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Abstract: Target  maneuver  trajectory  prediction  plays  an  im-
portant role in air combat situation awareness and threat assess-
ment. To solve the problem of low prediction accuracy of the tra-
ditional prediction method and model, a target maneuver trajecto-
ry prediction model based on phase space reconstruction-radial
basis function (PSR-RBF) neural network is established by com-
bining the characteristics of trajectory with time continuity. In or-
der to further improve the prediction performance of the model,
the rival penalized competitive learning (RPCL) algorithm is intro-
duced  to  determine  the  structure  of  RBF,  the  Levenberg-
Marquardt (LM) and the hybrid algorithm of the improved particle
swarm optimization (IPSO) algorithm and the k-means are intro-
duced to optimize the parameter of RBF, and a PSR-RBF neural
network  is  constructed.  An  independent  method  of  3D  coordi-
nates of the target maneuver trajectory is proposed, and the tar-
get manuver trajectory sample data is constructed by using the
training  data  selected  in  the  air  combat  maneuver  instrument
(ACMI), and the maneuver trajectory prediction model based on
the PSR-RBF neural network is established. In order to verify the
precision and real-time performance of  the trajectory prediction
model,  the  simulation  experiment  of  target  maneuver  trajectory
is  performed. The results  show that  the prediction performance
of  the  independent  method  is  better,  and  the  accuracy  of  the
PSR-RBF  prediction  model  proposed  is  better.  The  prediction
confirms  the  effectiveness  and  applicability  of  the  proposed
method and model.
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1. Introduction
Air  combat  target  maneuver  trajectory  prediction  is  the
process of learning historical trajectory of the target, and
the trained model  is  used to  predict  the future  maneuver
trajectory  of  the  target  [1].  With  the  increasingly  com-
plex  air  combat  environment,  the  intensification  of  elec-
tromagnetic  confrontation,  and  the  improvement  of  the

performance of  precision guided weapons,  it  is  very  im-
portant  to  accurately  predict  the  target  maneuver  traject-
ory. On the one hand, our own future trajectory informa-
tion can be sensed in advance,  and then air  combat situ-
ation can be analyzed and judged, so as to make reason-
able  maneuvering  decisions  and  avoid  safety  accidents
[2]. On the other hand, in the fierce process of air combat
confrontation,  the  target  maneuver  trajectory  is  accura-
tely predicted,  which can effectively guide the fighter  to
occupy  the  position,  gain  situation  advantage  and  im-
prove  the  possibility  of  winning  the  air  combat  [3].
Therefore, it is of great significance to study target maneu-
ver trajectory prediction.

α/β

The  air  combat  target  maneuver  trajectory  is  essen-
tially a time series prediction problem, and the prediction
problem  is  highly  nonlinear,  complex  and  time-varying.
Recently,  the  prediction  methods  of  target  maneuvering
trajectory can be divided into two categories:  parametric
method  and  nonparametric  method.  Parametric  methods
mainly include particle motion, linear and nonlinear para-
meter  regression,  Kalman filtering  algorithm,  filter-
ing algorithm and other prediction methods. Based on the
classical  parametric  prediction  method,  a  variety  of  im-
proved  target  trajectory  prediction  models  are  construc-
ted.  For  example,  the  basic  flight  model  is  proposed  to
predict the track [4]; the track of the moving target is pre-
dicted by combining the prediction model of target acce-
leration, the track deflection angle and the historical track
[5]; the continuous prediction of track position is realized
by using the dynamic Kalman filter [6]; an improved ad-
aptive  particle  filter  algorithm is  proposed  to  predict  the
trajectory  of  civil  aviation  aircraft  [7].  Because  the  pre-
diction  accuracy  of  single  model  estimation  is  poor  and
the complexity of the multiple model algorithm is high, in
order  to  modify  the  deficiency,  an  interactive  multiple
model algorithm was proposed in [8]. For the target with
a  relatively  simple  motion  process,  the  prediction  per-
formance of the above method is high, while the motion
of  the  aircraft  is  a  complex  and  variable  nonlinear  time
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series  process,  and  affected  by  a  variety  of  factors.  The
traditional prediction model is difficult to describe all the
information  of  the  motion,  and  the  model  complexity  is
high,  the  adaptability  to  the  target  movement  diversity
and uncertainty is poor, and it is relatively difficult to im-
prove  the  accuracy  of  the  trajectory  prediction  [9].

Nonparametric methods mainly include various neural
network  prediction  methods.  For  example,  the  target
group  track  is  used  to  train  the  back  propogation  (BP)
neural  network,  and  the  track  prediction  model  is  estab-
lished  to  realize  the  prediction  of  the  flight  track  in  ad-
vance [10]. However, the BP neural network is highly de-
pendent  on  the  initial  value  and  the  ability  of  global
search  is  poor.  In  order  to  solve  these  problems,  the  ge-
netic  algorithm  and  the  particle  swarm  optimization
(PSO) algorithm with global search ability are used to op-
timize  the  neural  network  weights,  so  as  to  improve  the
prediction  accuracy  [11,12].  In  addition,  the  essence  of
trajectory  prediction  is  time  series  prediction  with  the
characteristics of high nonlinearity and time-varying. The
traditional BP neural network is static feedforward neur-
al network, this can only realize the static nonlinear map-
ping  relationship,  so  that  the  accuracy  of  trajectory  pre-
diction is relatively low. In order to solve the problem of
poor dynamic performance of traditional neural network,
a  prediction  method  based  on  nonlinear  autoregressive
with  external  input  (NARX)  neural  network  is  proposed
[13].  This  above  method  does  not  need  to  establish  the
motion  model,  the  prediction  is  real-time,  but  the  neural
network is easy to fall into the local optimum in the train-
ing  process,  and  the  training  data  is  less  in  general,  the
prediction results are not convincing. To sum up, it is an
urgent problem to find a fast and accurate method to pre-
dict the target maneuver trajectory.

The  radial  basis  function  (RBF)  not  only  has  a  local
approximation  performance  and  a  best  approximation
performance,  but  also  has  a  good  convergence  ability,
generalization performance, robust performance, etc. The
PSO has a strong global convergence ability and a strong
robustness.  As  a  simple  and  effective  random search  al-
gorithm, the PSO has been studied and shows that it  has
great  potential  in  optimizing  neural  networks.  Combin-
ing the two can not only improve the generalization per-
formance and robust performance of the radial basis neur-
al network, but also improve the learning ability and con-
vergence  speed  of  the  neural  network.  The  PSO enables
the  RBF  network  to  obtain  more  superior  convergence
performance and a lower error rate, but the PSO also has
some  inherent  deficiencies,  the  algorithm  is  easy  to  fall
into local extreme values, and the late convergence speed
is  slow.  Therefore,  in  order  to  improve  the  performance
of the PSO algorithm in optimizing RBF, a hybrid optimi-
zation algorithm is proposed. The main contributions are

summarized as follows.
(i) Improve the standard PSO algorithm. The dynamic

adaptive  inertia  weight  strategy,  the  dynamic  adaptive
flight time factor and the chaos mutation strategy are used
to modify the standard PSO.

(ii) Determine the structure of the RBF neural network.
In  this  paper,  phase  space  reconstruction  (PSR)  is  de-
veloped  to  determine  the  model  input.  Furthermore,  the
C-C method is applied to determine the key parameter of
the  PSR.  Then  the  rival  penalized  competitive  learning
(RPCL) is  used to  determine the  number  of  hidden neu-
rons in the RBF.

(iii)  Optimize  the  parameters  of  the  RBF  neural  net-
work. The hybrid algorithm of improved PSO (IPSO) and
k-means is used to optimize the center of the basis func-
tion,  and  then  the  Levenberg-Marquardt  (LM) algorithm
is used to optimize the width of the basis function and the
weight.

(iv)  Construct  a  scientific  and  reasonable  evaluation
system.  Model  checking  and  four  evaluation  indices  are
introduced.

The rest of this paper is arranged as follows. Section 2
and Section 3 describe the preprocessing methods in de-
tail. Section 4 gives the structure of the proposed predic-
tion model. Two experiments and the discussions are shown
in Section 5. Finally, Section 6 gives the conclusions. 

2. PSR
PSR is  an  efficient  method  for  analyzing  nonlinear  time
series  [14,15].  The  basic  principle  is  to  reconstruct  the
low  dimension  time  series  into  high-dimensional  phase
space to solve the problem.

x = {x1, x2, · · · , xN}
m t

The  time  series ,  the  embedding  di-
mension is , and the delay time is , then the set of time
series reconstructed by phase space can be expressed as

X1

X2

...

XM


=



x1 x1+t · · · x1+(m−1)t

x2 x2+t · · · x2+(m−1)t

...
...

. . .
...

xM xM+t · · · xN


(1)

M = N − (m−1)t Xi(i = 1,2, · · · ,M)where ,  is the point in
phase space.

mopt topt

mopt topt

The key to PSR is to determine the optimal embedding
dimension  and optimal delay . In this paper, the C-
C  method  [16]  is  used  to  determine  the  optimal  embed-
ding  dimension  and  time  delay  simultaneously.
Based on (1), the associated integral is defined as

C(m,N,rk, t) =
2

M(M−1)

∑
1⩽i< j⩽M

θ
(
rk −

∥∥∥Xi−X j

∥∥∥) (2)
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N rk θ(x)where  is the length,  is the neighborhood radius, 
is a Heaviside unit function and it is expressed by

θ(x) =

 0, x < 0

1, x ⩾ 0
. (3)

N > 3 000
m rk m ∈ {2,3,4,5} rk =

k×0.5σ σ
k ∈ {1,2,3,4}

According to  Brock Dechert  Scheinkman (BDS) stati-
stical  conclusions[17],  when ,  the range of va-
lues  of  and  can  be  obtained, , 

,  where  is  the  standard  deviation  of  the  time
series and .

S
Based  on  the  matrix  partitioning  average  strategy,  the

test statistics  is defined as

S (m,N,rk, t) =

1
t

t∑
i=1

Ci(m,N/t,rk, t)−Cm
i (m,N/t,rk, t). (4)

N→∞For , (4) can be deformed to

S (m,rk, t) =
1
t

t∑
i=1

Ci(m,rk, t)−Cm
i (m,rk, t). (5)

m t S (m,rk, t)
N→∞

S (m,rk, t)

For the fixed  and ,  will be equal to 0 for
all r,  if  the  data  are  infinite  and .  However,  the
real data set is not infinite, and there may be a correlation
between data. Thus, the optimal delay time may be either
the zero crossing of  or show the least variation
with r.

S (m,rk, t)
∆S

To represent the variation of  with r,  the test
statistics  is defined as

∆S (m, t) =max[S (m,rk1 , t)]−min[S (m,rk2 , t)] (6)

k1 ∈ {1,2,3,4} k2 ∈ {1,2,3,4}where, , .
S ∆S S ∆SThe means of  and  are defined as  and , and

the equations are defined as
S (t) =

1
16

5∑
m=2

4∑
k=1

S (m,rk, t)

∆S (t) =
1
4

5∑
m=2

∆S (m, t)
. (7)

t S (t) ∆S (t)
t

S (t)
∆S (t)

topt

For all values of ,  and  can find correspond-
ing  values,  where  the  value  corresponding  to  the  first
zero  point  of  or  the  first  minimum  point  of  or  the
first  minimum point  of  is  rounded  to  be  the  opti-
mal delay .

S corThe test statistical  is defined as

S cor(t) = ∆S (t)+
∣∣∣S (t)

∣∣∣ (8)
t

S cor(t) tw

where  the  value  corresponding  to  the  global  minimum
point of  is the optimal embedded window .

topt

tw

mopt

When  the  optimal  delay  is  determined  by  (7)  and
the  optimal  embedded  window  is  determined  by  (8),
the  optimal  embedding  dimension  can  be  deter-
mined by rounding the value of (9).

tw = (mopt−1)topt (9)
 

3. Hybrid  algorithm  of  IPSO  and  k-means
clustering algorithm

The  advantages  of  the  k-means  clustering  algorithm  are
fast  convergence  and  strong  local  search  ability,  but  the
clustering results are easily affected by the initial cluster-
ing  center.  Different  initial  center  points  may  cause  dif-
ferent  clustering results,  and the  obtained results  are  un-
stable and volatile. The algorithm often cannot obtain the
optimal solution, and it is easy to fall into the local opti-
mal solution.

In  view  of  the  above  problems,  at  present,  another
method  is  mainly  used  to  optimize  it,  and  the  obtained
result is used as the initial condition of the k-means clus-
tering algorithm [18]. The evolutionary algorithm has an
excellent global optimization ability, so many researches
apply it  to optimize the initial  clustering center of the k-
means algorithm.

Compared with other evolutionary algorithms, the PSO
algorithm has  the  advantages  of  fast  convergence  speed,
high efficiency, simplicity, easy implementation and few-
er parameters to be set and adjusted. PSO can also solve
many  optimization  problems  that  other  evolutionary  al-
gorithms can solve, and PSO will not degenerate. In addi-
tion, PSO has the memory ability that the genetic algori-
thm does  not  have.  The  change  of  population  in  the  ge-
netic algorithm may destroy the previous knowledge and
experience.  However,  in the PSO algorithm, all  particles
can  retain  the  memory  of  knowledge  and  experience
about the optimal solution.

Therefore,  combining  with  PSO  and  the  k-means  al-
gorithm,  the  global  search  capability  of  the  PSO  can  be
used  to  optimize  the  initial  clustering  center  of  the  k-
means algorithm. The randomness of the PSO in the solu-
tion  space  can  effectively  avoid  the  k-means  algorithm
falling into the local optimal solution. Although PSO has
a  strong  global  search  ability,  in  the  process  of  global
search, it may still cause premature phenomenon and fall
into local extremum.

Based on the above analysis of the algorithm, when the
PSO is combined with the k-means algorithm, in the pro-
cess  of  using  the  excellent  global  searching  ability  of
PSO to search the global optimal initial clustering center
of the k-means algorithm, the following problems need to
be considered and solved:

(i)  The  different  combinations  of  the  two  algorithms
and the different conversion timing will have different ef-
fects on the efficiency and performance of the algorithm.
When  the  two  algorithms  are  combined,  the  problem  of
how  to  choose  the  appropriate  combination  method  and
conversion timing needs to be considered;

(ii) In the process of global search, PSO may fall into a
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local extreme value due to the premature phenomenon, so
it is necessary to solve the problem of premature conver-
gence of PSO.

Based  on  the  above  analysis,  a  k-means  clustering  al-
gorithm based on the  IPSO is  proposed in  this  paper.  In
the  former  part  of  the  algorithm,  the  IPSO  is  executed,
and the k-means algorithm is executed in the latter part of
the  algorithm,  and  the  conversion  timing  of  the  two  al-
gorithms is designed. 

3.1    IPSO

The  basic  PSO  has  some  inherent  shortcomings.  In  the
process of optimization, the algorithm may fall into local
extremum.  When  the  particles  fly  in  the  solution  space,
the  inertia  weight  and  the  time  of  flight  factor  are  con-
stant,  but  in  the  practical  application,  the  values  are  al-
ways  changing.  Therefore,  in  order  to  solve  these  prob-
lems,  the  algorithm  proposed  in  this  paper  monitors  the
optimal value of each particle and particle swarm in real
time,  mutates  the  premature  particle,  increases  the  di-
versity  of  the  particle  swarm,  and  makes  it  jump  out  of
the local  optimal  solution in time.  At  the same time,  the
inertia  weight  and the  time of  flight  factor  are  dynamic-
ally adjusted to enhance the search performance of PSO.

In  this  paper,  the  combination  of  the  two  algorithms
makes up for the deficiency of the global search ability of
the k-means algorithm, eliminates the dependence of the
k-means algorithm on the initial value, improves the slow
convergence  of  PSO  in  the  later  stage,  accelerates  the
convergence speed of PSO, and improves the accuracy of
clustering results. The specific design of the algorithm is
described in detail below. 

3.1.1    Dynamic adaptive inertia weight

ω

ω

ω

ω

ω

The inertia weigh  as a control parameter has a great in-
fluence  in  the  performance  of  the  PSO  algorithm.  The
large inertia weight  can effectively accelerate the con-
vergence  speed  of  the  algorithm,  while  the  small  inertia
weight  can effectively improve the convergence accu-
racy  of  the  algorithm.  Compared  with  the  linear  inertia
weight, the nonlinear inertia weight has more advantages.
Because there is a larger  in the initial stage so that all
particles can quickly spread in the search space, so as to
determine  the  approximate  range  of  the  global  optimal,
while there is a smaller  in the later, so that the particles
can determine the global  optimal  value.  Therefore,  aver-
age  particle  spacing  (APS)  is  used  as  a  guideline  to  ad-
just  the  inertial  weight  in  this  paper  [19].  The  dynamic
adaptive inertia weight can be expressed as

S (t) =
1
M

M∑
i=1

∥∥∥xt
i − x̄t

∥∥∥ = 1
M

M∑
i=1

√√√ D∑
j=1

(xt
i j− x̄t

j)
2 (10)

t M Dwhere  is the current number of iterations,  and  rep-

xt
i

xt
i j

x̄t

x̄t
j

resent  the  population  size  and  the  spatial  dimension  re-
spectively,  is the current spatial position vector of the
particle i,  is the jth position component of the particle
i,  is  the  current  average  spatial  position  vector  of  the
population, and  is the jth average position component
of  the  population.  In  this  paper,  the  nonlinear  inertia
weight can be described as

ω(t) =
1

1+ e−10(S (t)−0.5)
. (11)

When  the  value  of  APS  is  large,  the  nonlinear  inertia
weight  tends  to  the  maximum.  When  the  APS  is  small,
the  nonlinear  inertia  weight  is  close  to  the  minimum
value, and the intermediate process passes through an ap-
proximate  linear  transition.  The  inertia  weight  designed
by the APS facilitates the PSO algorithm to obtain the op-
timal solution with a faster convergence rate. 

3.1.2    Dynamic adaptive time of flight factor

Some studies found that in the actual situation, when the
particle position changes, not only the speed is constant-
ly  changing,  but  also  the  actual  flight  time  is  constantly
changing.  In  the  position  updating  formula  of  the  basic
PSO  algorithm,  the  coefficient  of  the  velocity  term  is
fixed, and the flight time of each particle is fixed, this will
cause the particle to oscillate around the optimal solution
and  cannot  converge  to  the  optimal  solution.  Therefore,
the time of the flight factor is introduced to accelerate the
convergence  of  the  PSO  algorithm  in  this  paper.  The
particle’s position update formula can be changed to

xt+1
i = xt

i +H0(1− t/tmax)vt+1
i (12)

H0 tmaxwhere  is the flight constant, and  is the maximum
number of iterations. 

3.1.3    Chaotic mutation

Chaos is a stochastic, ergodicity, dynamic, deterministic,
nonlinear  and  non-repetitive  system  that  demonstrates  a
sensitive dependence on the initial conditions and also in-
cludes infinite unstable periodic motions [20,21].  Due to
the nature of  ergodicity,  mixing properties of  chaos,  and
non-repetition  nature,  it  potentially  carries  out  overall
search at higher speeds than the stochastic ergodic search
that is probabilistic in nature. Various researchers [22,23]
integrated  the  chaotic  systems  with  the  optimization  al-
gorithms  to  enhance  the  search  capability  and  prevent
them from being trapped at the local minima solution.

In  this  paper,  the  chaos  mutation  operator  is  intro-
duced  to  guide  and  improve  the  direction  of  particle
search.  The  basic  idea  of  chaos  mutation  operation  is  to
map optimization variables into the value region of chaos
variable space through chaos mapping rules, and then the
ergodicity  and  regularity  of  chaos  variables  are  used  to
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search  for  an  optimal  solution,  and  finally  the  obtained
optimal solution is linearly transformed into optimization
space. The process of chaos mutation is as follows:

Xt

St = {st
j} ( j = 1,2, · · · ,D)

Step  1　Mapping  the  particle  position  vector  to  a
chaotic variable  that the value is
between 0 and 1. The mapping process can be described as

St =
Xt −XL

Xt −XU
(13)

Xt St

XU =
M

max
i=1
{xi

j} XL =
M

min
i=1
{xi

j}
where  is the particle position vector,  is the chaotic

vector;  and  are  the  maxi-
mum and minimum values of the jth dimension variables
respectively.

St+1 = {st+1
j }

Step 2　Using the logistic mapping function to gener-
ate the next generation chaotic vector :

st+1
j = ust

j(1− st
j) (14)

0 < st
j < 1,u = 4where .

St+1

Yt+1

Step  3　Convert  chaotic  variables  into  decision
vectors  in the original vector space.

Yt+1 = St+1(XU −XL)+XL (15)

Yt+1

Xt+1

Step  4　 Transform  decision  vector  into  a  new
particle position vector .

Xt+1 = Yt+1+ (1−αt)Xt (16)

αt = 1−
(

t−1
tmax

)λ
(17)

α

λ

where  is  the  parameter  used  to  control  the  scale  of
chaos variation, and the parameter  is used to control the
speed of scale contraction.

δ

Considering the strong ability of global searching, and
jumping  out  of  the  local  extremum in  the  early  stage  of
the algorithm and the strong ability of local searching and
fine searching in the later stage of the algorithm, a gradu-
al chaos mutation search method is proposed. Firstly, the
basic PSO algorithm search strategy is used to search the
global  solution  and  narrow  the  search  range;  then,  the
search strategy of the chaotic mutation PSO algorithm is
used to perform local search to complete the deep search.
Therefore,  the key of chaos mutation is  to determine the
time  of  mutations,  the  control  variable  is  proposed  to
solve  the  problem  in  this  paper.  The  process  of  chaotic
mutations is shown in Fig. 1.

 
 

Y

N

Y

Y

N

N

Average fitness of

particle swarm fave

Global optimal particle

fitness f (pg)

Run basic particle

swarm algorithm

δ≥β?

Nbi≥threb?

Ng≥threg?

Perform chaotic mutation

operation on particle i

Run basic particle swarm algorithm

Perform chaotic mutation

operation on particle swarm

Fig. 1    Flow chart of determining chaotic mutation timing
 

fave =

M∑
i=1

f (xi)

M
(18)

δ =
fave

f (pg)
(19)

Npi =

 Npi+1, f (xi) > f (pi
b)

Npi, f (xi) ⩽ f (pi
b)

(20)

Ng =

 Ng+1, ∀i ∈ {1,2, · · · ,M} : f (xi) > f (pg)

Ng, otherwise
(21)

xi f (xi)
fave

pi
b pg

Npi

Ng

where  is the position of particle i,  is the fitness of
particle i,  is the average fitness of the particle popula-
tion,  is the current optimal solution of particle i,  is
the  current  global  optimal  solution,  is  used to  moni-
tor  the  change  of  the  optimal  value  of  particle i,  is
used  to  monitor  the  change  of  the  optimal  value  of  par-
ticle swarm.

Algorithm 1　Chaotic mutation strategy
δ β

⩽ Ng,Nbi threb, threg

pi
b, pg

xi

Input　Control  variable ,  control  threshold ,  count
variables ,  count  thresholds ,  person-
al  and  global  best  positions  and  the  current  posi-
tions  of the particle i.

x̂iOutput　The particle position  after chaos mutation.
δ ⩾ βif 

i=1 to Mfor 
fit(xi) > fit(pi

b)if 
Nbi = Nbi+ 1

Nbi > threbif 
Perform chaotic mutation operation on particle i
end if
end if
end if

M
min

i=1
f (xi) < fit(pg)if 

Ng = Ng+ 1
Ng > thregif 
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Perform chaotic mutation operation on particle swarm
end if
end if
end if

x̂iOutput the position  of particle i after mutation
End procedure
In  this  paper,  the  chaos  mutation  operator  is  intro-

duced, which uses the diversity of particles, and the num-
ber of stagnation steps of each particle optimal value and
the global optimal value as the trigger condition of muta-
tion. The chaotic mutation operator is used to chaotically
mutate  the  particles  to  guide  the  search  direction  of  the
particles  so  that  they  can  jump  out  of  the  local  optimal
solution,  thereby  effectively  avoiding  the  occurrence  of
premature convergence. The chaotic mutation strategy of
the algorithm is described in Algorithm 1. 

3.1.4    Design for algorithm switching timing

In order to make full use of the global search ability of PSO
and the local search ability of the k-means algorithm, and
accelerate  the  convergence  speed  of  PSO  in  the  later

σ2

stage,  the  convergence  time  of  PSO  is  regarded  as  the
best  switching  time  of  the  algorithm  in  this  paper.  The
convergence  degree  of  the  particle  swarm can  be  reflec-
ted  by  the  fitness  variance,  and  the  fitness  variance 
can be defined as

σ2 =
1
n

n∑
i=1

[ f (xi)− fave]2 (22)

n f (xi)
fave

σ2

thresholdσ

where  is the population size of particle swarm,  is
the fitness of  particle i,  and  is  the average fitness of
particle  swarm. When the fitness variance  is  close to
the threshold ,  it  shows that the fluctuation of
the fitness value of particle swarm is very small, and the
state of particle swarm tends to convergence. This means
that  even  if  the  algorithm  continues  to  perform  iterative
calculations, the optimization results cannot be improved
to  a  great  extent,  resulting  in  an  increase  in  calculation
time, so this is the best time to switch the algorithm. 

3.2    Flow of hybrid algorithm of IPSO and k-means

The concrete flow for the proposed algorithm is depicted
in Fig. 2.
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Fig. 2    Flow chart of determining chaotic mutation timing
 
 

4. Design  of  target  trajectory  prediction  al-
gorithm based on k-means clustering com-
bined  with  RPCL  algorithm  for  RBF
neural network (RBFNN)

The  main  work  of  RBFNN  target  trajectory  prediction
model  is  to  construct  a  neural  network  prediction  model

suitable  for  the  air  combat  counteract  environment.  The
task is divided into two steps. Firstly, in the offline train-
ing phase, the main work is to train the best RBFNN pre-
dicting model.  Secondly,  in  the  prediction phase,  the  re-
ceived  target  data  obtained  in  real  time  is  input  to  the
trained  RBFNN,  thereby  the  future  trajectory  of  the  tar-
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get will be predicted.
This paper is based on the RBFNN, this is a three-lay-

er  feedforward  NN,  and  it  has  an  ability  of  approaching
random non-linear  function and dealing with any irregu-
lar  data  problems.  The  RBFNN  has  a  broad  application
prospect in time sequence prediction. In addition, the RB-
FNN is a local approximation, this learning convergence
rate is faster than the BP NN [24]. The network also has
an excellent learning ability, a generalization ability and a
fast training speed. The prediction model of target mane-
uver trajectory based on RBFNN is as follows.

m
t Xk = [Xk,Xk−1, · · · ,Xk+1−m]

Xk+1−m

The  phase  space  reconstruction  theory  is  adopted  to
process  the  target  maneuver  trajectory  time series  to  de-
termine the optimal embedding dimension  and the op-
timal delay , then the input vector 
of neural network is obtained, where  is the mth di-
mension  data  after  phase  space  reconstruction. Fig.  3
shows the RBFNN of the target maneuver trajectory pre-
diction model.
  

Input layer Hidden layer Output layer

Xk

Xk

Xk−1

Xk+1

Xk−2

Xk−m+1

ϕ1 (Xk)

ϕ2 (Xk)

ϕj (Xk)

ϕM−1 (Xk)

ϕM (Xk)

^

ω1ω2ωj

ωM−1

ωM... ...

...

Fig. 3    Structure of RBF prediction model
 

m

In the target maneuver trajectory prediction model, sin-
ce  the  original  load  data  is  input  to  RBF after  PSR pro-
cessing,  the  number  of  the  input  layer  neurons  of  RBF
can be directly set to embedding dimensions . The pur-
pose  is  to  construct  a  more  stable  and  better  RBF target
maneuver  trajectory  prediction  model.  The  input  sample
data needs to be preprocessed, that is, normalized.

The second layer is a hidden layer, and the number of
neurons  is  determined  by  the  actual  application  require-
ments. In this paper, we choose the Gaussian function as
the RBF of each neuron in the middle layer, because the
Gaussian function is a positive definite function in any di-
mensional  space and has a  unique solution.  The formula
is as follows:

ϕ j = exp

−
∥∥∥X− c j

∥∥∥2

2σ2
j

 (23)

σ j

c j

where  is the base width of hidden layer nodes and big-
ger than zero,  is the center vector of the jth node in the

c j = [c j1,c j2, · · · ,c jn], j =1,
2, · · · ,m
RBF  network  hidden  layer, 

.

W = [ω1,

ω2, · · · ,ωm]T

The  third  layer  is  the  output  layer.  In  this  network
model, the connections between the input and intermedi-
ate layers are usually weightless. Usually, only the signal
is passed to the hidden layer, and the weight between the
intermediate  layer  and  the  output  layer  is 

. The output formula of the final output layer
neuron is as follows:

f (x) =WTΦ =
m∑

j=1

ω jϕ j(x) (24)

f (x)
ω j

where  is the output of the neuron in the output layer
and  is the weight between the jth neuron in the middle
layer and the neuron in the output layer.

c
σ

ω

In  this  paper,  we  design  the  RBFNN for  target  mane-
uver  trajectory  prediction.  The  design  here  is  mainly  di-
vided  into  two  steps:  the  first  step  is  to  determine  the
structure of the RBF prediction model. The main task of
this step is to determine the number of hidden layer neu-
rons  based  on  the  RPCL  [25]  and  initialize  the  parame-
ters. The second is to use an appropriate algorithm to opti-
mize  and  adjust  the  parameters  of  the  neural  network.
The  parameters  include  the  center  of  the  hidden  layer
neuron kernel function, the width , and the connection wei-
ght .  The  purpose  of  these  design  steps  is  to  construct
an  optimal  prediction  model. Fig.  4 shows  the  design
flow of the RBFNN.
 
 

N

Y

Start

Information normalization

Training and test samples

RBF network structure design

Optimization of the parameters of RBFNN

Error meets
requirments?

Construct a target maneuver
trajectory prediction model

End

Fig. 4    Flow chart for the design of RBFNN 

4.1    RBFNN structure design based on
RPCL algorithm

For the RBF,  the number of  neurons in  the hidden layer
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has a  significant  effect  on the prediction result.  Too few
neurons in the hidden layer will cause insufficient fitting
to  affect  prediction  performance,  and  too  many  neurons
in the hidden layer will cause over-fitting and make pre-
diction  performance  worse.  Therefore,  in  order  to  im-
prove  the  prediction  accuracy  of  the  RBF,  the  RPCL  is
used to design the RBF structure.

The basic idea is that for each input not only the win-
ner unit is modified to adapt to the input, but also its rival
is delearned by a smaller learning rate. RPCL can be re-
garded as an unsupervised extension of Kohonen’s super-
vised  learning  vector  quantization  2  (LVQ2).  RPCL has
the  ability  of  automatically  allocating  an  appropriate
number  of  units  for  an  input  data  set.  The  RPCL  is  ap-
plied to the problems of RBF network training in this pa-
per.

x1, x2, · · · , xN

m1,m2, · · · ,mk

xt

Suppose N inputs, ,  come  from k un-
known clusters. Then the RPCL algorithm randomly ini-
tializes k seed  points ,  and  adaptively  up-
dates  them  so  that  those  can  be  correctly  classified
based on the indicator function:

g( j/xt) =

 1, j = s = argmin
1⩽i⩽k
∥xt −mi∥

0, otherwise
. (25)

xt jth g( j/xt) = 1

mc (i.e.,g(s/xt) = 1)

That is,  is divided into the  cluster if .
The main idea of RPCL to update the seed points is that
for  each  input  sample,  not  only  the  winning  seed  point

 is modified to adapt to the input, but
also  its  nearest  rival  is  delearned  by  a  smaller  learning
rate.  Specifically,  the  RPCL  algorithm  is  used  to  deter-
mine the structure of RBF, which consists of the follow-
ing four steps [26]:

xl

D = {xl}Nl=1 i = 1,2, · · · ,k
Step 1　Randomly take a  sample  from the sample

data set , and for , where

I( j/xt) =



1, j = s with

s = arg min
i
γi∥xl−mi∥2

−1, j = r with

r = arg min
i,s
γi∥xl−mi∥2

0, otherwise

(26)

γi =
ni

k∑
u=1

nu

(27)

ni

mi

where  is the cumulative number of the winning occur-
rences of  in the past.

mcStep 2　Update the seed point  by

mi(t+1) = mi(t)+∆mi (28)

∆miwhere  is the magnitude by which the cth seed point

is adjusted when the lth input vector is applied to the net-
work and is determined as follows:

∆mi=


αc(xt −ms), I( j/xt)=1

−αr(xt −ms), I( j/xt)= −1

0, otherwise

(29)

αc αrwhere  and  are the learning rates of the winner and
rival respectively.

I( j/xt)=1When the condition  is satisfied, the cumula-
tive  number  of  each  center  becoming  the  winning  node
can be calculated as

ni=ni+1. (30)
The above two steps iterate for each input until a stop

criterion  is  satisfied,  for  example,  the  iteration  number
reaches the preassigned maximum value, or absolute dif-
ference  between  the  consecutive  classification  errors  is
smaller than a preassigned threshold value.

δ

Step 3　Count  the  cumulative  number  of  each center
becoming the  winning  node.  If  the  value  is  smaller  than
the  threshold (for  deleting  redundant  items),  delete  the
node.
Step  4　Output  the  optimal  number  of  hidden  layer

neurons and the center vector of each neuron.
The  RPCL  algorithm  makes  the  RBFNN  more  com-

pact,  and  improves  the  training  speed  through  determin-
ing the appropriate number of hidden layer nodes. 

4.2    Optimization of initial parameters of RBF based
on hybrid algorithm

c σ ω

The  topology  of  RBF has  a  great  impact  on  its  network
performance. Before selecting parameters of RBFNN, the
number  of  neurons  in  the  hidden  layer  must  be  deter-
mined. Then, the performance of RBF depends on the se-
lection  of  network  parameters,  that  is  the  basis  function
center , basis function width , and output layer weight .

σ
ω

In this paper, the RPCL algorithm is used to determine
the  number  of  hidden  layer  neurons  of  RBFNN.  At  the
same  time,  the  k-means  modified  by  the  IPSO  and  the
LM algorithm are used to optimize the RBF parameters.
The  optimization  process  can  be  divided  into  two  parts.
First, the basis function center of the basic function is op-
timized  by  the  improved  k-means  clustering  algorithm.
Then the basis function width and output layer weight are
determined  by  the  LM  algorithm.  The  other  is  to  opti-
mize the basis function width  and output layer weight

 on  the  basis  of  the  LM  algorithm.  The  optimization
process of RBF parameters can be described as follows:

k
xi

pi
b pg

vi

Step 1　Initialize algorithm parameters. Randomly se-
lect  clustering centers  from the given training samples
as  the  initial  positions  of  particles.  The  optimal  posi-
tion  for each particle, global position  in the swarm,
and particle velocity  are initialized.
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Step 2　Run the IPSO algorithm. Perform the dynam-
ic adaptive inertia weight strategy, dynamicadaptive time
of flight factor strategy, and chaotic mutation strategy.
Step  3　Calculate  the  fitness  variance  of  the  particle

swarm to determine whether the algorithm switching con-
ditions are satisfied. If the conditions are satisfied, Step 4
is executed, otherwise, Step 2 is continued.

c
Step  4　Perform the  k-means  clustering  algorithm to

obtain the final basis function center .

σ ω

Step  5　 Perform  the  LM  algorithm  to  optimize  the
basis function width  and the output layer weight . 

4.3    Procedure of the PSR-RBF prediction model

X = {X1,X2, · · · ,XN}
For  the  list  of  target  maneuvering  trajectory  historical
data time series , the construction pro-
cess of the PSR-RBF prediction model is as follows:
Step  1　Normalization.  The  time  series  of  the  target

maneuvering  trajectory  is  normalized  to  prepare  for  the
training of RBFNN, and the maximum and minimum va-
lues of the data are saved for subsequent denormalization
of  the  predicted  value  of  the  target  future  maneuvering
trajectory to restore the real value.
Step 2　PSR. The C-C method is used to process the

target  maneuver  trajectory  time  series,  then  the  optimal
embedding dimension m and optimal  delay time t of  the
time series are obtained, and the time series is reconstruc-
ted. The time series is reconstructed as follows:

X1

X2

...

XM


=



X1 X1+t · · · X1+(m−1)t

X2 X2+t · · · X2+(m−1)t

...
...

. . .
...

XM XM+t · · · XN


(31)

Step 3　RBFNN. The phase space matrix constructed
in Step 2 is used as the training set. Then the structure of
the RBFNN is determined by RPCL, and its parameters is
optimized  by  the  k-means  improved  by  IPSO  and  LM.
The  details  of  the  network  structure  determination  and
parameter  optimization  are  described  in  Subection  4.1
and  Subection  4.2.  Finally,  a  trained  RBFNN  is  used  to
predict  the  target  maneuver  trajectory  of  the  future  mo-
ment.
Step  4　Denormalization.  By  applying  the  maximum

and  minimum values  saved  in  Step  1,  the  target  maneu-
ver trajectory predicted value returned by the RBFNN in
Step  3  is  denormalized,  and  then  the  actual  target  ma-
neuver trajectory predicted value is obtained.

The  flow  chart  corresponding  to  the  above  steps  is
shown in Fig. 5.
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Fig. 5    Flowchart of the PSR-RBF prediction model  

5. Experiment result
 

5.1    Experiment setting
In order to verify the practical significance of the algori-
thm proposed in this paper, a period of air combat data is
intercepted  from  air  combat  maneuvering  instrumenta-
tion (ACMI),  and 3 000 points  are sampled continuously
in  a  0.1  s  sampling  period.  The  air  combat  trajectory  is
shown in Fig. 6, and the sample data is shown in Fig. 7.
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Fig. 6    A complete air combat trajectory
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Fig. 7    Sample data
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In  this  paper,  the  software  Matlab  R2017a  is  used  for
simulation,  and  the  CPU  is  Inter  Core  3.00  GHz  and
16 GB RAM. 

5.2    Accuracy analysis

In order to compare the prediction results of different al-
gorithms,  the  mean  absolute  error  (MAE),  mean  square
error (MSE), normalized mean square error (NMSE), re-
lative  error  (Perr)  and  correlation  coefficient  (Cor)  are
used  to  evaluate  the  performance  of  the  algorithms.  The
algorithm performance indicators are defined as follows:

MAE =
1
n

n∑
i=1

|x̂(i)− x(i)|, (32)

NMSE =

n∑
i=1

(x̂(i)− x(i))2

n∑
i=1

(x̄(i)− x(i))2

, (33)

Perr =

n∑
i=1

(x̂(i)− x(i))2

n∑
i=1

x(i)2

, (34)

Cor =

n∑
i=1

[x̂(i)− ¯̂x(i)][ f (i)− x̂(i)]

n ·var(x̂) ·var(x)
, (35)

x(i) x̂(i)
x̄(i) ¯̂x(i)

x̂(i) var(x̂)
x̂ var(x) x

where  is the actual position,  is the predicted po-
sition,  is the average value of the target position, 
is  the  average  value  of ,  is  the  standard  devi-
ation of , and  is the standard deviation of . The
smaller the index proposed above, the better the perform-
ance of the algorithm.

In this paper, in order to compare the prediction effect
of the traditional overall prediction method with the inde-
pendent method mentioned, and to verify the advantages
of  the  PSR-RBF  prediction  model,  based  on  the  above
two  prediction  methods,  the  six  neural  network  models
including  RBF[27],  PSO-RBF[28],  k-mensa-RBF[26],
BP[12],  kernel-based  regularized  least  squares  (KRLS)-
RBF[29], and PSR-RBF are used to perform trajectory pre-
diction.  The  differences  of  the  independent  method  and
the  overall  method  are  shown  in Fig.  8.  Parameters  of
chosen  algorithms  are  listed  in  detail  as  in Table  1.The
traditional  prediction  method  regards  the  three-dimen-
sional coordinates as the whole as the input and output of
the RBFNN. In this paper, the different nonlinear charac-
teristics  of  three  dimensions  coordinates  of  the  target
maneuver  trajectory  are  considered,  so  it  is  necessary  to
predict them separately to effectively improve the predic-
tion performance. In this paper, the traditional prediction
method  regards  the  three  dimensions  coordinates  as  the
whole,  which  is  called  the  overall  method,  and  the  pro-
posed method predicts three dimensions coordinates sepa-
rately, which is called the independent method.
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Fig. 8    Differences of independent method and overall method
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In  this  paper,  the  performance  difference  between  the
independent method and the overall method is compared
and analyzed through simulation, and the prediction per-
formance  of  six  prediction  models  is  also  compared  and
analyzed. The simulation process is described in Subsec-
tion 5.2.1 and Subsection 5.2.2. 

5.2.1    Experiment I: predictive performance comparison
of the six models with independent method

The results of independent prediction of three-dimension-
al  coordinates-based  on  six  algorithms  are  shown  in
Fig. 9−Fig. 14, and the performance of the six algorithms

is  shown in Table  2.  It  can  be  clearly  seen  that  the  pro-
posed model is more suitable than the compared models.
The training values obtained by the developed model and
other  prediction  models  can  well  follow  the  changing
trend of the actual values.

In addition, for Fig. 9−Fig. 14, except for the forecast-
ing  values  obtained  by  PSO-RBF,  the  predicted  values
obtained by the other five prediction models can well fol-
low the changing trend of the actual value. By comparing
the  prediction  results  shown in Fig.  9−Fig.  11,  it  can  be
seen  that  the  prediction  performance  of  RBFNN  opti-
mized by the IPSO and the k-means algorithm is better.

In  terms  of  the  mechanism  analysis,  the  PSR-RBF
model is proposed based on the PSR theory. The PSR can
recover  the  attractor  of  the  dynamic  system in  the  high-
dimensional  space,  and  the  obtained  information  space
can reflect the dynamic characteristics of the time series,
and  can  better  reflect  the  information  contained  in  the
time series,  that  is,  the  proposed model  can  better  simu-
late the original system, so the prediction performance of
the model is better than other algorithms. 

 

Table 1    Parameter settings for each algorithm

Algorithm Parameter

PSO
Population size = 50,
ω=0.8,c1 = c2 = 2

IPSO
Population size = 50,H0 = 1.5
threp=4, threg=5, tmax=100,
thresholdσ=0.1,c1 = c2 = 2.5
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Fig. 9    Comparison of prediction results of RBF model (Experiment I)
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(a) Prediction results of PSO-RBF model (b) Error analysis
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Fig. 11    Comparison of prediction results of PSO-RBF model (Experiment I)

 

(a) Prediction results of KRLS-RBF model (b) Error analysis
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Fig. 12    Comparison of prediction results of KRLS-RBF model (Experiment I)

 

(a) Prediction results of k-means-RBF model (b) Error analysis
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Fig. 13    Comparison of prediction results of k-means-RBF model (Experiment I)
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5.2.2    Experiment  II:  predictive  performance  compari-
son of the six models with overall method

The results of overall prediction of three-dimensional co-
ordinates based on six algorithms are shown in Fig.  15−
Fig.  20,  and  the  performance  of  the  six  algorithms  is
shown  in Table  3,  it  can  be  clearly  seen  that  except  for
the prediction errors  of  the PSR-RBF model,  the predic-
tion  errors  of  the  other  five  models  are  relatively  large.
This  shows that  the  PSR-RBF model  is  also  suitable  for
overall prediction. PSR can better reflect the information
contained  in  the  time  series.  Based  on  this  information,
RBF is used to extract the mapping rules contained in it,

thereby  improving  the  prediction  performance  of  the
model.  By  comparing  the  prediction  results  shown  in
Fig.  15−Fig.  17,  it  can  be  seen  that  the  prediction  per-
formance  of  RBFNN  optimized  by  the  IPSO  and  the  k-
means algorithm is better. The hybrid algorithm can bet-
ter optimize the RBF parameters and improve the predic-
tion performance of the PSR-RBF model.

By comparing the algorithm prediction results in Sub-
sections 5.2.1 and 5.2.2, it can be seen that the prediction
effect of the independent method is better than the over-
all  method,  and  the  prediction  performance  of  the  PSR-
RBF model is better than the other five prediction models.

 

(a) Prediction results of BP model (b) Error analysis
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Fig. 14    Comparison of prediction results of BP model (Experiment I)

 

Table 2    Comparison of prediction performance of six models with independent method

Coordinate Algorithm MAE NMSE Perr Cor Time

X

Hybrid algorithm 16.078 7 0.002 0 9.867 7×10−5 0.998 7 14.350 948
k-means-RBF 54.205 1 0.023 7 0.001 1 0.992 3 2.393 672

KRLS-RBF 36.674 7 0.011 0 5.229 3×10−4 0.996 7 8.118 918

PSO-RBF 22.572 7 0.004 4 2.190 2×10−4 0.998 0 2.157 142

BP 28.217 7 0.005 3 2.559 8×10−4 0.998 7 4.232 382

RBF 84.202 2 0.051 9 0.002 4 0.997 2 5.316 289

Y

Hybrid algorithm 29.596 3 0.001 7 5.912 4×10−5 0.998 8 7.500 620
k-means-RBF 50.342 5 0.005 9 2.023 5×10−4 0.996 7 1.948 928 6

KRLS-RBF 38.053 0 0.003 3 1.119 7×10−4 0.998 0 9.833 438

PSO-RBF 35.671 2 0.002 9 1.007 2×10−4 0.997 9 2.279 306

BP 59.230 5 0.007 1 2.425 1×10−4 0.997 9 4.901 085

RBF 49.744 8 0.005 3 1.827 8×10−4 0.997 1 5.310 010

Z

Hybrid algorithm 2.664 7 0.016 9 5.603 1×10−7 0.992 6 7.971 086
k-means-RBF 5.429 4 0.097 7 3.230 8×10−6 0.951 7 2.292 306

KRLS-RBF 3.926 3 0.034 4 1.138 1×10−6 0.983 0 8.561 687

PSO-RBF 23.854 7 1.017 4 3.368 4×10−5 0.195 3 2.328 323

BP 8.403 5 0.102 8 3.411 8×10−6 0.984 9 4.102 884
RBF 10.215 5 0.168 9 5.577 6×10−6 0.943 9 9.192 351
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(a) Prediction results of RBF model (b) Error analysis
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Fig. 15    Comparison of prediction results of RBF model (Experiment II)

 

(a) Prediction results of PSR-RBF model (b) Error analysis
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Fig. 16    Comparison of prediction results of PSR-RBF model (Experiment II)

 

(a) Prediction results of PSO-RBF model (b) Error analysis
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Fig. 17    Comparison of prediction results of PSO-RBF model (Experiment II)
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(a) Prediction results of KRLS-RBF model (b) Error analysis
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Fig. 18    Comparison of prediction results of KRLS-RBF model (Experiment II)

 

(b) Error analysis
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(a) Prediction results of k-means model

Fig. 19    Comparison of prediction results of k-means-RBF model (Experiment II)

 

(a) Prediction results of BP model (b) Error analysis
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Fig. 20    Comparison of prediction results of BP model (Experiment II)
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At the method level, the whole method takes the three
dimensions  coordinates  as  a  whole  as  the  input  and out-
put  of  RBF,  and  ignores  the  characteristics  of  each  co-
ordinate. Based on the PSR theory, we can know that the
optimal time delay and embedding dimension of the three-
dimensional coordinates are not the same, while the over-
all  method  sets  the  phase  space  reconstruction  parame-
ters  of  the  three-dimensional  coordinates  to  the  same
value,  so  that  the  information  contained  in  each  coordi-
nate  time  series  is  not  fully  explored,  resulting  in  poor
prediction  effect.  At  the  model  level,  the  structure  and
parameters of PSR-RBF are optimized by the hybrid algo-
rithm, so that the optimized model is more suitable for the
target  maneuvering trajectory  prediction,  and the  predic-
tion performance is the best.

In  this  paper,  the  prediction  performance  of  the  pro-
posed method is compared with that of the model. At the
method  level,  the  prediction  performance  of  the  inde-
pendent method and the traditional whole method is com-
pared and analyzed. The simulation results show that the
prediction  performance  of  each  model  using  the  inde-
pendent  method is  better  than that  of  the  whole  method.
At  the  model  level,  the  prediction  performance  of  BP,
RBF,  PSO-RBF,  KRLS-RBF  and  k-means-RBF  models
is  compared  and  analyzed.  The  simulation  results  show
that the PSR-RBF neural network prediction model based
on proposed hybrid algorithm optimization is better than
the  overall  method.  The  prediction  performance  of  the
model is better than the other five models, and has a good
adaptability.  The  three-dimensional  comparison  results
are  shown  in Fig.  21 and Fig.  22 where  PSOK  denotes
PSO-k-means.
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Fig. 21    Comparison chart of trajectory by independent methods
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Fig. 22    Comparison chart of trajectory by overall methods 

 

Table 3    Comparison of prediction performance of six models with overall method

Coordinate Algorithm MAE NMSE Perr Cor Time

X

Hybrid algorithm 40.267 2 0.014 4 7.110 5×10−4
0.993 3 29.616 218

k-means-RBF 136.196 4 0.145 0 0.008 1 0.996 8 17.959 766
KRLS-RBF 170.921 2 0.221 0 0.009 3 0.995 7 25.521 019
PSO-RBF 23.047 0 0.004 1 2.069 4×10−4 0.998 8 13.886 920

BP 106.275 0 0.079 7 0.003 5 0.992 3 26.891 305
RBF 123.717 3 0.110 1 0.005 0 0.974 3 12.254 671

Y

Hybrid algorithm 47.189 0 0.004 1 1.449 6×10−4
0.998 8 29.616 218

k-means-RBF 89.406 9 0.013 9 4.637 3×10−4
0.998 7 17.959 766

KRLS-RBF 69.882 7 0.012 0 4.060 0×10−4
0.998 7 25.521 019

PSO-RBF 79.801 8 0.014 1 5.099 3×10−4
0.998 9 13.886 920

BP 170.062 3 0.065 1 0.002 4 0.992 0 26.891 305
RBF 330.447 6 0.186 1 0.005 6 0.991 8 12.254 671

Z

Hybrid algorithm 12.101 5 0.222 6 7.364 2×10−6
0.951 5 29.616 218

k-means-RBF 36.869 1 2.877 3 9.401 3×10−5
0.057 4 17.959 766

KRLS-RBF 18.687 8 0.703 2 2.330 6×10−5
0.651 0 25.521 019

PSO-RBF 58.364 8 5.387 5 1.741 6×10−4
0.168 8 13.886 920

BP 5.118 6 0.052 9 1.746 4×10−6
0.993 3 26.891 305

RBF 36.715 9 2.172 1 7.082×10−5
0.851 1 12.254 671
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5.3    Computional complexity analysis

According to the no free lunch (NFL) theorem [30], an al-
gorithm cannot provide a better performance than all oth-
er  algorithms  in  all  aspects  and  problems,  and  each  al-
gorithm  must  comply  with  the  conservation  law.  In  the
process of comparing the method and the model, the the-
orem is verified. In this paper,  based on the independent
method  and  the  overall  method,  six  models  are  used  to
predict  the  target  maneuver  trajectory,  each  model  is
tested  30  times,  and  the  running  time  of  each  model  is
shown in Fig. 23. As can be seen from Fig. 23, for each
model,  the  running  time  of  the  independent  method  is
lower  than  that  of  the  whole  method;  however,  the  run-
ning time of the model proposed is not the least. Combin-
ing the performance indicators of the algorithms in Table 2
and Table 3, it can be seen that the model proposed is not
the optimal in terms of model running time, but other per-
formance  indicators  are  better  than  other  models,  so  the
NFL theory is verified.
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Fig. 23     Comparison of the complexity of six algorithms based on
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6. Conclusions
In  this  paper,  an  independent  prediction  method  and  a
PSR-RBF  prediction  model  optimized  by  the  hybrid  al-
gorithm  are  proposed.  Based  on  the  above  method  and
the  prediction  model,  the  three-dimensional  coordinates
of  the  target  maneuver  trajectory  are  predicted  indepen-
dently,  the  three-dimensional  coordinate  time  series  are
respectively  projected  by  phase  space  reconstruction  as
the trajectory of a moving point in phase space, then the
excellent non-linear fitting ability of the RBF network is
applied  to  fit  the  trajectory,  so  as  to  realize  target  ma-
neuver  trajectory  forecasting.  The  difficulty  of  applying
RBF  to  target  maneuver  trajectory  prediction  is  the  de-
termination  of  its  structure  and  the  optimization  of  re-
lated  parameters,  so  the  RPCL  is  used  to  determine  the

number  of  neurons  in  the  hidden  layer,  the  LM  and  the
hybrid algorithm of IPSO and k-means are applied to op-
timize  the  parameter  of  RBF.  There  are  also  further  im-
provements  in  the  design  of  the  RBF  structure,  one  can
try to use other algorithms to improve the neural network,
or find other more suitable neural networks.

To  solve  the  problem  of  target  maneuver  trajectory
prediction,  an  independent  prediction  method  is  pro-
posed,  the  three  dimensions  coordinates  of  the  target
maneuver  trajectory  are  predicted  separately  by  this
method. At the same time, the prediction performance of
the  independent  method  is  compared  with  the  tradition
method  overall  prediction  method,  the  prediction  result
shows  that  the  prediction  performance  of  the  proposed
method is better.

The  PSR-RBF forecasting  model  proposed  is  applica-
ble to the prediction of target maneuver trajectory. Com-
pared with other five RBFNN prediction models, the pre-
diction  accuracy  of  the  PSR-RBF  model  is  greatly  im-
proved.

In  order  to  improve the  prediction performance of  the
PSR-RBF  model,  RPCL  is  used  to  determine  the  struc-
ture of RBF, a hybrid algorithm of IPSO and k-means is
applied  to  optimize  the  parameters  of  RBF.  Compared
with  the  PSO  and  k-means,  the  performance  of  the  hy-
brid algorithm is better in optimizing RBF parameters.

In  order  to  improve  the  authenticity  and  accuracy  of
the sample data, the actual air combat confrontation train-
ing data  recorded by ACMI is  used to  construct  training
and  test  samples  of  the  prediction  model  and  method.
This method effectively solves the problem of small  and
unreal sample data in the past.

In  this  paper,  the  accuracy  of  prediction  methods  and
prediction models proposed is good. In practice, the way
of sliding training and online use can be adopted. Within
a certain time interval,  a  trained model  is  used first,  and
then the updated and trained new model is used for real-
time prediction. This can save training costs and solve the
shortcomings of completely offline training.
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