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Abstract: To  address  the  problem  of  the  weak  anti-noise  and
macro-trend extraction abilities of the current methods for identi-
fying  radar  antenna  scan  type,  a  recognition  method  for  radar
antenna scan types based on limited penetrable  visibility  graph
(LPVG) is proposed. Firstly, seven types of radar antenna scans
are analyzed, which include the circular scan, sector scan, heli-
cal  scan,  raster  scan,  conical  scan,  electromechanical  hybrid
scan and two-dimensional electronic scan. Then, the time series
of  the  pulse  amplitude  in  the  radar  reconnaissance  receiver  is
converted into an LPVG network, and the feature parameters are
extracted.  Finally,  the  recognition  result  is  obtained  by  using  a
support  vector  machine  (SVM)  classifier.  The  experimental  re-
sults show that the recognition accuracy and noise resistance of
this  new  method  are  improved,  where  the  average  recognition
accuracy for radar antenna type is at least 90% when the signal-
to-noise ratio (SNR) is 5 dB and above.

Keywords: antenna scan type, limited penetrable visibility graph
(LPVG), support vector machine (SVM), cognitive electronic war-
fare.
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1. Introduction
Since a radar antenna produces electromagnetic radiation,
the  antenna’s scan  characteristics  can  be  used  to  locate
the  radar  transmitter.  More  importantly,  the  accurate  re-
cognition  of  antenna  scan  type  is  a  crucial  basis  for  un-
derstanding  the  radar  transmitter’s operating  status  and
evaluating  potential  threats  [1].  The  reason  is  that  when
searching or tracking a target, the antenna beam scans the
designated  airspace  in  different  ways.  Therefore,  the  ac-
curate recognition of the antenna scan type can be used to
help  electronic  reconnaissance  system  to  perform  real-
time  analysis  of  unknown  radar  information  that  is  ac-
quired and intercepted [2]. In other words, improving the
recognition accuracy of the antenna scan type is of great
significance  for  enhancing  the  cognitive  ability  of  elec-

tronic warfare system.
Initially,  the  identification  of  antenna  scan  type  relied

on the operators’ experience and was accomplished by us-
ing headphones and stopwatches.  With the technological
development,  most  modern  recognition  methods  of  an-
tenna scan type begin to perform automatic classification
and  recognition  based  on  the  feature  parameters  of  the
signals intercepted by a reconnaissance receiver.  For ex-
ample, Ayzgok et al. [3] extracted parameters such as the
main lobe flatness ratio, the peak value of the main lobe,
and the amplitude difference, and combined them with a
decision  tree  classifier  for  recognition.  When the  signal-
to-noise ratio (SNR) was 20 dB, the recognition accuracy
reached 94%.  However, the decision tree classifier relies
on the expert’s experience to set classification thresholds,
which will introduce human error. Li et al. [4] firstly dis-
tinguished mechanical  scans  from electronic  scans  using
the largest main lobe feature and then using such features
as the kurtosis, number of main lobes, and main lobe ampli-
tude  difference  to  discriminate  among  mechanical  scan
types.  When  the  SNR  was  10  dB,  the  recognition  accu-
racy reached 85%. Although this method used the classi-
fication of support vector machines (SVMs) to avoid hu-
man error,  it  extracted eigenvalues directly from the sig-
nal, as in [3], and thus could not avoid noise interference.
Similarly,  references  [5]  and  [6]  focused  on  proposing
new feature parameters and increasing the recognition ac-
curacy  by  increasing  the  number  of  feature  dimensions,
and no significant improvement was obtained in the anti-
noise  performance.  Therefore,  in  [7],  a  novel  method  to
recognize  the  antenna  scan  type  based  on  graphic  signal
processing  was  proposed,  which  described  the  similarity
of time series in terms of graphic features and used classi-
fiers such as backward propagation (BP) neural networks
and SVM for recognition.  When the SNR was 8 dB, the
recognition  accuracy  reached  93%.  However,  the  tradi-
tional visibility graph model used in this method was sus-
ceptible to noise, and there were still problems with com-
pactness and long-range connectivity.
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This paper proposes a radar antenna scan type recogni-
tion  method  based  on  limited  penetrable  visibility  graph
(LPVG)  [8].  Taking  advantage  of  the  strong  anti-noise
ability, compact network connections, and multiple long-
range connections of the LPVG model, the recognition of
the antenna scan type is performed with the SVM classifi-
er. The results of simulation experiments show that when
the  SNR is  5  dB and above,  the  average  recognition  ac-
curacy is at least 90%. 

2. Analysis of radar antenna scan type
The  circular  scan,  sector  scan,  helical  scan,  raster  scan,
conical  scan  and  phased  array  scan  are  six  common  an-
tenna  scan  types.  For  different  scan  types,  the  relation-
ship  between the  captured  pulse  amplitude  (PA)  and the
time of arrival (TOA) is also different, which is the theo-
retical basis for recognizing the antenna scan type. 

2.1    Circular scan

A circular scan is a classic mechanical antenna scan type
that can provide azimuth angle and distance information.
Circular  scans  are  often  used  in  remote  search  radar  or
the  search  mode  of  tracking  radar.  Since  a  circular  scan
does not provide an elevation angle, a wide range of eleva-
tion angles is required in the search process. At the same
time,  to  improve  the  azimuth  angle  resolution,  a  narrow
beam of azimuth angle is often used. During the circular
scan, the detected PA is expressed [9] as

Apg = Ap ·F
(
θg

) · ∣∣∣∣sin
(
π

TC
t
) ∣∣∣∣ ·Cg (1)

g g Ap

F(θg)
TC

Cg

where  is the th pulse,  is the standard PA at the in-
terception point of the beam,  is the gain function’s
value  of  the  circular  scan’s horizontal  beam,  is  the
period of the circular scan, and  is the system stability
coefficient of the intercepted circular scan pulse. Fig. 1(a)
shows the schematic diagram of a circular scan with nor-
malized length. Fig. 1(b) shows the PA versus TOA graph
for the main beam of a circular scan.
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Fig. 1    Circular scan
 
 

2.2    Sector scan

A sector  scan  is  similar  to  a  circular  scan,  except  that  a
sector  scan  operates  only  within  a  specific  angle  range
that  can  meet  the  requirements  of  fast  scanning.  Sector
scans  include  two  types,  i.e.,  unidirectional  sector  scan
and  bidirectional  sector  scan.  Taking  the  unidirectional
sector  scan  as  an  example,  the  detected  PA is  given  be-
low [9]:

Ap j = Ap ·F
(
θ j
) · [∣∣∣∣∣sin

(
π

T s f
t
) ∣∣∣∣∣+ ∣∣∣∣∣sin

(
π

T s f
t−Ta

) ∣∣∣∣∣] ·C j (2)

j j Ap

F(θ j)
T s f

Ta

C j

where  is the th pulse,  is the standard PA at the in-
terception point of the beam,  is the gain function’s
value of the sector scan’s horizontal beam,  is the pe-
riod  of  the  sector  scan,  is  the  retrace  time  interval
needed for the beam to reach the limited position, and 
is  the  system stability  coefficient  of  the  intercepted  sec-
tor scan pulse. Fig. 2(a) shows the schematic diagram of a
sector  scan  with  normalized  length. Fig.  2(b) shows  the
PA versus TOA graph for the main beam of a sector scan.
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Fig. 2    Sector scan
 
 

2.3    Helical scan

A helical scan is another commonly used radar scan type.
A helical  scan  performs  a  rapid  circular  scan  in  the  azi-
muth with a slowly rising elevation angle. When the eleva-
tion angle  reaches  the peak,  it  quickly drops back to  the
starting point and restarts the scan. Depending on the ope-
rating mode, the helical scan can provide information on
both the azimuth angle and the elevation angle of the de-
tected radar. The signal power detected during the helical
scan is expressed [9] as

Pr=
PtGtGrλ

2

(4π)2R2
r

=

PtGtGrλ
2

(4π)2(2r2−2r2 cosθ+ r2 tanφ)
(3)

Pt Gt

Gr λ

Rr

θ

φ

θ φ

where  is  the  radiation  power  of  the  radar,  is  the
gain of the radar transmitting antenna in the receiver dir-
ection,  is the gain of the receiver’s antenna,  is the wave-
length of the radar signal,  is the distance between the
radar  and  the  receiver,  is  the  angle  between  the  radar
beam and the axis,  is the angle between the radar beam
and the xoy plane, and r is the distance between the radi-
ation source and the reconnaissance equipment. Since the
signal  power  is  the  square  of  the  signal  amplitude,  it  is
easy  to  determine  the  signal  amplitude.  It  can  be  seen
from  (3)  that  the  variation  of  the  amplitude  of  a  helical
scan  signal  depends  on  the  relationship  between  the
angles  and , and also the helical scan period. Fig. 3(a)
shows the schematic diagram of a helical  scan with nor-
malized length. Fig. 3(b) shows the PA versus TOA graph
for the main beam of a helical scan.
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Fig. 3    Helical scan
  

2.4    Raster scan

θ ∈
ϕ ∈

θ φ

A raster scan progressively scans an angular area by cover-
ing it  with parallel-line paths. It  can provide information
on the  azimuth  angle  and the  elevation  angle,  and it  has
the characteristics of a fast scan in the azimuth angle and
a slow scan in  the  elevation angle.  The signal  power re-
ceived during  a  raster  scan  is  the  same as  that  shown in
(3).  Taking  a  raster  scan  with  azimuth  angles  (0°,
90°) and elevation angles  0°, 20°, 40°, 60° as an ex-
ample,  and  in (3) can be expressed [7] as

L = 2πr
θ

360◦
, (4)



θ=
vt

2πr
×360◦ ,φ = 0◦ ;0 ⩽ vt ⩽ L

θ=
vt

2πr
×360◦−90◦,φ = 20◦ ; L ⩽ vt ⩽ 2L

θ=
vt

2πr
×360◦−180◦,φ = 40◦ ;2L ⩽ vt ⩽ 3L

θ=
vt

2πr
×360◦−270◦,φ = 60◦ ;3L ⩽ vt ⩽ 4L

(5)

vwhere  is the raster scan rate, L is the length of the ras-
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rter  scan,  and  is  the distance between the radar and the
receiver. Fig .4(a) shows the schematic diagram of a ras-
ter  scan with normalized length. Fig.  4(b) shows the PA
versus TOA graph for the main beam of a raster scan.
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Fig. 4    Raster scan
  

2.5    Conical scan

A  conical  scan  is  usually  used  for  target  tracking.  The
amplitude  of  the  signal  received is  closely  related  to  the
relative positions of the radar and the receiver. When the
receiver  is  located  in  the  center  of  the  cone,  the  amp-
litude of the signal received is similar to that in a circular
scan, and the signal amplitude is the largest. When the re-
ceiver  is  located  elsewhere  in  the  cone,  the  signal  amp-
litude  is  limited  by  the  cone  radius.  For  a  conical  scan,
the detected PA is expressed [9] as

Aph = Ap ·F(θh) ·
∣∣∣∣∣sin

(
π

T sb
t
) ∣∣∣∣∣ ·Ch (6)

h h Ap

F(θh)
T sb

Ch

where  is the th pulse,  is the standard PA at the in-
terception point of the beam,  is the gain function’s
value  of  the  conical  scan’s horizontal  beam,  is  the
period of the conical scan, and  is the system stability
coefficient of the intercepted conical scan pulse. Fig. 5(a)

shows the schematic diagram of a conical scan with nor-
malized  length. Fig.  5(b) shows  the  PA  versus  TOA
graph for the main beam of a conical scan.
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Fig. 5    Conical scan
  

2.6    Phased array scan

θ

1/cosθ

Phased array radar controls the feeding phase of each ra-
diating element of an antenna to rapidly change the beam
pointing  [10].  A  phased  array  scan  is  different  from  a
mechanical  scan  in  that  its  signal  amplitude  is  discrete
and cannot be described by a unified expression. The rule
governing  the  phased  array  scan  is  that  the  amplitude
jump  between  adjacent  beams  located  near  the  normal
direction  must  be  small.  As  the  azimuth  angle  of  the
scan  increases,  the  beam  jump  increases  according  to

. Moreover, due to the flexibility of the phased ar-
ray  scan,  radar  signals  with  multiple  repetition  periods
can  be  transmitted  toward  the  key  tracking  targets  or  in
the key search directions, that is, the dwell time of the an-
tenna  beam  in  these  directions  increases  to  achieve  so-
called “burn-through”.

Phased array radar composed by linear arrays only has
a two-dimensional scan function, that is, it only provides
the  azimuth  angle.  To  achieve  a  three-dimensional  scan,
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θ φ

θ φ

an electromechanical hybrid scan (also known as one-di-
mensional electronic scan) or two-dimensional electronic
scan  is  required  [4].  The  electromechanical  hybrid  scan
uses a combination of a phased array elevation angle scan
and a circular azimuth angle scan for target search, track-
ing, and measurement. During a hybrid scan, the azimuth
angle  changes  uniformly,  and  the  elevation  angle 
changes  randomly.  A  two-dimensional  electronic  scan
obtains  three-dimensional  information  by  expanding  the
array,  where  the  azimuth  angle  and  elevation  angle 
both  change  randomly. Fig.  6(a) and Fig.  6(b) show the
PA versus TOA graph for the main beam of electromecha-
nical  hybrid  scan  and  two-dimensional  electronic  scan,
respectively.
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In summary, because radar antenna beams are directed
toward  different  spaces  over  time,  the  received  signal
power changes, resulting in PA-TOA graphs with differ-
ent shapes.  The difference between the mechanical scan,
electromechanical hybrid scan and two-dimensional elec-
tronic  scan  is  that  the  beam  pointing  changes  continu-
ously in the mechanical scan, while it changes flexibly in
the  electromechanical  hybrid  scan  and  two-dimensional
electronic scan.  In contrast,  the change in the PA of dif-
ferent beam positions in the mechanical scan is not signi-

ficant compared with that in the other two scans. Further-
more, the PA of the two-dimensional electronic scan does
not  change  with  time.  In  contrast,  the  electromechanical
hybrid  scan  retains  the  characteristics  of  the  mechanical
scan  and  one-dimensional  electronic  scan,  and  the  PA
changes significantly with the TOA.

For different mechanical scan types, the following con-
clusions  can  be  drawn.  The  PA-TOA graph of  a  conical
scan has good continuity, while the other mechanical scan
types use intermittent pulses. Unlike the conical scan, the
PA-TOA graphs  of  the  circular  scan and the  sector  scan
only  have  one  main  lobe  and  no  peak  difference,  while
other  mechanical  scan  types  generally  have  more  than
two main lobes and have obvious peak differences. Com-
pared  to  the  conical  scan,  the  sector  scan  and  the  raster
scan  have  shorter  main-lobe  time  intervals  due  to  their
smaller azimuth range, while other mechanical scan types
have longer ones. In short, there are differences, but also
have strong correlations in the PA-TOA graphs of differ-
ent antenna scan types. 

3. Antenna  scan  type  recognition  based  on
LPVG

At  present,  antenna  scan  types  based  on  PA-TOA  se-
quences  face  three  main  challenges  that  need  to  be  re-
solved.  Firstly,  in  a  complex  electromagnetic  environ-
ment,  noise  will  inevitably  affect  the  PA-TOA sequence
detected  by  the  receiver.  The  recognition  of  the  antenna
scan  type  depends  on  the  fluctuations  in  the  sequence
value, so the impact of noise must be reduced as much as
possible.  Secondly,  the  macroscopic  trend  of  the  PA-
TOA sequence has not been effectively used and only the
microscopic  features  near  the  main  lobe  are  used,  while
the  macroscopic  trends  between  the  main  lobes  are  ig-
nored.  Thirdly,  the  recognition  effect  improves  little  by
only increasing the feature dimensions, and a new type of
model is needed to describe the PA-TOA sequence from
different  views  to  improve  recognition  accuracy.  To  ad-
dress these issues, this paper introduces an LPVG model
and extracts time-series’ geometric structures to represent
similarities, resulting in better distinguishing PA-TOA se-
quences  with  high  correlations.  This  idea  has  achieved
good results in the fields of fault  assessment [11],  medi-
cal diagnosis [12], and data analysis [13]. 

3.1    LPVG model

The  visibility  graph  (VG)  model  proposed  by  Lacasa  et
al.  [14] can establish complex network from time series.
The basic idea of the VG model is  that  for discrete time
series,  the data points are defined as network nodes, and
the  connection  lines  between  data  points  that  meet  the
visibility criteria are defined as network edges. The visibi-
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lity criteria are expressed as
xa− xc

tc− ta
>

xa− xb

tb− ta
(7)

(ta, xa) (tb, xb)
(tc, xc)

ta tb tc ta < tc < tb

where  and  are the coordinates of two points
a and b in the time series,  is the coordinate of any
point between a and b, ,  and  satisfy .

In Fig. 7, histogram bars are used to represent 16 data
nodes  in  a  periodic  time  series.  The  data  values  corres-
pond to the height of the histogram bars. If the tops of the
two  histogram  bars  meet  the  visibility  criteria,  there  is
considered  to  be  a  connection  line  between them.  In  the
network  model,  connection  lines  are  nondirectional,  a
node  cannot  be  connected  to  itself,  and  the  connection
line between the two histogram bars cannot pass through
other histogram bars.
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Inspired  by  the  VG  model,  the  concept  of  an  LPVG
model  [8]  is  proposed  for  establishing  complex  network
from  time  series.  The  basic  idea  of  an  LPVG  is  as  fol-
lows. Based on the VG visibility criterion, LPVG propo-
ses an additional rule, which is limited penetrable visibi-
lity range M. For two nodes which are visible to each oth-
er in the VG model, the connection line between two his-
togram bars to these two nodes cannot pass through other
histogram  bars.  However,  in  the  LPVG  model,  they  are
considered to be limited penetrable visible to each other if
and only if the connection line is crossed m times (where
m≤M)  by  other  histogram  bars  located  between  them.
According to this rule,  when M=1, the added connection
lines of LPVG compared to the VG are as shown in Fig. 8.
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Fig. 8    Added connection lines of LPVG compared to VG

To better  extract  LPVG features,  a  network should be
transformed into an LPVG matrix. The rule for construct-
ing the matrix is as follows. If  there is a connection line
between point a and point b, the entry in the ath row and
the bth column of the matrix is 1, otherwise, it is 0. Fig. 9
shows  the  binary  images  of  the  LPVG  matrices  corres-
ponding to different antenna scan types when SNR = 10.

 
 

(a) Circular scan (b) Sector scan

(c) Helical scan (d) Raster scan

(e) Conical scan (f) Electromechanical hybrid scan

(g) Two-dimensional electronic scan

Fig. 9    Binary images of the LPVG matrices
 

Similar  to  the  VG model,  the  LPVG model,  as  a  gra-
phic  signal  processing  method,  has  the  characteristics  of
constant  feature  for  scale  change.  It  can  directly  extract
features  of  signal  sequences  with  inconsistent  time
lengths and sampling rates without preprocessing.  In ad-
dition,  the  LPVG  has  also  the  following  advantages.
Firstly,  it  has  a  greater  number  of  network  edges  and
more  compact  network  connections,  and  it  retains  the
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geometric structure of periodic sequence rules. This makes
it  easier  to  distinguish  periodic  and  nonperiodic  sequen-
ces,  as  shown  in Fig.  9(e) and Fig.  9(g).  Secondly,  the
LPVG  has  more  long-range  connections  and  retains  the
macroscopic fluctuation trend of the time series, which is
beneficial  for  distinguishing  microsimilar  but  macrodif-
ferent sequences, such as those in Fig. 9(a) and Fig. 9(c).
Thirdly, the LPVG enhances the ability to penetrate small-
scale network connections, making the network less sus-
ceptible to noise. This is beneficial for improving the dis-
crimination of feature parameters under low SNR condi-
tions, as those shown in Fig. 10(a) and Fig. 10(b). Fig. 10
shows a local comparison between the binary VG image
and the  binary  LPVG image of  a  circular  scan sequence
with SNR=5. It can be seen that the binary LPVG image
retains more details.
 
 

(a) VG (b) LPVG

Fig. 10    A local comparison between the binary VG image and binary
LPVG image of a circular scan sequence
  

3.2    Extraction of LPVG features

The  four  types  of  feature  parameters  of  the  LPVG  net-
work,  i.e.,  the  average  degree,  clustering  coefficient,  in-
formation  entropy,  and  complexity,  are  extracted  as  the
input  of  the  subsequent  classifier,  and  each  parameter  is
descripted as below.

i di

di di i
N

(i) The average degree is the most intuitive parameter,
and it  reflects  the  connection relationships  in  a  network.
When the number  of  nodes is  fixed,  the  greater  the  ave-
rage  degree’s value,  the  more  connection  lines  there  are
in the network. If node  is connected to these  nodes by

 edges, then  is called the degree of node  [15]. For
an  LPVG  network  with  nodes,  the  average  degree  is
expressed as

D =
1
N

N∑
i=1

di. (8)

(ii) The clustering coefficient reflects the clustering de-
gree and coordination of a network. When the number of
nodes is fixed, the larger the clustering coefficient is, the
better  the  network  coordination  and  the  easier  the  net-
work is  to penetrate.  In such a case,  the destruction of  a
single node in the network will not have a large impact on

i
di di

di(di−1)/2 di

di Di i

the whole network. Assuming that node  is connected to
these  nodes  through  edges,  there  can  be  at  most

 edges  between  these  nodes.  Let  the  num-
ber  of  connected  edges  that  actually  exist  between these

 nodes be , then, the clustering coefficient for node 
is defined [15] by

ci=
2Di

di(di−1)
. (9)

NFor  an  LPVG  network  with  nodes,  the  clustering
coefficient can be gotten by

C=
1
N

N∑
i=1

ci. (10)

N

(iii) Information entropy is used to indicate the degree
of disorder or chaos in a system. The greater the informa-
tion  entropy,  the  greater  the  uncertainty  of  the  system
[16].  For  an LPVG network with  nodes,  the  informa-
tion entropy can be written as

E = −
N∑

i=1

1
di

ln
1
di
. (11)

Then,  the  information  entropy  is  normalized  and  re-
written as

Enorm =
E−Emin

Emax−Emin
(12)

Emax

Emin

Emax Emin

where  is  the  maximum  theoretical  value  of  the  in-
formation entropy, and at this maximum value, all nodes
are connected to each other.  is the minimum theoreti-
cal  value  of  the  information  entropy,  and  at  this  mini-
mum value, all nodes are connected to each other by only
two adjacent points (head and tail nodes are only connec-
ted  to  its  adjacent  points).  and  can  be  ex-
pressed as

Emax = −
N∑

i=1

1
N −1

ln
1

N −1

Emin = −
N−1∑
i=2

1
2

ln
1
2
−2ln1=−

N−1∑
i=2

1
2

ln
1
2

. (13)

N

(iv) Complexity is a parameter that represents the com-
plexity  of  a  network  through  LPVG matrix  eigenvalues,
and it reflects the number of edges of a binary image. For
an  LPVG  network  with  nodes,  the  complexity  is
defined by

R = 4rnorm(1− rnorm) (14)

rnormwhere  is the maximum eigenvalue of the normaliza-
tion matrix, and it can be expressed as
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rnorm =

rmax−2cos
π

N +1

N −1−2cos
π

N +1

(15)

N rmax

N −1
N

2cos
π

N +1
N

where  is the number of nodes,  is the actual maxi-
mum eigenvalue of the matrix,  is the upper limit of
the  maximum  eigenvalue  of  the -dimensional  matrix,
and  is the lower limit of the maximum eigen-

value of the -dimensional matrix. 

3.3    SVM classifier

The  SVM  classifier  is  a  generalized  linear  classification
algorithm  with  a  good  learning  effect  for  small  samples
and an excellent generalization ability. When an SVM is
used for radar scan type recognition, the processed LPVG
network  features  are  used  as  the  SVM’s input,  and  the
SVM  is  trained  by  using  knowledge-based  data  to  de-
termine  the  mapping  relationship  between  LPVG  net-
work features and antenna scan types.

The basic  principle  of  an SVM is  to  map sample data
to  a  Hilbert  space  through  the  kernel  function  method,
that  is,  a  hyperplane is  constructed to  transform a  nonli-
near classification problem into a linearly separable prob-
lem. The determination of this  hyperplane should satisfy
the conditions that the distance between each sample and
the  hyperplane  is  as  large  as  possible  and  the  classifica-
tion error is as small as possible. By the hyperplane’s dis-
crimination,  the  final  samples  are  divided  into  two  or
more categories. The classification function can be given
as follows:

fSVM(x) = sgn

 n∑
xs∈S V

asysk(xs, x)+b

 (16)

S V as

k(xs, x) xs ys

b

where  is  the support  vector  set,  is  the Lagrangian
multiplier,  is  the  kernel  function,  and  are
the support  vectors  in  certain specific  category,  and  is
the threshold. 

4. Simulation results

F(θ)
C
Pt

Gt

Gr

λ 5×10−3

(0, 90◦)

In  the  experiment  for  antenna  scan  type  recognition,  the
simulation parameters are set as follows. The scan time is
4 s,  the average beam dwell  time is  0.1 s,  the horizontal
beam’s gain function’s value  is 1 for each scan type,
the system stability coefficient  is  also 1 for each scan
type,  the  radar  radiation  power  is  1  dB,  and  the  gain

 of the radar’s transmitting antenna in the receiver dir-
ection  is  1,  the  receiver’s antenna  gain  is  1.  In  addi-
tion,  the  radar  signal  wavelength  is  m,  the
range of  the azimuth angle  is  (0,  360°),  the  range of  the
elevation angle is (0, 60°), especially the range of the azi-
muth angle is  for the sector and raster scans, and

the  interval  of  the  elevation  angle  is  20°  for  the  raster
scan.

The experiments  study the  antenna scan type  recogni-
tion  for  circular  scan,  sector  scan,  helical  scan,  raster
scan,  conical  scan,  electromechanical  hybrid  scan  and
two-dimensional  electronic  scan.  For  the  same  SNR,  by
adjusting such factors as the pulse repetition interval (PRI),
antenna beam width and receiver position, 50 samples are
obtained for each scan type, with a total of 350 samples.
And 80% of the samples of each scan type are randomly
selected  as  the  training  set,  with  the  other  20% of  the
samples  as  the  testing  set.  The  SVM’s kernel  function
uses a radial basis function (RBF), and the SVM’s penalty
coefficient c and  kernel  function  parameter g are  ob-
tained  by  the  particle  swarm optimization  algorithm.  To
verify the advantage of this novel method, it is compared
with the methods in [3], [4] and [7].

The recognition results of the above antenna scan types
after  50  Monte  Carlo  simulations  under  different  SNRs
are  shown  in Fig.  11.  The  recognition  accuracy  of  the
proposed method increases with an increasing SNR. When
the SNR is 5 dB, the recognition accuracy is 83%, at 8 dB,
the  recognition  accuracy  is  90%,  at  10  dB,  the  recogni-
tion accuracy is 92%, and at 20 dB, the recognition accu-
racy is 96%. It should be noted that due to the difference
between  the  training  and  testing  sets,  the  reproduction
results of the methods in [3], [4] and [7] are slightly dif-
ferent from the original ones.
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Fig.  11      Recognition results  of  antenna scan type by using differ-
ent methods
 

Among  the  four  recognition  methods,  the  proposed
method  has  the  highest  recognition  accuracy.  The  me-
thod in [3] set the threshold of the decision tree classifier
to  perform  layer-by-layer  classification  through  expert
experience, which introduced human error. The method in
[4] used an SVM classifier to avoid human error but also
directly  extracted  parameters  such  as  kurtosis,  the  num-
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ber  of  main lobes and the difference in main lobes from
the  signal  as  features,  which  led  to  unsatisfactory  anti-
noise  performance.  The  method in  [7]  used  the  VG mo-
del to extract time series features to improve the recogni-
tion accuracy. However, due to the limitations of the VG
model,  there  are  still  problems  in  terms  of  noise  resist-
ance and the ability to extract macroscopic trends. In con-
trast, the method proposed in this paper combines the ad-
vantages of the LPVG’s strong ability to penetrate noise,
its compact network connections, its multiple long-range
connections,  and  its  lack  of  human  error.  Therefore,  the
recognition effect of the proposed method is the best.

Table  1 shows  the  recognition  results  of  the  antenna
scan type for  the  circular  scan,  sector  scan,  helical  scan,
raster  scan,  conical  scan,  electromechanical  hybrid  scan
and two-dimensional  electronic scan with SNRs of 5 dB

and above. The recognition results of each scan type are
drawn from 10 groups of testing sets with SNRs of 5 dB,
10 dB, 15 dB, 20 dB, 25 dB, and 30 dB, for a total of 60
groups. As shown in Table 1, the average recognition ac-
curacy  of  the  proposed  method  is  at  least  90%.  The  re-
cognition effect for electromechanical hybrid scan is rela-
tively  poor,  because  the  hybrid  electromechanical  scan
has the characteristics  of  both mechanical  scan and two-
dimensional  electronic  scan,  easily  misrecognized  as  the
other  two  types.  Incorrect  classifications  are  also  preva-
lent for the circular scan and helical scan, because the ba-
sic  principles  of  the  two  scans  are  strongly  correlated,
which leads to weaker discrimination of feature values. In
contrast,  the  recognition  accuracy  of  the  proposed  me-
thod  for  the  sector  scan,  raster  scan,  two-dimensional
electronic scan and conical scan is higher.

 
 

Table 1    Recognition results for the proposed method (SNR≥5 dB)

Recognition
result

Circular
scan

Sector
scan

Helical
scan

Raster
scan

Conical
scan

Electromechanical
hybrid scan

Two-dimensional
electronic scan

Recognition
accuracy /%

Circular scan 55 1 2 1 0 0 1 91.7

Sector scan 2 57 0 0 0 1 0 95.0

Helical scan 2 0 54 0 0 3 1 90.0

Raster scan 0 1 1 57 0 1 0 95.0

Conical scan 0 0 1 0 59 0 0 98.3

Electromechanical
hybrid scan 0 0 2 1 0 55 2 91.7

Two-dimensional
electronic scan 0 0 1 0 0 2 57 95.0

 
 

5. Conclusions
This paper proposes an automatic recognition method for
the radar antenna scan type based on LPVG. Based on the
analysis of seven radar antenna scan types, i.e., the circu-
lar  scan,  sector  scan,  helical  scan,  raster  scan,  conical
scan, electromechanical hybrid scan and two-dimensional
electronic  scan,  and  considering  the  LPVG’s ability  to
penetrate noise, its compact network connections, and its
long-range connections, the PA-TOA sequence is conver-
ted into an LPVG network, and feature parameters are ex-
tracted. Then, the SVM classifier is used to recognize the
antenna scan types.  The simulation results  show that  the
proposed method can classify and recognize seven types
of  radar  antenna  scan  better.  In  detail,  when  the  SNR is
5  dB  and  above,  the  average  recognition  accuracy  is  at
least 90%.  At present,  the proposed method is only used
to recognize these seven common radar antenna scan types.
Further research should focus on how to classify and re-
cognize  antenna  scan  types  such  as  spiral  scan,  Palmer
scan and lobe switching scan.
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