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Abstract: Trajectory clustering can identify the flight patterns of
the air traffic, which in turn contributes to the airspace planning,
air  traffic flow management, and flight time estimation. This pa-
per  presents  a  semantic-based trajectory  clustering  method for
arrival  aircraft  via  new  proposed  trajectory  representation.  The
proposed  method  consists  of  four  significant  steps:  represent-
ing the trajectories,  grouping the trajectories  based on the new
representation,  measuring  the  similarities  between  different  tra-
jectories  through  dynamic  time  warping  (DTW)  in  each  group,
and  clustering  the  trajectories  based  on  k-means  and  density-
based  spatial  clustering  of  applications  with  noise  (DBSCAN).
We take the inbound trajectories toward Shanghai Pudong Inter-
national Airport (ZSPD) to carry out the case studies. The corres-
ponding  results  indicate  that  the  proposed  method  could  not
only  distinguish  the  particular  flight  patterns,  but  also  improve
the performance of flight time estimation.

Keywords: air  traffic  management,  trajectory  clustering,  trajec-
tory representation, flight pattern.
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1. Introduction
Recently,  China  has  witnessed  the  rapid  development  of
the  civil  aviation  industry.  Meanwhile,  the  rapid  growth
of air traffic and the limitation of available airspace have
led  to  aviation  congestion  problems.  Therefore,  how  to
modernize  and  harmonize  the  air  traffic  management
(ATM)  systems  is  becoming  a  promising  way  to  tackle
the  issues  of  severe  flight  delays,  excessive  fuel  con-
sumption, and consequent air pollutant emission. The in-
novative technologies [1] and novel operational concepts
[2]  are  promising  ways  to  carry  out  the  modernization
and harmonization of the ATM systems. However, to get
a thorough understanding of the current ATM operations

is a prerequisite to address such issues. The large amounts
of  historical  data  in  the ATM domain provide the possi-
bilities  for  building and improving our  knowledge about
the current ATM operations.

The essential type of historical data is aircraft trajecto-
ries  which  are  available  and  accessible  through  the  sur-
veillance facilities or technologies [3]. Since the historical
trajectories  contain  the  temporal  and  spatial  information
of each aircraft, most of the researchers rely on trajectory
clustering  to  get  access  to  a  comprehensive  understand-
ing of the real operation [4−7]. Some work paid attention
to  the  en-route  phase,  in  which  the  researchers  tried  to
model the air traffic flow for enhancing the abilities of en-
route traffic  flow management  [8],  strategic planning [9,
10],  and  dynamic  airspace  sectorization  [11].  Others  fo-
cused on the terminal area (TMA) and the corresponding
studies aimed at identifying prevail  flight tracks or com-
mon flight  patterns.  These efforts  could help to redesign
the  procedures  or  airspace  [5],  characterize  and  evaluate
the performance in TMA [4] or multi-airport systems [12−
14],  and  improve  the  precision  of  short-term  estimated
time of arrival (ETA) prediction [15,16].

Trajectory  clustering  is  a  process  of  grouping  similar
trajectories  into  different  clusters  to  find  representative
paths  or  common trends  shared  by  different  moving  ob-
jects [17]. The fundamental components of trajectory clus-
tering are trajectory similarity/distance measurements and
trajectory clustering algorithms [18]. Rehm [4] measured
the similarity between different trajectories by using Euc-
lidean distance, which was believed as popular similarity
measurement.  Such  measurement  required  that  the  num-
ber  of  trajectory  points  should  be  equal;  thereupon,  a
fixed sampling rate should be implemented at the begin-
ning, which would lead to the loss of information. Bombelli
et al. [9,10] implied Frechet distance to carry out the simi-
larity  measurement,  which  did  not  need  to  resample  the
original  trajectories.  However,  Frechet  distance  only  re-
turned  the  maximum  distance  between  each  pair  of  tra-
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jectories  and  constructed  an  enormous  similarity  matrix
(m×m,  where m denotes  the  number  of  trajectories)  for
further  clustering.  Some studies  relied on warping based
distance  to  measure  similarity  with  different  lengths  and
uneven  sampling  rates.  Gariel  et  al.  [5]  firstly  distingui-
shed the turning points of each trajectory, then represen-
ted the trajectory with those points,  and finally clustered
the  trajectories  by  using  the  longest  common  subsequ-
ence (LCSS). Morris and Trivedi [19] also used LCSS to
measure  the  trajectory  similarities  and  adopted  a  hierar-
chical  strategy  to  cluster  trajectories.  Besides  LCSS,
Hong and Lee [15] applied dynamic time warping (DTW)
to compute the distance and choose the hierarchical clus-
tering method to group the trajectories. Zhao and Shi [20]
used  DTW  to  measure  the  similarity  of  the  compressed
trajectories, which were obtained by the Douglas-Peucker
compression  algorithm,  and  then  clustered  the  trajector-
ies by the density-based spatial clustering of applications
with  noise  (DBSCAN)  algorithm.  In  spite  of  mea-
suring  the  original  trajectories,  the  other  studies  focused
on constructing features  from the  trajectories  and imple-
mented trajectory clustering based on the constructed fea-
tures, which could make the trajectory clustering more in-
tuitive. Gariel et al.  [5], Marzuoli et al.  [8], Salaun et al.
[21],  and  Wang  et  al.  [16]  constructed  new  features  for
the trajectories by the following steps: resampling the tra-
jectories,  augmenting  the  dimensionality,  extracting  the
features  based  on  principal  components  analysis  (PCA),
and  clustering  based  on  density-based  or  hierarchical
strategies.

To  summarize,  most  of  the  studies  deal  with  the  tra-
jectory  clustering  problem  either  from  the  holistic  per-
spective  or  based  on  the  partition-and-group  framework
[22,23]. For the former, each trajectory can be treated as a
series of points [4,9,10] or a sample with augmented fea-
tures  [5,8,16,21].  For  the  latter,  each  trajectory  is  repre-
sented by several segments [15,19,20]. It is obvious that,
no matter what kind of framework is adopted, the similar-
ity measurements and clustering algorithms are the same
issues that should be addressed. However, the distinctive
characteristic  is  how  to  represent  the  trajectories,  like  a
series  of  points, the  augmented  features,  or  the  parti-
tioned  segments.  The  different  ways  of  representing  the
trajectories  tend  to  need  the  appropriate  similarity  mea-
surements  and  the  corresponding  clustering  algorithms.
Therefore,  the  trajectory  presentation  plays  a  significant
role in the trajectory clustering, which in turn calls for the
problem-oriented background knowledge.

This  paper  aims  at  presenting  a  semantic  trajectory
clustering approach for arrival  aircraft.  We focus on this
aspect  since  arrival  aircraft  is  always  instructed  to  devi-
ate  from  the  published  routes  to  ensure  safe  separation

and establish a landing sequence. The proposed semantic
trajectory  clustering  approach  is  totally  based  on  a  new
type of trajectory representation, which is closely associa-
ted with the real operation in the radar vectoring situation.
Such  new trajectory  representation  reflects  the  clearance
delivered by the controllers,  which in turn could help us
to  easily  identify  the  holding  pattern,  recognize  landing
direction,  determine  the  landing  modes,  and  distinguish
the entry fixes.  In return,  the distinguished controller  in-
tents can bring an advantage to the arrival flight time es-
timation.  By  using  the  DTW  measurement  and  k-means
or  DBSCAN algorithms,  the  semantic  trajectory  cluster-
ing  approach  can  fulfill  the  task  of  grouping  the  arrival
trajectories. Finally, from the grouped trajectories, we can
identify  the  controller  intention  and  improve  the  preci-
sion of arrival flight time estimation.

Section  2  presents  the  new  trajectory  representation
method  and  the  corresponding  essential  characteristics.
Trajectory  similarity  measurement  and  clustering  algori-
thms  are  described  in  Section  3.  The  results  and  discus-
sion of real case studies are summarized in Section 4. The
concluding remarks are provided in Section 5. 

2. Trajectory representation of arrivals
 

2.1    Previous trajectory representation

TR = {t r1; t r2; · · · ; t ri; · · · ; t rm} t ri (i ∈
{1,2, · · · ,m} t ri=

(
pi

1, pi
2, · · · ,
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L(i)

)
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j pi

j = t, l, {a}

t

t

Aircraft  trajectories,  which  could  be  decoded  from  sur-
veillance radar data or automatic dependent surveillance-
broadcast (ADS-B), are often represented by point sequen-
ces  [1],  including  the  recorded  time,  aircraft  position,
speed, heading, and data related to the flight plan. For m
aircraft  trajectories,  we  define  them  as  a  set TR,  where

.  Each  trajectory  
 consists of a series of points: 

,  where  represents the number of points of the
ith trajectory. Each point  is a tuple: , which
describes the aircraft position (l,  location) and its corres-
ponding attributes (a, attributes) at a specific time . The
position  information  consists  of  longitude,  latitude,  and
altitude  of  such  aircraft  at  the  specific  time ,  while  the
attributes may include the heading, speed, distance-to-go
(DTG) (the remaining distance), and the like.

t ri

(i ∈ {1,2, · · · ,m})
t ri =

(
pi

1, pi
2, · · · , pi
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)
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L (i)

The  original  aircraft  trajectories  are  made  up  of  too
many  points,  which  will  cause  computational  burden  is-
sues  during  trajectory  clustering.  We  can  implement  the
data compression method, like the Douglas-Peucker algo-
rithm,  to  simplify  the  trajectories.  After  removing  those
points  from  a  nearly  straight  line,  each  trajectory 

 could  be  represented  by  much  fewer
points: ,  where  is  less  than

 and  affected  by  the  threshold  parameter  of  the
Douglas-Peucker algorithm.
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Besides  representing  the  aircraft  trajectory  by  actual
points,  we  can  also  extract  features  from  any  given  tra-
jectory.  For  example,  we  can  focus  on  the  attributes  of
any arrival aircraft when passing a particular fix. Besides,
we  can  utilize  the  statistical  values  of  the  trajectory’s
attributes, like averages and/or standard deviations of lon-
gitude,  latitude,  altitude,  speed,  and  heading  for  arrival
aircraft.  Afterward,  the original  trajectory is  transformed
into distinct feature space, which represents complement-
ary characteristics for the trajectory. Furthermore, feature
selection and extraction process can be applied for redu-
cing the irrelevant and redundant features. 

2.2    The proposed novel trajectory representation

In  the  civil  aviation  domain,  the  aircraft  trajectory  pos-
sesses some unique characteristics. Firstly, during the en-
route  phase,  each  aircraft  should  follow  the  predesigned
air  route.  Secondly,  during  the  operation  within  TMA,
many departure or arrival aircraft  will  fly along with the
published standard departure or arrival procedures. Thirdly,
during  the  operation  within  the  TMA in  rush  hour,  each
aircraft should follow the instructions given by air traffic
controllers  (ATCOs),  while  “change heading” is  a  com-
mon  instruction.  Therefore,  not  only  in  the  predesigned
air routes, published standard instrument departures (SIDs)
or standard terminal arrival routes (STARs) but also from
the instructions by ATCOs, the headings of aircraft play a
significant role.

The Routes, SIDs, and STARs, defined by Navaids or
Waypoints, could be represented by distance and course.
During the flight, the pilots try to manipulate the aircraft
to  ensure  the  track  is  following  the  course  by  changing
heading.  As  a  result,  the  heading  is  one  of  the  most  in-
formative attributes.  Meanwhile,  during the TMA opera-
tion in rush hour,  ATCOs tend to prefer  heading change
instructions for sequence establishment and maintenance,
which could help them to accurately monitor the aircraft
movements and accordingly improve their situation aware-
ness. Given this, the heading attribute should be paid more
attention. More specifically, most of the arrival aircraft fi-
nally keep the same direction, i.e., nearly the same head-
ing, due to landing on a single runway or paralleled mul-
tiple  runways.  Moreover,  the  heading  could  also  be  de-
scribed as the fluctuations with the different DTGs, which
measures  the  distance  which  should  be  traveled  by  ar-
rival  aircraft  before  landing.  Therefore,  the  trajectory  of
any  arrival  aircraft  could  be  represented  by  fluctuated
headings  along  with  the  DTGs,  as  shown in Fig.  1.  The
headings  during  the  final  approaching  and  landing  are
located at the far left of Fig. 1(b), where the correspond-
ing  DTGs  are  close  to  zero.  During  such  a  flight  phase,
the  heading  is  about  350°,  since  the  aircraft  is  going  to

land on Runway 35. When the aircraft is passing the entry
fix  as  shown  in Fig.  1(a),  the  heading  is  around  100°,
which is located at the far right of Fig. 1(b).
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Fig. 1    Arrival aircraft with different representation methods
 

As mentioned above, the heading is an important at-
tribute, which can represent the routes, procedures, and
instructions.  However,  the  heading  is  not  a  monoto-
nous value, and its range is between 0° to 360°. Some-
times, the heading value cannot reflect the actual flight
situation.  Therefore,  the  heading  needs  to  be  adjusted
by considering left- or right-turn, as the following steps.

(i)  Find the  difference in  heading between two conse-
cutive points.

∆ψi
j = ψ

i
j−ψi

j+1, j = 1, · · · ,L (i)−1 (1)

L(i)
where j is  the particular  point  of  the ith trajectory and

 represents the total number of points of the ith tra-
jectory.

∆ψ(ii) Modify  according to the left- or right-turn.
∆ψi′

j = ∆ψ
i
j−360◦, ∆ψi

j > 180◦

∆ψi′
j = ∆ψ

i
j+360◦, ∆ψi

j < −180◦

∆ψi′
j = ∆ψ

i
j, otherwise

(2)
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∆ψi′
j ∆ψi

jwhere  is the modified value of .
(iii) Calculate the adjusted heading.
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i
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(iv)  Resample  trajectory  at  equal  flight  distance  inter-
vals.
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where ,  and  represent the ith trajectory’s adjus-
ted  heading,  DTG  and  resampled  adjusted  heading, 
is  the  size  of  the  distance  interval,  =  {0,1,2,···,

}.  Now,  denotes  the ith  trajectory  in  the  new
representation.

(v)  Apply  a  low  pass  filter  for  noise  reduction,  since
each trajectory is a bit noisy.

Eventually, Fig.  2 provides  the  original  and  adjusted
heading according to the corresponding DTGs. The adjust-
ment could not only eliminate the leaping heading but also
reflect  the  pilot’s manipulation  of  aircraft  by  making  a
left- or right-turn. The increase of heading means a right-
turn and vice versa.
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Fig. 2    Illustration of the original and adjusted heading
 
 

2.3    Essential characteristics of novel representation

Heading  vs.  DTG,  can  represent  the  routes,  procedures,
and instructions. Moreover, such novel representation for
arrival aircraft possesses several other essential characte-
ristics, as shown in Fig. 3.
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Fig. 3    Previous and proposed representation of arrival aircraft
 

First of all, the proposed trajectory representation could
discriminate  the  arrival  trajectories  via  different  entry
fixes. AC#1a and AC#2a come from different entry fixes,
and the adjusted headings of these two aircraft are far from
each other at the entries.

Secondly, the proposed trajectory representation could
differentiate the landing directions via the same entry fix.
It  could  be  seen  in Fig.  3 that  AC#2a  and  AC#2c  come
from  the  same  entry  fix  while  landing  on  the  opposite
runways. The adjusted headings of these two aircraft dif-
fer approximately 180°, as shown in the far left of Fig. 3(b).

Thirdly,  the  proposed  trajectory  representation  could
distinguish  the  landing  modes  of  arrival  trajectories  via
the same entry fix and on the same runway. From Fig. 3(a),
we  could  find  that  AC#2a  makes  continuous  left-turn
while AC#2b makes continuous right-turn, during the ap-
proaching phase. Correspondingly, in Fig. 3(b), the adjus-
ted heading of AC#2a is decreasing while that of AC#2b
is increasing.

Last  but  not  least,  the  proposed  trajectory  representa-
tion could identify whether the holding pattern is used or
not. Taking AC#1a and AC#1b as examples, there is 360°
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separated between their adjusted headings at the entry fix,
as shown in Fig. 3(b). 

3. Trajectory clustering of arrivals
 

3.1    Trajectory similarity

For  those  arrival  aircraft,  via  the  same  entry  fix,  on  the
same runway, and using the same landing mode, the pro-
posed representation method could attribute significantly
to recognizing the flight patterns from the different trajec-
tories.

We  take  AC#1  and  AC#2  as  examples,  as  shown  in
Fig.  4.  AC#1  generally  follows  the  published  STAR,
which  consists  of  Downwind  Leg,  Base  Leg,  and  Final.
On  the  contrary,  AC#2  seems  to  follow  the  instructions
delivered by ATCO, who guides AC#2 direct to the Base
Leg  and  cut  into  the  Final  earlier  than  AC#1.  These  are
basic instructions within TMA and denoted as “short-cut”
and “parallel offset.” Such instructions are clearly reflec-
ted in the corresponding representation of the trajectories,
as shown in Fig. 4 (b). The “parallel offset” is displayed
as the horizontal shift about 30 km distance from landing,
while the “short-cut” is shown as the vertical shift around
50 km distance from landing.
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Fig. 4    Illustration of flight patterns for arrival aircraft

To measure the dissimilarity between these two trajec-
tories,  DTW  is  used  and  the  schematic  diagram  is  pro-
vided  in Fig.  5.  Therefore,  a  similarity  matrix  could  be
obtained by calculating each pair of all those trajectories.
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Fig. 5    Schematic diagram of DTW distance between two trajectories
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where  represents  the  absolute  values  between

trajectory points  and ,  and  represent the

trajectory segments of  and  after removing their first
trajectory points, respectively. 

3.2    Trajectory clustering

Each trajectory could be represented as a sample with the
same  size  by  the  obtained  similarity  matrix.  We  could
take  advantage  of  all  kinds  of  standard  clustering  meth-
ods  for  trajectory  clustering.  In  this  paper,  k-means  and
DBSCAN  algorithms  are  implemented  to  cluster  the  ar-
rival  trajectories.  The  whole  processes  are  illustrated  in
Fig. 6, which consists of the following steps.
Step  1　 Acquire the raw data, radar data or ADS-B data.
Step  2　 Obtain  the  trajectories,  including  call  sign,

position, speed, heading, and flight plan-related informa-
tion.
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Step  3　Represent  the  obtained  trajectories  by  adjus-
ted heading and DTGs by using (1)−(4).
Step  4　Obtain  the  particular  set  of  trajectories  shar-

ing the following characteristics:
(i) Coming via the same entry fix;
(ii) Landing in the same direction;
(iii) Using the same landing mode;
(iv) Eliminating the trajectories of holding aircraft.
Step  5　Calculate  the  similarity  based  on  DTW  dis-

tance by using (5).
Step 6　Implement clustering algorithms to obtain the

grouped trajectories.
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trajectories
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As  for  DBSCAN,  two  parameters  should  be  prede-
fined: ε and MinPts, where ε is the size of neighborhood,
and MinPts is the minimum number of points required to
form a cluster. For a given trajectory , if there are more
than MinPts trajectories  in  its  neighborhood  (

),  a  new  cluster  is  built  and  all  trajectories  in  its
neighborhood are considered to be the same group. When
no  trajectory  could  be  added  to  any  cluster,  the  DB-

SCAN terminates.
As  for  k-means,  each  trajectory  is  represented  by  a

vector based on (5). The cluster number k should be pre-
defined, and the algorithm is performed as follows:
Step 1　Choose k trajectories as initial centroids.
Step  2　Compute  Euclidean  distance  of  all  trajecto-

ries to each centroid.
Step 3　Assign trajectories to different groups if such

reassignment decreases the indicator of the within-cluster
metric.
Step 4　Average trajectories in each cluster to obtain k

new centroids.
Step  5　Repeat  Step  2  to  Step  4  until  the  cluster  as-

signments  do  not  change,  or  the  number  of  iterations
reaches its predefined value.

The  clustered  trajectories  could  reflect  the  prevail
tracks flown by the arrival  aircraft.  The potential  advan-
tages  of  such  prevail  tracks  mining  are  twofold.  One  is
assisting  us  to  distinguish  the  arrival  flight  patterns,
which in turn could identify the controller’s intent  while
delivering instructions.  The other  is  helping us  to  obtain
more composite distribution of flight time since different
arrival aircraft within each group share some common cha-
racteristics.  Therefore,  in  this  paper,  the  evaluation  pro-
cess will not only focus on the flight patterns but also pay
attention to the distribution of flight time based on kernel
density estimation (KDE). 

4. Case studies
 

4.1    Data preparation

We take the trajectories of aircraft which landed on Shang-
hai  Pudong International  Airport  (ZSPD) as examples in
this paper.

The raw data used in this paper is from radar recording,
and each record of trajectories contains the following in-
formation: time stamp, call sign, heading, latitude, longi-
tude,  pressure  altitude,  etc.  Here,  each  record  with  the
same call sign belongs to a particular arrival aircraft. The
value of DTG needs to be calculated based on the latitu-
de/longitude and the universal transverse mercator (UTM)
projection.

Fig.  7(a) and Fig.  7(b) present  the  radar  trajectories
about four rush hours during two weeks’ operations with-
in  Shanghai  TMA. Fig.  7(a) provides  all  the  trajectories
of  departure,  arrival,  and  overfly  aircraft  operated  in
Shanghai TMA. Fig. 7(b) focuses on the arrival trajecto-
ries  landing  on  ZSPD,  which  also  include  four  entering
fixes (SASAN, BK, MATNU, and DUMET). Since those
are the operations during rush hours, the ATCOs need to
rely  on  radar  vectoring  for  establishing  and  maintaining
the landing sequence.  As a  result,  the  arrival  trajectories
are disorganized and haphazard. 
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Fig. 7    Illustration of aircraft trajectories

  
4.2    Trajectory clustering

ψ
⌢

θ

Firstly, we apply (1)−(4) for the heading  and DTG D of
arrival  trajectories  and  obtain  the  new  representation ,
with which the aircraft  of implementing the holding pat-
tern are eliminated.  The trajectory resampling interval ω
is set as 2 km, which can reduce the number of trajectory
points  while keeping the information of  the trajectory as
much as possible.

Secondly,  we  discriminate  the  particular  trajectories,
as  shown  in Fig.  8,  with  the  same  landing  direction  (in
Fig.  8(b),  there  exist  two  segments  when  DTG  is  zero),
via  the  same  entry,  and  by  the  same  landing  mode  (in
Fig.  8(b),  there  exist  several  branches  at  the  end  of  the
DTG  axis  with  the  same  landing  direction).  In  this  pro-
cess,  the  discriminating  task  could  be  easily  fulfilled  by
only  using  the  adjusted  headings.  From Fig.  8  (d),  we
could  find  that  the  proposed  heading  adjustment  can
identify  different  landing  modes.  By  taking  aircraft  via
SASAN as examples, the adjusted headings of two land-
ing modes (denoted by green and cyan colors) are differ-
ent.
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Thirdly,  we  chose  the  arrival  trajectories  via  SASAN
and DUMET as candidates for trajectory clustering, since
those trajectories contain more flight patterns. We calcu-
late  the  similarity  matrix  based  on  DTW  distance,  and
then  implemente  k-means  and  DBSCAN  algorithms  for
clustering.

Finally,  the  clustered  results  are  shown  in Figs.  9−12
based  on  different  clustering  algorithms  and  via  particu-
lar entry fixes, BK, and SASAN. When implementing the
DBSCAN algorithm, the algorithm parameters should be
appropriately predefined, including the radius of the neigh-
borhood ε and the minimum number of neighbors MinPts.
In the case of BK entry, ε = 240 and MinPts = 6.  In the
case of SASAN entry, ε = 140 and MinPts = 8. When im-
plementing the k-means algorithm, the number of clusters
is predefined as five due to the comparison purpose with
the  DBSCAN  algorithm.  Every  figure  consists  of  each
group of trajectories (a) to (e), all clustered arrival traject-
ories (f), the whole heading representation (g), and flight

time and distance distributions (h) and (i). Moreover, the
figures for each group are arranged in order of flight dis-
tances.

From Fig. 9 to Fig. 12, several interesting findings are
summarized  as  follows.  On  the  one  hand,  the  proposed
methods of trajectory representation and clustering could
successfully  partition  the  arrival  trajectories  into  differ-
ent groups. Each group of trajectories shares the same fli-
ght pattern, for examples: “short-cut” pattern in Fig. 9 (a)
and Fig. 10 (a); “dog-leg” pattern in Fig. 9 (b) and Fig. 9 (d),
Fig. 10 (b) and Fig. 10(d); and “parallel offset” pattern in
Fig. 11 (d) and Fig. 12 (d). Furthermore, after partitioning,
the flight time and distance distribution are more compact.
On the  other  hand,  DBSCAN is  a  competitive  candidate
algorithm in the clustering domain since it could identify
the outliers.  However,  in  our  attempts,  the DBSCAN al-
gorithm  sometimes  treat  the  potential  flight  pattern  into
outliers. Fig.  10 (e) is a case in point,  in which the right
“dog-leg” pattern is wrongly classified as outliers. 
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Fig. 9    Illustration of clustering results via BK fix by the k-means algorithm
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Fig. 10    Illustration of clustering results via BK fix by the DBSCAN algorithm
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Fig. 11    Illustration of clustering results via SASAN fix by the k-means algorithm
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4.3    Results and discussion

One purpose of arrival trajectory clustering is to make the
flight time within TMA more compact, so we present the
flight time distribution of each cluster, including the total
trajectories, as shown in Fig. 13.

The  probability  densities  of  flight  time  are  obtained
by using the  kernel  density  estimation method,  in  which

Gauss kernel is adopted. It should be noted that the proba-
bility  density  in Fig.  13 is  based  on  the  amount  of  each
group. Moreover, Fig. 13 only provides the results by the
k-means algorithm. For comparison reasons, Table 1 lists
the mean/median values, lower/upper limits, and intervals
of 95% and 75% confidence levels for the flight time dis-
tribution.
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Fig. 13    Illustration of flight time distribution of each cluster by the k-means algorithm

 

Table 1    Statistical analysis of flight time distribution min

Fix Group Mean Median
Confidence level (95% ) Confidence level (75%)

Lower limit Upper limit Interval Lower limit Upper limit Interval

BK

Total 16.3 16.1 13.4 19.3 5.9 14.6 18.1 3.5
C1 15.6 15.5 13.7 17.4 3.7 14.5 16.6 2.1
C2 16.6 16.5 14.5 18.6 4.1 15.4 17.7 2.3
C3 18.0 18.1 15.9 20.1 4.2 16.8 19.2 2.4
C4 20.8 20.6 17.7 23.8 6.1 19.0 22.6 3.6
C5 19.5 19.8 16.9 22.0 5.1 18.0 21.0 3.0

SASAN

Total 21.3 21.0 17.4 25.2 7.8 19.0 23.6 4.6
C1 19.6 19.4 16.4 22.7 6.3 17.7 21.4 3.7
C2 21.1 20.9 18.2 24.1 5.9 19.4 22.9 3.5
C3 20.7 20.5 17.8 23.6 5.8 19.0 22.4 3.4
C4 23.5 23.7 20.7 26.3 5.6 21.8 25.1 3.3
C5 24.1 24.5 20.3 27.9 7.6 21.9 26.3 4.4
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From Fig.  13 and Table  1,  we  could  find  that  on  the
one hand the mean or median flight time in each cluster is
different from the value of the total trajectories, where the
average flight time is 20.8 min for arrival aircraft via BK
fix  in  Group C4 while  16.3  min for  the  total.  There  is  a
deviation of 4.5 min. On the other hand, most of the inter-
vals  in  each  cluster  are  smaller  than  the  corresponding
value of the total trajectories, which means that the clus-
tered results could produce more compact flight time dis-
tribution.

Furthermore, the random forest (RF) regression method
is adopted to carry out ETA prediction. We design a fea-
ture set  for the regression task,  such as entry states,  cur-
rent operation situations, historical flight time, and so on.
The simulation results are shown in Fig. 14.
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Fig. 14    Mean absolute error (MAE) of ETA prediction
 

The blue line shows that the MAE is about 83 s when
using the RF method based on the whole data set.  In or-
der to reduce the MAE of ETA prediction, the total trajecto-
ries are clustered into different patterns, for each pattern,
there  is  an  individual  RF  trained  for  ETA  prediction.  If
the classification purity reaches 100%, the MAE of ETA
prediction could be reduced to  66 s,  denoted by the yel-
low  line  in Fig.  14.  Such  grey  dots  line  represents  the
MAE of ETA prediction according to different classifica-
tion purities, while the pink line indicates that the higher
the  classification  purity,  the  smaller  the  MAE  of  ETA
prediction.  Consequently,  through  our  proposed  method,
we could estimate the flight time more reliably.

Subsequently,  one  example  will  be  given  to  demon-
strate  why  the  proposed  representation  and  DTW  mea-
surement  are  able  to  group  the  trajectories  into  different
clusters, which could indicate the different flight patterns
or  air  traffic  controllers’  intents.  Suppose there is  a  run-
way  (RWY09),  as  shown  in Fig.  15(a),  four  arrival  air-
craft  follow  different  instructions  delivered  by  ATCOs
(controllers ’  intents)  to  establish  and  maintain  the  land-
ing sequence, including standard route, “short-cut”“dog-

leg”, and “parallel-offset”. Fig. 15(b) presents the corres-
ponding  representation  of  the  four  kinds  of  trajectories.
Finally,  the  similarity  measurements  based  on  DTW are
listed in Table 2 between the different flight patterns.
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Fig. 15    Illustration of different flight patterns
 
 
 

Table 2     Similarity measurements based on DTW between differ-
ent flight patterns

Flight pattern Standard Short-cut Dog-leg Parallel-offset

Standard 0.00 130.00 358.86 21.50

Short-cut 130.00 0.00 317.50 129.62

Dog-leg 358.86 317.50 0.00 322.93

Parallel-offset 21.50 129.62 322.93 0.00
 

The  similarity  measurements  listed  in Table  2 indi-
cate  that  the  proposed  trajectory  representation  method
has a positive impact on arrival trajectory clustering. It is
due  to  the  fact  that  the  dissimilarities  between the  diffe-
rent  flight  patterns  could  be  easily  captured  through  ex-
erting  DTW  measurement  on  the  new  representation  of
these  arrival  trajectories.  Such  characteristics  could  help
us distinguish the typical flight patterns or air traffic con-
trollers’ intents during arrival operation. 
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5. Conclusions
This  paper  presents  a  trajectory  representation  and  clus-
tering method for arrival aircraft to get access to a better
understanding  of  the  real  operation  and  reliable  flight
time  estimation.  We  substitute  the  distance-heading  rep-
resentation for the longitude-latitude representation since
the proposed one could better describe the controller’s in-
tention, which in turn mostly defines a particular aircraft’s
trajectory. Furthermore, based on the proposed represent-
ation  method,  we  develop  a  semantic  trajectory  cluster-
ing approach, which could not only easily distinguish the
landing  direction,  landing  mode,  entry  fix,  and  holding
pattern,  but  also  recognize  the  particular  flight  patterns.
The  case  studies  of  the  real  operation  in  ZSPD  validate
the  effectiveness  and  efficiency  of  our  semantic  traject-
ory  clustering  approach.  We separate  the  trajectories  ac-
cording  to  their  flight  pattern  and  find  that  the  distribu-
tion of flight time of different flight patterns is diverse. In
other words, we establish the relation between flight time
and  flight  patterns,  since  the  airspace  situation  deter-
mines the flight  time of  arrival  aircraft  within the TMA.
Such  efforts,  in  return,  could  help  to  improve  the  per-
formance of ETA prediction. Moreover, that semantic tra-
jectory clustering makes it possible for us to describe the
airspace situation with flight patterns.

However, some limitations are worth noting. Although
there are some interesting work and impressive results in
this study, we address only a 2-D spatial clustering problem
in  the  arrival  and  approaching  scenarios.  Future  work
should, therefore, include the temporal information under
the scenarios of  inbound and outbound traffic within the
TMA.
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