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Abstract: This paper presents a new subband adaptive filter
(SAF) algorithm for system identification scenario under impuls-
ive interference, named generalized continuous mixed p-norm
SAF (GCMPN-SAF) algorithm. The proposed algorithm uses a
GCMPN cost function to combat the impul- sive interference. To
further accelerate the convergence rate in the sparse and the
block-sparse system identification processes, the proportionate
versions of the proposed algorithm, the Ly-norm GCMPN-SAF
(L,-GCMPN-SAF) and the block-sparse GCMPN-SAF (BS-
GCMPN-SAF) algorithms are also developed. Moreover, the
convergence analysis of the proposed algorithm is provided.
Simulation results show that the proposed algorithms have a
better performance than some other state-of-the-art algorithms
in the literature with respect to the convergence rate and the
tracking capability.
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1. Introduction

The least-mean-square (LMS) and the normalized LMS
(NLMS) adaptive filtering algorithms have been widely
used in various applications such as system identification,
channel equalization and noise cancellation [1]. However,
unfortunately, the mentioned algorithms converge slowly
when their input signal is colored.

To further speed up the convergence rate of an adapt-
ive filter for colored input signals, in subband adaptive
filter (SAF), the colored input signals are divided into
multiple approximately white subband signals [2]. In [3],
the normalized SAF (NSAF) algorithm has approxima-
tely the same complexity as the NLMS algorithm, while
its convergence rate is higher. In many system identifica-
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tion scenarios, for example, acoustic echo path, the sys-
tem impulse response is sparse or block-sparse [4—6]. It is
noteworthy that in the sparse system, most coefficients
are zero or near zero and just a few of them are nonzero,
and in the block-sparse system, the coefficients are in the
form of a single cluster or multi-cluster, where in a
cluster is a gathering of the nonzero coefficients. In com-
parison to the NSAF algorithm, the proportionate NSAF
(PNSAF) algorithm has a fast initial convergence, when
the echo path is sparse. However, unfortunately, this al-
gorithm has a slow convergence after the initial fast con-
vergence, and a poor performance for the dispersive sys-
tems [7]. The improved PNSAF (IPNSAF) has a good
performance for both the sparse and the dispersive sys-
tems [7]. To keep the fast initial convergence speed dur-
ing the whole adaptation process until the adaptive filter
reaches its steady state, the u-law PNSAF (MPNSAF)
has been proposed in [7]. However, these algorithms are
not robust against impulsive interference.

Recently, several subband adaptive filter algorithms
have been proposed in [8—17], which show a good ro-
bustness against impulsive interference. In [8], the sign
subband adaptive filter (SSAF) algorithm, by using the
idea that lower order statistics can improve robustness
against impulsive interference, minimized an L,-norm of
the subband a posteriori error vector of the filter. To en-
hance the performance of the SSAF algorithm, several al-
gorithms have been developed in [9—17]. The individual-
weighting-factor SSAF (IWF-SSAF) algorithm in [16]
used an IWF for each subband. Moreover, in [17], the
normalized logarithmic SAF (NLSAF) algorithm has the
same convergence rate as the SSAF with less steady state
error.

To speed up the convergence rate in the sparse system
identification scenario, several SAF algorithms have been
proposed in [7,18—23]. The proportionate SSAF (P-SSAF)
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algorithm and the affine projection SSAF (AP-SSAF) al-
gorithms have been presented in [21]. The L,-norm SSAF
(L,-SSAF) and the Lj,-norm NLSAF (L,-NLSAF) al-
gorithms in [22,23] have been derived by inserting a pen-
alty of sparsity, i.e., Ly-norm of the adaptive tap-weights,
into the SSAF and the NLSAF algorithms cost functions,
respectively. In addition, the developed algorithm named
individual-weighting-factor improved PSSAF (IWF-IPS-
SAF) has been proposed in [17]. Recently, several al-
gorithms have been proposed for the block-sparse system
identification scenario [24—29]. In the block-sparse LMS
(BS-LMS) algorithm [24], a penalty of block-sparsity,
which is a mixed L,,-norm of the adaptive tap-weights
with the equal group partition sizes inserted into the cost
function of the conventional LMS algorithm.

The generalized variable step size continuous mixed p-
norm (GVSS-CMPN) algorithm in [30] demonstrates a
good robustness against impulsive interference by mini-
mizing the p-norms of the system output error, where p is
a continuous value from 1 to 2. However, according to the
simulations, it has a slow convergence rate for the colored
input signal. In order to solve this problem, we present a
new SAF algorithm named generalized continuous mixed
p-norm SAF (GCMPN-SAF) with its convergence ana-
lysis, in this paper. To further speed up the convergence
rate, for the sparse and the block-sparse systems identifi-
cation processes, a family of the proposed algorithms are
also proposed. In general, our main contributions are as
follows:

(1) In order to speed up the convergence rate of the ro-
bust GVSS-CMPN algorithm, for the colored input sig-
nals, we apply the SAF-structure to this algorithm. Ac-
cording to the simulation results, we can see that the pro-
posed algorithm has a good robustness against impulsive
interference, and also exhibits a proper convergence rate
and tracking capability for the colored input signals.
Also, the proposed algorithms have a better performance
than some other state-of-the-art algorithms in the litera-
ture with respect to the convergence rate and the tracking
capability.

(i) In order to improve the performance of the pro-
posed algorithm for the sparse and the block-sparse sys-
tems identification processes, the proportionate versions
of the GCMPN-SAF algorithm, named proportionate
GCMPN-SAF (PGCMPN-SAF), improved PGCMPN-
SAF (IPGCMPN-SAF), and p-law PGCMPN-SAF (MP-
GCMPN-SAF) algorithms are developed. Also, for a bet-
ter sparse system identification, we propose another al-
gorithm L,-GCMPN-SAF which is derived by inserting
an Ly-norm of the adaptive tap-weights into the GCMPN-

SAF algorithm cost function. In order to improve the per-
formance of the proposed algorithm, for the block-sparse
system identification process, we also develop the BS-
GCMPN-SAF algorithm which is derived by inserting a
mixed L,,-norm of the adaptive tap-weights with the
equal group partition sizes to the GCMPN-SAF al-
gorithm cost function. Simulation results show that the
proportionate versions of the proposed algorithm have a
better performance than the non-proportionate counter-
parts GCMPN-SAF, L,-GCMPN-SAF and BS-GCMPN-
SAF algorithms for both the sparse and the block-sparse
systems. Similar to [7], we can see that the MPGCMPN-
SAF algorithm has a better performance than the IP-
GCMPN-SAF algorithm, and the IPGCMPN-SAF al-
gorithm has a better performance than the PGCMPN-SAF
algorithm. Also, the performance of the BS-GCMPN-
SAF algorithm is better than the L,-GCMPN-SAF al-
gorithm, especially for the block-sparse system.

2. Review of the SAF algorithm

In the system identification process, the desired signal
d(n) is obtained as

d(n) = u" (myw, +n(n) M

where u(n) = [u(n),u(n—1),--- ,u(n—M+1)]" is the in-
put signal vector, w, denotes the unknown weight vector
with the length M and n(n) is the additive noise which in-
cludes the white Gaussian background noise v(n) and the
impulsive interference x(n). Fig. 1 shows the structure of
the SAF with N subbands. The analysis filters {H,(z),
H(2), -+ ,Hy_1(2)} partition the input signal u(n) and de-
sired signal d(n) into N subband signals u;(n) and d;(n)
respectively. The subband signals y;(n) are the output of
the adaptive filter whose weight vector is represented as
w(k) = [wo(k),w k), -+ ,wy_(k)]". The signals y, ,(k) and
d;p(k) are generated by N-fold decimation of the signals
vi(n) and d;(n), respectively. It is easy to obtain that

d; p(k) = u (kKyw, +n;(k) (2

and
yip(k) = u (kyw(k) (3)
where d;p(k) =di(kN), wu;(k) = [u;(kN),u;(kN —1),---,

u;(kN—M +1)]" and n;(k) is the ith subband noise. Also,
the subband error signals e; (k) for i=0,1,---,N—1 are
obtained as

ep(k) = dip(k) = yip(k) = dip(k) —u (yw(k).  (4)
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Fig. 1 Structure of the SAF

3. The proposed algorithm

In order to speed up the convergence rate of the robust
GVSS-CMPN algorithm [30] for the colored input signal,
this paper introduces a new SAF algorithm named
GCMPN-SAF algorithm, which benefits from the follow-
ing GVSS-CMPN cost function [30]:

J® = [ Ap)Ellentil 1dp 5)

3
where A(p) = 6(p - E) +1 denotes the weighting factor,

6 is a regulating factor in the interval [-2,2], ep(k) =
[eon(k),---,en_1p(K)]" and E{-} denotes the expectation
[30]. Here, according to (5) and the SAF structure in [2],
the proposed cost function is detailed as

J(k) = Z I “APIE{ewnto]}dp. (6)

By using the steepest descent principle, we have
wk+1) =w(k) — uV,wJ k) 7

where u denotes the fixed step size (u>0), and V,q,
from (6) is given by

N-1 9 )
Vel = 2 [ a1z Bt a9

By using the le;p(k)|” instead of the Efle;p(k)|”}, and
substituting (4) into (8), we get

Vw(k) J (k) =

N-1

ukysign(e,n®) [ pA@len®l dp )

i=0

where sign(-) denotes the sign function.
Therefore, we can rewritten (7) as

w(k+1)=w(k)+pu Z si(kyu(k)sign(e;p(k))  (10)

i=1

where
2 -
&0 = [ pA(plein(il” dp. (1)
We consider the weighting factor A(p) in (11) as
Q(p - g) +1
Ap) = —= (12)
u; (kyu;(k) +y

i=0

where 6 similar to [29] is a regulating factor in the inter-
val [-2,2], and 7 is a small positive value to avoid divid-
ing by zero. Based on (12), (11) can be rewritten as

3
——|+1
9(1) 2)+

N-1

u; (ui(k) +y

|ei,D(k)|p_ldp =

eW=["p

i=0

Y 3 oPr'd ’ KPP
fl polp—5 leip (k)| p+f1 ple.p(k)|""dp

N-1

Dl u +y

i=0

66(k) + p(k) 13)

where from [29,30] we have

3 .
flzp(p— 5) e dp

S(k) = =
D ulu) +y
i=0
2en®)| -2 0.5-2.5ep)| |en®)|+0.5
In’ |e,p (k)| In° |¢; p(k)| Ine; p(k)| a9
N-1

D ulu ) +y

i=0
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and

s el

N-1
\| Dl (k) +y
i=0

In|e,p(0)|2|ein®)| - 1) = |en k)] +1

2
In’ |e; (k)| as)
N-1
> ul o) +y
Therefore, we can summarize (13) as
i) = ———20 (16)
N-1
D ul (k) +y
i=0
where
2leip(k)|—2 0.5-2.5|e;pk p(K)|+0.5
a,-(k)=0[ |e3' ()l + > |e’ ()|+|e’ ()|+ )
ln lew(k)| ln |e,',D(k)| lnle,-,D(k)|
In|e,p(0)|2lein®)| - 1) = |en k)| +1
In’ |e; (k)| '

(17

Finally, we can rewrite the update formula for tap-
weights of the proposed GCMPN-SAF algorithm (10) as

N-1
> ilouiBsign(e; p(k))
wik+1) = wk) +p— (18)
N-1
D ul (k) +y

i=0

Remark 1 If we consider in (18) ai(k)=1, for
i=0,1,---,N—1, we will have the SSAF algorithm in [8].

4. Convergence analysis

We can see that ;(k) in (17) is a function of the e; (k).
Therefore, we can write (18) as

N-1

D i flewnk)e;nk)

wk+1) = w(k) +pu— (19)
N-1
> ul o)

i=0

where f(e;p(k)) = ai(k)/le;p(k)| is a nonlinear function of
the subband error signal e; (k). By defining ¢ (k) =w,—
w(k), we have

N-1

D il flernk)e;n)

Y k+1) =4 (k) —p— — . (0)

> ul o (k)

i=l

By taking the squared L,-norm and the expectation
from both sides of (20), we have

m(k+1) = m(k) + i*E

N-1
Zfz(e,-.D(k»e?,D(k)}—
i=0

D flennespk)ea)

i=0

2uE

21)

N-1

> ul (R (k)
where m (k) £ E[|ly (k)|"] denotes the mean square devia-
tion (MSD) and a noise-free a priori error signal is
defined as e,;(k) =y (k)u;(k). With respect to (21), a
function with respect to u is obtained as

d(u) =m(k+1)-m(k) =

N-1
Elz Flew®nel k) |1 -

i=0

N-1

> Fewkenkes k)
2E| = — n (22)

> ul (k)

=l

The proposed algorithm converges in mean square
sense, if we have in (21) d(u) < 0. Therefore, based on
(22), a necessary mean-square convergence condition is
obtained as

N-1
D Flen)espk)e, ()

2E| =
N-1
JZu?(k)u,(k)

i=0

O<u< (23)

E

N-1
Zfz(ei,u(k))eiu(k)]
i=0

We proceed by utilizing the following assumptions:

(i) The background noise v(n) is a zero-mean white
Gaussian process with the variance o2. The impulsive in-
terference is generally regarded as the x(n) = w(n)p(n)
[14,15,21,22], where w(n) is a white Gaussian process
with zero-mean and variance o2 = ko (k> 1), and p(n)
is a Bernoulli distribution with the probability mass func-
tion detailed as p{p(n) = 1} = P,, p{p(n) = 0} = 1 — P,. Note



ZAHRA Habibi et al.: A robust subband adaptive filter algorithm for sparse and block-sparse systems identification 491

that P, represents the probability of the occurrence of im-
pulsive interference. Therefore, the additive noise n(n) =
v(n) + x(n), can be considered as a Gaussian process with
the zero-mean and the variance

o, =0+ Po,(n)=(1+Px)o,. (24)

(ii) The ith decimated subband input signal is approxi-
mately white [2,7], thus we conclude E[ul(k)u,(k)]~
Mo, (k).

(iii) The ratio of the expectation of two random vari-
ables is approximately equal to the expectation of the ra-
tio between them, i.e., E(x)/E(y) = E{x/y}, which is rea-
sonable for sufficiently long filters [30,31].

By using the above assumptions, (23) is simplified as

N-1
D E(f(emn®k)enkle, (k)

i=0
N-1
AT
i=0

O<p<2—; . (25)
E(f*(ein(k)ely(k)

-1

i=0

Using Assumption (i) and Price’s theorem in [32], we
have

E(e, p(Reni(k
E(flew (e ek ~ p, EEpReai®)

E(e2 (b))
E(f(e,-’D(k))e?l D(k)) +(1- Pr)w_
| E(e2.,(K)
E(f(ei,D(k))eizz’D(k)) (26)

where

{ e, p(k) = e, (k) + x (k)
(27

e;,p(k) = e, (k) +v,(k)

where xi(k) and v;(k) are zero-mean Gaussian sequences

. . 1 1
with variances 02 = —(1 +«)o? and 02 = —o%.
TN ” "N

Using Assumption (iii), we can obtain
1

E(e? (k) =E(e2,(k)) + N (1 +007
) (28)
E(e? (k) =E(e2,(k)) + ~
Then, we have
E(e2y(K) = P,E(e} (k) + (1 - P)E(e (k) =
E(e2,(k)) + Al[(P,K + 1o (29)

By definitions of m(k) and e, ;(k) denoted in this sec-
tion, we have the following equation:

E(el,(k) = o2 (kym(k). (30)

Therefore, merging (26) to (30), we get, for i =0,1,---,
N-1,
o, (kym(k)
(1+ P2
N
E(f(ewn(kel (k). 1)

E(f(eip(k))e;p(k)e, (k) =

o2 (kym(k) +

Therefore, a mean-square convergence can be achieved
by a sufficient condition as

O<pu<

= o, (kym(k)
Z (1+ Px)o
N

N-1 N-1
MY a2 ) E(fennel, k)
i=0 i=0

5. GCMPN-SATF for sparse and block-sparse
system

E(f(ewn(k)elp(k)
=0 g2 (kym(k) +
2

(32)

To further speed up the convergence rate of the GCMPN-
SAF algorithm for the sparse and the block-sparse sys-
tems identification processes, three proportionate ver-
sions of the GCMPN-SAF algorithm named PGCMPN-
SAF, IPGCMPN-SAF, and MPGCMPN-SAF algorithms,
and two L;-GCMPN-SAF and BS-GCMPN-SAF algori-
thms are developed in this section.

5.1 PGCMPN-SAF

In the proposed PGCMPN-SAF algorithm, for each sub-
band, different step-sizes are assigned to the coefficients
based on the current estimated magnitudes of them. There-
fore large step-size will be assigned to the coefficient
with a large current magnitude, and vice versa. With the
update gains proportional to the current tap weights, very
fast convergence performance is obtained [7]. Vector up-
date for the PGCMPN-SAF algorithm is given [7] by

wk+ 1) = w(k)+

N-1

> AR K)sign(e,»(k)
i=0
VIARU®signlet]) {ARURsignles®)]) +y
(33)

u

where vy is a small positive constant to avoid dividing
by zero, UK) = [uy(K), e, (K), - un 1 ()], en(k) = [eop(k),
erp, (k). ey 1p()]", and  A(k) = diag(ao(k), a(k), -,
ay-1(k)) is a diagonal matrix whose diagonal elements
are calculated as
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an(k) = —ﬁ"j(k)

1 1
27 2B

i=0

(34

where

Bu(k) = max{pmax {6, |wo(k)l,--- , w1 (I}, W, (K]} (35)

for 0 <m < M —1. The positive constant p (with typical
value p = 5/M) prevents the very small coefficients from
remaining, and the positive parameter ¢ (with typical
value 6§ =0.01) adjusts the coefficients updating when
they are zero at initialization [7,18].

5.2 TPGCMPN-SAF

Unfortunately, when the impulse response is dispersive
(non-sparse), the proportionate version of algorithms con-
verges much slower than itself. The improved proportion-
ate version is independent of whether or not the impulse
response of the system is sparse or dispersive [7]. Ac-
cording to [7], the update formula for the tap-weights of
the IPGCMPN-SAF algorithm can be expressed as

wk+1)=w(k)+
N-1

p Y B (Ru(sign(e; (k)

i=0

JIBMOU®signlen0l] (BOUKsignlen(b)]) +y
(36)

where B(k) = diag(by(k),b;(k), -+ ,by_i(k)) is a diagonal
matrix whose diagonal elements are calculated as

|-« Wi (Kl
bm(k): _+(1+Q)— 37
M 2wl +y G7)
where, at each iteration, the relative weighting of the pro-
portionate and the non-proportionate adaptation is con-
trolled by the selection a € [-1,1]. The values of —0.5 or

0 are typically used for @ in [7,21].
53 MPGCMPN-SAF

The p-law proportionate version of algorithms shows the
fast convergence during the whole adaptation process.
Here, by using an objective function we can obtain the
step-size control factors. Also, the condition under which
the fastest overall convergence will be achieved for the
steepest descent algorithm has been obtained and the
equations used to calculate the optimal step-size control
factors in order to satisfy that condition have been de-
rived [7]. According to [7], the update formula for the tap-
weights of the MPGCMPN-SAF algorithm can be ob-
tained as

wk+1)=wk)+
N-1

D @k kysign(e;p(k))

i=0

u

\/ [ChUKsignlen®)]) (CRUK)signlen(k)]} +y
(38)

where C(k) = diag(cy(k),c,(k), -+ ,cy_1(k)) is a diagonal
matrix whose diagonal elements are calculated as

Bu(k)

cnll) = —2m (39)
2 2P ®
i=0
where
ﬁm(k)z
max {pmax {6, T(Iwo(K)]), -, T(Iwp_1 (KD}, T (Iw,(K)}
(40)

for 0<m< M—-1. The positive constants p and ¢ are
useful as mentioned in Subsection 5.2, and

T(w,(K)) = In(1 + &lw,, (k)I) (41)
where & = 1/y [20,22].
Remark 2 If we consider «;(k) =1, in (33), (36) and
(38) for i=0,1,--- ,N—1, we will have PSSAF, IPSSAF
and MPSSAF algorithms respectively in [7,18,21].

54 Ly-norm GCMPN-SAF (L,-GCMPN-SAF)

By adding the L,-norm feature, which directly determines
the sparsity of a vector to the cost function (6), we develop
the L,-GCMPN-SAF algorithm in this section. This extra
term can lead to finding a sparse vector that reduces the
cost function. According to [19,23], the weight vector of
the L,-GCMPN-SAF algorithm is updated as

wk+1)=w(k)+

N-1
D illouikysign(e; o))
i=0

- 1
M - E#AVIIW(k)Ilo (42)
N-1
>l (ouiho +y
i=0
where ||-]|, denotes the Ly-norm of a vector that counts

the number of nonzero elements of a vector, 1 >0 con-
trols the intensity of the L,-norm term and

VIw®llo = [fo(wi (), fo(wa(k)), -, fwu kD] (43)
where
_ﬂzwm(k) _ﬁa _l/ﬂ < Wm(k) <0

—Bw(k)+6, 0<w,(k)<1/B (44)
0, otherwise

JsWin(k)) =
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where S € [5,20] shows a good performance [19,23,24].
5.5 BS-GCMPN-SAF

By adding the L,,-norm feature, which directly deter-
mines the block-sparsity of a vector to the cost function
(6), we develop the BS-GCMPN-SAF algorithm in this
section. This extra term can lead to finding a block-sparse
vector that reduces the cost function. According to [24,
25], the weight vector of the BS-GCMPN-SAF algori-
thm is updated as

wk+1)=wk)+

N-1

Zwmmmmﬂ»l

p= — — SHAVIW Oy (45)
> ul k) +y

i=0
where ||-]|,, denotes the L,-norm of a vector that counts
the number of a cluster with p length and nonzero entries.
A >0 controls the intensity of the L, -norm term and

VIw)lo = [£awi (), fawalk)), -+, fswar(kD]" (46)

where
Jswu(k)) =

2 _ zﬂwUl(k)
{2/3 )~ e G 0 < Wl < 18

0, otherwise
(47)
where p denotes the group partition size , 8 is a positive
constant and [-] denotes the ceiling function.

6. Simulation results

The performance of the proposed GCMPN-SAF algo-
rithm in a system identification process is evaluated in
this section. We use two sparse types of the measured
acoustic-echo-channels as the unknown systems, which
are depicted in Fig. 2, where the first type is a sparse im-
pulse response (Fig. 2(a)), and the second type is a block-
sparse impulse response (Fig. 2(b)). For all the simula-
tions, the length of the unknown system is M=512, and
the adaptive filter has the same length. The input signal is
an AR(1) or an AR(2) signal, generated by filtering a
white Gaussian noise using a first-order H(z) =1/ (1-
0.9z7"), or a second-order system H(z) = 1/(1-0.25z7"—
0.65772), respectively. The filter bank is an extended
lapped transform (ELT) [33], and the number of sub-
bands is chosen as N=4. Also, the background noise v(n)
is an additive white Gaussian noise with a signal-to-back-
ground-noise ratio (SBNR) of 30 dB, which is defined as
SBNR = E[z*(n)]/02, where z(n)=u’(n)w,. Also, we
consider the impulsive interference X (1), as mentioned in

Assumption (i), with ¢ =1000 02 and P, =0.001. In
addition, we use the normalized mean square deviation
(NMSD) in dB defined as 101g(|lw(k)—w,|[*/Iw.|*) to
measure the performance of the algorithms. In all the
simulations we choose the parameters value of the com-
peting algorithms according to the best values in their re-
ferences, in such a way that all the algorithms have the
same steady-state NMSD with the maximum conver-
gence speed in achieving such a steady-state level. All the
results are averaged over 50 independent trials.
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Fig. 2 Two types of measured acoustic-echo-channels as unknown
systems

6.1 Choice of 6

We study the performance of the GCMPN-SAF algo-
rithm for the different 6 for block-sparse impulse res-
ponse with AR(1) input signal, in presence of impulsive
interference, in Fig. 3. As expected from [30], 6 =-2
provides the least steady-state error. Therefore, 6 = -2 is
chosen as a proper value for the proposed algorithm in
other simulations.
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Fig. 3 NMSD learning curves of the GCMPN-SAF for different 6
(1 =0.05, p= 6=0.01, £ =400)

6.2 Comparisons with the versions of SSAF

Fig. 4 shows the NMSD learning curves of the robust
GVSS-CMPN [30] algorithm, the non-robust algorithm
with SAF structure NSAF [3] algorithm, and some ro-
bust SAF algorithms including proposed GCMPN-SAF,
SSAF [8], NLSAF [13], and IWF-SSAF [16] algorithms,
for the colored AR(1) and AR(2) input signals. In order to
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evaluate the tracking capability of the algorithms for the
AR(1) input signal in Fig. 4(a), the impulse response is
selected as the sparse in Fig. 2(a) at first and abruptly is
changed into the BS in Fig. 2(b) at iteration 7.5% 10°. Also
the tracking capability of the algorithms for the AR(2) in-
put signal is evaluated in Fig. 4(b) by selecting the im-
pulse response as sparse in Fig. 2(a) at first and change it
into the BS in Fig. 2(b) at iteration 3.5 x 10°. The value of
the parameters for Fig. 4(a) are selected as SSAF (u =
0.02),NLSAF (u = 0.03,a = 1 500),IWF-SSAF (u=0.01),
GVSS-CMPN (z = 0.000 4), NSAF (u = 0.5, 0.01), GCM-
PN-SAF(u =0.02), and for Fig. 4(b) are selected as
SSAF (u =0.05), NLSAF (u=0.06,a=1500), IWF-
SSA (1 =0.02), GVSS-CMPN (. = 0.001), NSAF (1 = 0.5,
0.01) and GCMPN-GVSS-CMPN (u =0.001), NSAF
(u=0.5,0.01) and GCMPN-SAF(u =0.04). As can be
seen, for both Fig. 4(a) and Fig. 4(b), the performance of
the proposed algorithm is better than SSAF, NLSAF and
GVSS-CMPN algorithms in terms of the convergence
rate and is the best algorithm in terms of the tracking cap-
ability. As expected, the performance of the proposed al-
gorithm is much better than the GVSS-CMPN, for the
colored input signals, because it benefits from the SAF
structure. It is noteworthy that although the convergence
rate of the GCMPN-SAF algorithm is almost similar to
the IWF-SSAF algorithm at first, but the proposed al-
gorithm has a better tracking capability. Also, the NSAF
which is not robust against impulsive interference, exhib-
its a poor convergence performance for both the AR(1)
and the AR(2) input signals.
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Fig. 4 NMSD learning curves of the several subband and the pro-
posed algorithms under impulsive interference

6.3 A family of the proposed algorithm

Fig. 5 and Fig. 6 show the NMSD learning curves of the
proposed algorithm and several versions of it including
PGCMPN-SAF, IPGCMPN-SAF, MPGCMPN-SAF, L,-
GCMPN-SAF and BS-GCMPN-SAF algorithms for the
AR(1) and the AR(2) input signals respectively. In
Fig. 5(a) and Fig. 6(a), the system is sparse as Fig. 2(a)
and in Fig. 5(b) and Fig. 6(b), the system is BS as Fig. 2(b).
The value of the parameters are selected as GCMPN-
SAF (1 =0.02), PGCMPN-SAF (1 =0.06,p =6 =0.01),
IPGCMPN-SAF (u = 0.05), MPGCMPN -SAF (u = 0.055,
p=06=0.01,£ =400), L,-GCMPN-SAF (u =0.0006, 8=
5,4=0.05) and BS-GCMPN-SAF (u=0.035,8=5, 1=
0.001). As can be seen, in Fig. 5 and Fig. 6 the propor-
tionate versions of the proposed algorithm have a better
performance than their non-proportionate counterparts,
GCMPN-SAF, L,-GCMPN-SAF and BS-GCMPN-SAF.
As we expect from [7], in here the MPGCMPN-SAF al-
gorithm has a better performance than the IPGCMPN-
SAF, and the IPGCMPN-SAF has a better performance
than the PGCMPN-SAF. Also, the performance of the BS-
GCMPN-SAF algorithm which is proposed for the block-
sparse system is better than the L,-GCMPN-SAF al-
gorithm which is proposed for the sparse system identi-
fication, and it is more visible when the system is BS.
Also it is found that expect for the colored AR(1) input
signal when the system is BS (Fig. 5(b)), the L,-GCMPN-
SAF algorithm outperforms the basic GCMPN-SAF al-
gorithm.
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Fig. 6 NMSD learning curves of a family of the proposed algo-
rithm with AR(2) input signal under impulsive interference

6.4 Comparisons with the other developed algorithms

Fig. 7 and Fig. 8 show the NMSD learning curves of the
several developed algorithms L,-SSAF [22], L,-NLSAF

[23], L,-GCMPN-SAF, IPSSAF [21], IWF-IPSSAF [16],
IPGCMPN-SAF and MPGCMPN-SAF, with the AR(1)
and the AR(2) input signals respectively, for the sparse
and the BS systems. In Fig. 7(a) and Fig. 8(a), the im-
pulse response is sparse (Fig. 2(a)) and in Fig. 7(b) and
Fig. 8(b), the impulse response is BS (Fig. 2(b)). In order
to evaluate the tracking capability of the algorithms, all of
the impulse responses are abruptly multiplied by —1 at ite-
ration 5 000. The value of the parameters are selected as
IPSSAF (u=0.06), L,-SSAF (1£=0.0006, y=0.01, 8=
5), L&-NLSAF (u=0.06,y = 5x10™, B=5, @ =1500),
IWF-IPSSAF (u = 0.025) and for other algorithms are se-
lected as in Section 6.3. It is found that in Fig. 7 and Fig. 8,
the proposed MPGCMPN-SAF algorithm has the best per-
formance, and the IPGCMPN-SAF and the L,-GCMPN-
SAF algorithms have better performance than their coun-
terparts, IPSSAF and L,-SSAF algorithms, respectively.
Although, the IWF-IPSSAF and the proposed IPGCMPN-
SAF algorithms have almost the same convergence per-
formance at first, the proposed IPGCMPN-SAF algo-
rithm has a better tracking capability than the IWF-
IPSSAF algorithm. As can be seen, the L,-NLSAF al-
gorithm has a better performance than the L,-GCMPN-
SAF algorithm at first, but the proposed L,-GCMPN-SAF
algorithm has a better tracking capability than the L,
NLSAF algorithm, especially for the AR(1) input signal.
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7. Conclusions

In this paper, the new SAF algorithm named GCMPN-
SAF algorithm that benefits from the GCMPN constraint
in its cost function to suppress the effect of impulsive in-
terference is proposed. Then, the convergence of the pro-
posed algorithm is analyzed. Furthermore, in order to ac-
celerate the convergence rate in the sparse and BS sys-
tems identification processes, several proportionate ver-
sions of the proposed algorithm PGCMPN-SAF, IP-
GCMPN-SAF and MPGCMPN-SAF, L,-GCMPN-SAF
and BS-GCMPN-SAF algorithms are developed. Simula-
tion results demonstrate that the proposed algorithms
have a better performance than some other state-of-the-art
algorithms in the literature with respect to the conver-
gence rate and tracking capability.
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