac-
cording to the basic property of the even function, (10)
can be represented as the following polynomial:

MM+1)

f@=y|]0-2aY-ga0+2 )0 +z2 (1)

where v, is a constant.

In theory, the roots of (11) are not only conjugate re-
ciprocal but also rotational symmetric with respect to the
origin. Therefore, there will be 2K roots lying inside and
close to the unit circle. However, the phase of z = e

is limited to [—g,g] since d < :—: in the approximated
signal model based methods. In this context, the K roots
corresponding to the true DOAs can be selected for the
estimation

— 2
B, = —arcsi (4 —) 12
s arcsin Zk27td (12)

where / represents the phase of a complex variable.
Substituting each estimated DOA into (8), we can for-
mulate another polynomial:

b" (v Q@) b(») =0 (13)

where v = e %o Similarly, (13) can be represented as
(M+1)?

g@=y [ [A=v™)1-vi» (14)
n=1

where 7y, is a constant.
With the approximative estimate 6, there is only one
root lying inside and close to the unit circle, v;, which

can be used for the range estimation:

2

cos’6;. (15)

Iy =
LV

It should be noted that the proposed method is search-
free and computational efficient. The range parameter is
calculated with each estimated DOA, which does not re-
quire an additional pairing procedure.

3.2 Error correction with exact signal model

Let (7,(,5,() be the initial estimates of DOA and range of
the kth source with the approximated signal model. The
approximated phase difference is
~ 2nd . ~ -
5. = (—%sin@k)m+(7;,—rkcoszek)m2. (16)
As mentioned in [23], the parameters can be corrected

with the approximative estimates by using (2):

2

— 1 — A
28+ 2mdrsing, = (md)’ — (5,,1,{—) T
21 21

Since m € [-M, M], we can form the following system

of linear equations for the kth source:
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A 0 e
260k 2n |: rksingk :|_
o
Vwas 2Myd
D
D
(-Ma? - (5.5
~. 1\
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o
(Mdy - (55
21

c

Finally, the corrected estimates of each source can be
obtained by

r.=%¥()
{ = .HI(Y’(Z)) (19)

where ¥ = D*c.

The proposed method is summarized as follows:

(i) Estimate the data covariance matrix R and apply
EVD on it;

(i1) Build polynomials (11), (14) and obtain the appro-
ximated DOA and range;

(iii) Calculate S, for each source by using the appro-
Ximative estimates;

(iv) Construct the linear system of equations for each
source and obtain the corrected estimates of DOA and
range.

The computational complexity of the proposed me-
thodis O{N’L+ N>+ (N> —1)/4 + K(N*-1)/4+ N>+ N)},
while that of [23] is O{N?L+N*+ Kny(N—K)(N+1)+
n,(N=K)N+1)3N+1)/4+K(N>+N)}, where n, and

1 1=z 1 + 2z L

n, denote the searching number in the DOA and the range
domain, respectively.

4. Theoretical analysis

4.1 Asymptotic properties of the rooting procedure
with approximated signal model

The asymptotic performance of the proposed method is
analyzed with a sufficiently large number of snapshots. In
the presence of noise, the errors in the eigenvectors lead
to the perturbations in the signal zeros, both in the estima-
tion of DOA and range. Here, we only show the estima-
tion error of the rooting procedure with the approximated
signal model.

Let z; and v; be the signal zero in the estimation of
DOA and range for the source respectively, that is,
|zzl =1 and |v;| = 1. Assume Az, and Av, as the estima-
tion error. Therefore, the mean square error of the signal
zeros |Az;|* and |Av,|* can be given as follows.

Firstly, for the determination of |Az|*, the polynomial
(11) with estimation errors can be expressed as

M(M+1)
2

Far=n ] (1-G+a2)2") (1 =@ +Az) D1+

n=1

(2o +Az2,)7 (1 +(z,+Az,)2) =

MM+1)
2

pildal [ | 1= G+ 825 |1+ G+ Az

n=1,n=k

~

|2

M(M+1)

midsl [ ] 10 -2+,

n=1,n=k (20)
with higher order terms neglected.
Taking expectations of (20), we have
f )
|AZk|2 = M(M+1) f d M (21)

—_~ 4 2 _ 2 1,2
YilAz] (1 =2,z 1 + 2,2 |
n=1.n=k

According to the L Hospital’s rule and the general ru-
les of the derivative of a determinant [29], part of the ex-
pression in (21) can be written as

1= oo +eiof

M1 _ %Lr{l
[T .-z fleagf =

f (Z) ‘UI‘H}A

det[@(w)]

det [Q (w))] tr [Q ()T (w) U U () + T () U, U (wy))]

where I' (w,) denotes the derivative of I' (wy).
Let 7, be ~the bias of the kth eigenvector u;. The ex-
pression of f(z;) can be written as

(22)

K
F(z) = detlT =T () ) (e + 0+ 10" T (@) (23)

k=1
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As in [19], the eigenvectors and eigenvalues of R in a

complex Gaussian process have the following properties:

N

/l Ai
E(’]k) — n;k muk (24)
and
E(']k']_ )= % ZN: Lzun“fffk./ (25)
n=1l#k (A= 4,)

where &;; denotes the Kronecker delta.
Substituting the above expressions into (23) and then
doing some mathematical operations yield [16]:

= N-K S
f(zk)=det[—( 7 pit k)(z
I=

ulul )F (wk)}
(26)

Through the calculations, we have the expression of
|Az,* as follows:

Azl =

(N-K)o? A
X M rH _
det[ - (wk)(; T

K

lu;{]r(wk)}

det [Q (wk)] tr [Q7l (W) (wy) UnUnHF (W) + T (wy) UnUnHI‘” (w))] '

2
Secondly, for the mean square error |Av,|", we have

similar derivations by using polynomial (15):

(M+1)?

200 =% [ [ (1=0u+ A3 ) (1= @+ AV v) =

n=1

(M+1)?
YalAvil® I(1=v,v ")
nI:[;tk (28)
Taking expectations of (28), we have
— g(v)
A = —— s (29)
72 (1=, F

n=1n#k

which can be partially represented as follows:
1 . |1- ej<¢k—¢)|2
T R @0@0b@
72 I_[nzl,nik |1 - V,,Vk

1
2RO ($)Q(w )b’ (1)) (30)

where R(-) denotes the real part and b (¢;) denotes the
derivative of b (¢;) and

E(Vk) =
N-K)o> X
W=BT g gy (wk)[ u )r(wub(@)
L = -0 )
(3D
Therefore, we have the final expression of |Av|*:
AV, =
N -K)o> S
TRy g0 1 @) [Z o )rw)b @0
2R (b (¢)Q(wi )b (1))

(32)

27)

4.2 Cramer-Rao lower bound (CRLB)

The closed-form expression of the CRLB in near-field
with the exact signal model is similar to that in [30]:

CRLB =

F]@(lm®(RSA"R“ARS)T)]} (33)

A
where
lzxzz[ i i },
F = Lfﬁ(rhel f(-)(rl(’el() f (r,6)),- vfr(rKaGK)L
0 ,0
So(r,60) = %,
fr(rlmgk) = 6a((;k’9k)'
r

The derivations of f;(r,6;) and f,(ri,0;) are realized
with the exact signal model (2), without approximation.

5. Simulation

In this section, several numerical examples are presented
to evaluate the performance of the proposed method.
Consider a ULA with nine isotropic sensors, M = 4. The

. . . A
interval between two adjacent sensors is set as d = 1

Therefore, the Fresnel region is rr € [1.754,81]. Assume
two sources locate at (4.04,—20°) and (6.04,20°), re-
spectively.

In the first simulation, the number of snapshots is
L =500, and SNR =15 dB. Fig. 2 and Fig. 3 show the
roots lying inside and close to the unit circle, in the ap-
proximated parameter estimation. In the estimation of
DOA, the roots are symmetrically distributed because of
the even polynomial. The roots corresponding to the
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DOAs of the sources can be selected according to the
phase range [—g, g] With the approximated estimation

of DOA, we can get the approximated range of each
source, see Fig. 3. Table 1 gives the estimation results of
the proposed method before and after correction. It is
clear that the estimations after correction are closer to the
true values.

1.0

05}

&
ER *
—-05¢t
710 n L L
-1.0 -0.5 0 0.5 1.0

Real
Fig. 2 Roots in the approximated estimation of DOA

1.0
*
0.5}
*
» *
g 0
-0.5 *
*
-1.0
-1.0 —-0.5 0 0.5 1.0
Real
Fig. 3 Roots in the approximated estimation of range, the first
source

Table1 Near-field source localization by using the proposed method

Parameter 61/(°) ri/a 0>/(°) r/ad

True value -20 4 20 6
Before correction —19.59 4.04 19.81 6.08
After correction —19.99 3.99 20.01 6.05

In the second simulation, we analyze the statistical es-
timation performance of the proposed method in terms of
SNR. For comparison, the estimation results of the
searching method in [23] are also recorded, in which the

searching step is 0.001. SNR varies from 0 to 30 dB. The
other settings are the same as the first simulation. The
root mean square error (RMSE) is defined as

RMSE = (34)
where @, is the estimate of «; at the uth trial, & can be
DOA or range, and U is the total number of Monte Carlo
trials.

Fig. 4 and Fig. 5 illustrate the RMSEs of the proposed
method and that in [23] at different SNRs, before and
after correction. The number of Monte Carlo trials is 200.
It is obvious from the figures that the RMSEs of both
methods are decreasing with the increasing of SNR, not
only for the estimation of DOA but also for range. The
estimations after correction are less biased, compared
with those before correction. The proposed method after
correction has the lowest estimation error.

10°
egfiﬁiiag:jﬁ::é:js
~ 107'g
2
Z k
~
102
D
1073

5 10 15 20 25 30
SNR/dB

-~ Proposed method-after correction;

-© -: Proposed method-before correction;

—k—: [23]-after correction; = -: [23]-before correction;

——: CRLB.

RMSE in the estimation of DOA versus SNR

1072 : - - -
5 10 15 20 25 30
SNR/dB
-~ Proposed method-after correction;
-©) -: Proposed method-before correction;
—¥-: [23]-after correction; =X -: [23]-before correction;
——: CRLB.

Fig. 5 RMSE in the estimation of range versus SNR
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In the third simulation, we evaluate the statistical es-
timation performance of the proposed method with re-
spect to the number of snapshots with 200 Monte Carlo
trials, as shown in Fig. 6 and Fig. 7. The other settings are
the same as the first simulation while SNR = 15 dB and
the number of snapshots is within [100, 1 000]. The
RMSEs of the proposed method decrease as the number
of snapshots increases, like in Fig. 4 and Fig. 5. The pro-
posed method after correction outperforms the other
methods at each number of snapshots, especially for the
estimation of DOA.

10°

BB @ B-® - ¥R

1072

200 400 600 800

Number of snapshots
-©-: Proposed method-after correction;
-0 -: Proposed method-before correction;
—¥—: [23]-after correction; —X -: [23]-before correction;
—+: CRLB.

Fig. 6 RMSE in the estimation of DOA versus the number of
snapshots

1000

200 400 600 800

Number of snapshots
-©-: Proposed method-after correction;
-©) -: Proposed method-before correction;
——: [23]-after correction; —k : [23]-before correction;
—+: CRLB.

Fig. 7 RMSE in the estimation of range versus the number of
snapshots

In the fourth simulation, the execution time is recor-
ded over 200 Monte Carlo trials with L=500 and SNR =
15 dB, apart from the theoretical analysis of the complex-
ity. The average execution time of one trail using the pro-
posed method and that in [23] are 0.072 4 s and 0.587 4 s,
respectively, with a computer equipped with a CPU of

2.2 GHz and 8 GB of RAM. In view of the execution ope-
ration time, the proposed method is much more effective
compared with that in [23], since it is developed with
polynomial rooting procedures.

6. Conclusions

In this paper, we propose to locate near-field sources with
the exact signal model by using a search-free method.
The proposed method firstly exploits the parameter sepa-
ration procedure by splitting the steering vector with the
approximated signal model. Then, the principle of poly-
nomial rooting is adapted to the approximated estimation
of DOA and range. The final estimates of the parameters
are corrected according to the expression of the exact sig-
nal model. The proposed method requires neither search-
ing nor pairing, which reduces the computational com-
plexity. In addition, the estimation accuracy is improved
thanks to the polynomial rooting and error correction ope-
rations. Its effectiveness is validated with the numerical
simulation.
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