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Abstract: Software defect prediction (SDP) is used to perform
the statistical analysis of historical defect data to find out the
distribution rule of historical defects, so as to effectively predict
defects in the new software. However, there are redundant and
irrelevant features in the software defect datasets affecting the
performance of defect predictors. In order to identify and re-
move the redundant and irrelevant features in software defect
datasets, we propose ReliefF-based clustering (RFC), a cluster-
based feature selection algorithm. Then, the correlation between
features is calculated based on the symmetric uncertainty. Ac-
cording to the correlation degree, RFC partitions features into k
clusters based on the k-medoids algorithm, and finally selects
the representative features from each cluster to form the final
feature subset. In the experiments, we compare the proposed
RFC with classical feature selection algorithms on nine National
Aeronautics and Space Administration (NASA) software defect
prediction datasets in terms of area under curve (AUC) and F-
value. The experimental results show that RFC can effectively
improve the performance of SDP.
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1. Introduction

Software with defects can bring unexpected results or be-
haviors at run time, which can cause huge damage or
even disasters in serious cases [1].

Software defect prediction (SDP) [2] is an effective
method to identify defects in system modules in advance.
First, the software code or the development process is
analyzed, the metrics related to software defects are de-
signed, and then the defect dataset is created by mining

Manuscript received January 20, 2020.

*Corresponding author.

This work was supported by the National Key Research and Develop-
ment Program of China (2018YFB1003702) and the National Natural
Science Foundation of China (62072255).

the software historical repositories. Finally, based on the
defect dataset, the SDP model is constructed.

In order to better predict software defects, many me-
trics that have strong correlation with software defects are
proposed to measure modules [3—6]. Attributes of soft-
ware quality, such as defect density and failure rate, are
external measures of the software product and its deve-
lopment process. Generally, a software quality prediction
model is built with software metrics and defect data col-
lected from the previously developed systems or similar
software projects. The selection of the specific set of me-
trics becomes an integral component of the model-build-
ing process. However, the redundant and irrelevant fea-
tures in the software defect dataset increase the time com-
plexity and affect the performance of defect predictors
[7].

Therefore, the defects of the existing algorithms can be
summarized as follows:

(1) The feature selection algorithms based on filter can
remove irrelevant features, while cannot remove redun-
dant features.

(i1) The feature selection algorithms based on the em-
bedded method combining the advantages of filter and
encapsulation have the problem of high complexity.

In order to solve the above problems, we propose Re-
liefF-based clustering (RFC), a cluster-based feature se-
lection algorithm. First, the ReliefF algorithm [8] is used
to calculate the relevance between each feature and tar-
get class, features are sorted to remove irrelevant fea-
tures, then the features are clustered according to the cor-
relation between the remaining features, and finally the
representative features of each cluster are selected. We
implement experiments based on the software defect pre-
diction datasets released by the National Aeronautics and
Space Administration (NASA) to test and verify the pro-
posed algorithm. RFC considers the correlation between
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features and the relevance between features and the tar-
get class, which can effectively remove redundant fea-
tures and irrelevant features to solve the problem of di-
mension disaster and improve the performance of SDP.

This paper is organized as follows. Section 2 intro-
duces the related work. Section 3 describes RFC in detail.
Section 4 presents the experimental results and the per-
formance analysis. Section 5 concludes this paper and
presents our possible future work.

2. Related work

The methods of SDP can be divided into two categories.
On the one hand, some researchers focus on utilizing
software metrics [9—11], such as the Hastead scientific
metrics [3], the McCabe loop complexity [4], quality
model for object oriented design (QMOOD) [5], the
Chidamber and Kenerer (CK) metrics [6]. On the other
hand, some researchers focus on the quality of SDP data-
sets. There are many problems to be solved in SDP, such
as the data imbalance [12—15], and the dimension disa-
ster [16]. The feature selection is an effective method to
solve the problem of dimension disaster.

Appropriate feature selection results can improve the
learning accuracy, reduce the learning time, and simplify
the learning results. Kira et al. [17] proposed a feature se-
lection method, Relief, which randomly selects m in-
stances from the training set. For each selected instance i,
Relief computes the nearest neighbor from the same class
of 7 and the nearest neighbor from the opposite class. The
quality of each feature is estimated with respect to whe-
ther the feature differentiates two instances from the same
class and from different classes. A feature has an un-
desired property if it differentiates two near instances that
belong to the same class. The original Relief algorithm is
limited to binary classification problems. ReliefF [8] is
extended from Relief to solve the multiclass problem. Its
main idea is to take the Euclidean distance as the correla-
tion index and then weights features according to how
well they differentiate instances of different classes.
Meanwhile, the embedded methods select feature in the
training process of the learning model, and the feature se-
lection result outputs automatically while the training
process is finished. For example, a hybrid feature selec-
tion method proposed by Shivkumar et al. [18] first uses
the filter or the classifier to score each feature, then re-
moves features with lower scores, uses the classifier to
evaluate the prediction performance of the remaining fea-
tures, and finally chooses the best prediction perform-
ance as the final feature set. When the characteristics are
reduced to a certain extent, predictive performance be-
gins to decline due to the lack of important information.
These algorithms combine the advantages of the filter

method and the wrapper method, while it has a high time
complexity.

Guo et al. [19] proposed a software quality prediction
method based on the random forest, where prediction ac-
curacy of the proposed methodology is higher as com-
pared to logistic regression and discriminant analysis.
The random forest is more robust to noise and outliers
than other methods. However, irrelevant features have a
great impact on the predictive effect of random forest, the
effect of using the first five most relevant features to train
the random forest is comparable to that of using all the
features to train the random forest. Menzies et al. [20]
used the information gain (IG) to rank features. The pre-
diction effects of the first three features are comparable to
the use of all features. Rodriguez et al. [21] made use of
feature selection methods in different datasets, and tested
different data mining algorithms for classification to de-
fect faulty modules. The results showed that in general,
smaller datasets with fewer attributes maintained or im-
proved the prediction capability with fewer attributes than
the original datasets. Catal et al. [22] verified the influ-
ence of feature selection on model performance, and
showed that feature selection is beneficial to improve the
performance of the software defect prediction model. Gao
et al. [23] compared seven different feature ranking me-
thods and four different feature subset selection ap-
proaches based on software metrics and defect data col-
lected from multiple releases of a large real-world soft-
ware system. The results showed that the automatic hy-
brid search algorithm performed the best among the fea-
ture subset selection methods. Moreover, performances of
the defect prediction models either improved or remained
unchanged if over 85% of the software metrics are elimi-
nated. Wang et al. [24] presented a comprehensive empi-
rical study by examining 17 different ensembles of fea-
ture ranking methods (rankers) including six commonly
used feature ranking methods, the signal-to-noise filter
method, and 11 threshold-based feature ranking methods.
This study utilized 16 real-world software measurement
datasets of different sizes and built 13 600 classification
models. Experimental results indicated that ensem-
bles of very few rankers were very effective and even
better than ensembles of many or all rankers. Bennin et
al. [25] proposed a synthetic oversampling approach
called MAHAKIL based on the chromosomal theory of
inheritance. Experiments showed that MAHAKIL im-
proved the prediction performance for software defect
prediction. Miholca et al. [26] developed a supervised
classification method called HyGRAR, which combined
gradual relational association rule mining and artificial
neural networks to discriminate between defective and
non-defective software entities. Experiments demon-
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strated the excellent performance of the HyGRAR classi-
fier. Cao et al. [27] proposed an SDP model based on the
twin support vector machines (TSVM) and a multi-ob-
jective cuckoo search (MOCS), which achieved a better
performance than other SDP models.

3. Cluster-based feature selection algorithm

3.1 Workflow of RFC

Different from the above works, in order to effectively
identify the redundant and relevant features in the soft-
ware defect dataset, in this paper, we propose a cluster-
based feature selection algorithm, RFC. RFC removes ir-
relevant features, then partitions features into & clusters
based on symmetric uncertainty (SU), and finally selects
representative features from each cluster. The specific
workflow of RFC is shown in Fig. 1.

Original dataset 7’
Number of feature
clusters &
Original feature set F'
Threshold 6

Calculate the relevance
between feature fand the
target class, remove features
that are less than J

Calculate average
correlation degree

|

Feature clustering

I

Select
representative
features

Feature
subset S

Fig. 1 Workflow of RFC

(i) Calculate the relevance between features and the
target class based on ReliefF, and then remove irrelevant
features according to the threshold.

The key idea of ReliefF is to estimate the quality of at-
tributes according to how well their values distinguish
between the instances that are near to each other. Given a
randomly selected instance R, ReliefF searches for &

nearest neighbors of R from the same class, called near-
Hits, and k& nearest neighbors from each of the different
classes, called nearMisses. If the difference between R
and nearHits is less than that between R and nearMisses
on a feature, which indicates that the feature is beneficial
to classification, the corresponding weight of the feature
will be increased. Conversely, the weight of the feature is
reduced. This process is repeated until the end condition
is met, and then the weight of each feature is returned,
which is the relevance between the feature and the target
class. The features are sorted by weight, and then the
threshold J is set to determine whether each feature is
valid or not.

(i1) Cluster feature subsets.

i) Calculate the degree of correlation between features.

We use the nonlinear SU [28] to measure correlation
between features. SU is derived from mutual information
by normalizing it to the entropies of feature values. It can
be computed with

H(X)+H(Y)

where H(X) is the entropy of a discrete random variable
X. Suppose p(x) is the prior probabilities for all values of
X, p(xly) is the posterior probabilities of X given the va-
lues of Y, H(X) can be computed with

H(X) == p(x)log,p(x). ©)
xeX
The information gain /G(X]Y) can measure the amount
by which the entropy of X decreases given the values of
Y. It can reflect the additional information about X pro-
vided by Y. IG(X]Y) can be computed with

IGX|Y)=HX)-HX|Y)=HY)-HY|X) ()

where H(X]Y) is the conditional entropy, quantifying the
remaining entropy, i.e., uncertainty of a random variable
X given that the value of another random variable Y is
known. H(X]Y) is defined with

HX V) == pO) ). pixIVlog,p(x13). ()
yey xeX

SU can compensate for information gain’s bias toward
features with more values and restrict its values in [0, 1].
The value 1 of SU(X,Y) indicates that knowledge of X can
completely predict knowledge of Y and vice versa, while
the value 0 of SU(X,Y) reveals that X and Y are independ-
ent. Although the entropy-based measure can handle
nominal or discrete variables, they can deal with continu-
ous features as well, if the values are able to be discre-

tized properly in advance.
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i) Calculate the average correlation degree.

Before feature clustering, several features should be se-
lected as the initial representative characteristics. To fur-
ther accelerate the convergence of our proposed al-
gorithm, we consider features with the most information
content as initial features. The information content of a
feature is measured by the average correlation degree of
the feature. The average value of the symmetry uncer-
tainty of f; and other features in the feature set can be
computed with

AvgRel (f;) = %st(ﬁ,f,) ©)

where m represents the number of remaining features,
SU(f,, ;) represents the correlation between feature f; and
feature f,.

iii) Cluster the features based on k-medoids.

Step1 Sort the features according to AvgRel in the des-
cending order, and select top & features as initial medoids.

Step 2 Assign each feature to the cluster associated
with the most similar medoid.

Step 3 Update cluster’s medoids. For each feature
cluster, the features with the highest degree of correla-

tion with other features are selected as new cluster
medoids.

Step 4 Step 2 and Step 3 are iterated until that me-
doids no longer change.

(iii) Select representative features.

After features partitioned into & clusters, relevant fea-
tures need to be selected from each cluster. Since the
scale of different clusters cannot be uniform, the scale of
a cluster is taken into account when relevant features are
selected from each cluster. The larger a cluster is, the
more relevant features are.

For feature cluster C,, select the cluster’s medoid first,
and then sort the remaining features according to their
relevance with the target class in the descending order.

|C| % r

After that, select top {— —1 features from each
m

cluster, where |C| is the scale of the cluster, m is the num-
ber of the feature subset, and r is the scale of the final
feature subset that we want to select.

3.2 SDP based on RFC

The metrics of SDP datasets are composed of lines of
codes (LOC) counts, Halstead complexity as well as Mc-
Cabe complexity, as shown in Table 1.

Table1 LOC counts and Halstead complexity

Number Metric Number Metric
0 LOC_BLANK 20 HALSTEAD DIFFICULTY
1 BRANCH_COUNT 21 HALSTEAD EFFORT
2 CALL PAIRS 22 HALSTEAD ERROR_EST
3 LOC_CODE_AND_COMMENT 23 HALSTEAD _LENGTH
4 LOC_COMMENTS 24 HALSTEAD LEVEL
5 CONDITION_COUNT 25 HALSTEAD_PROG_TIME
6 CYCLOMATIC COMPLEXITY 26 HALSTEAD VOLUME
7 CYCLOMATIC_DENSITY 27 MAINTENANCE_SEVERITY
8 DECISION_COUNT 28 MODIFIED CONDITION_COUNT
9 DECISION_DENSITY 29 MULTIPLE_CONDITION_COUNT
10 DESIGN_COMPLEXITY 30 NODE_COUNT
11 DESIGN_DENSITY 31 NORMALIZED CYLOMATIC_COMPLEXITY
12 EDGE _COUNT 32 NUM_OPERANDS
13 ESSENTIAL_COMPLEXITY 33 NUM_OPERATORS
14 ESSENTIAL DENSITY 34 NUM_UNIQUE_OPERANDS
15 LOC_EXECUTABLE 35 NUM_UNIQUE_OPERATORS
16 PARAMETER COUNT 36 NUMBER _OF LINES
17 GLOBAL _DATA_COMPLEXITY 37 PERCENT_COMMENTS
18 GLOBAL DATA_DENSITY 38 LOC_TOTAL
19 HALSTEAD CONTENT
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In particular, LOC counts measure the number of code
lines, comments lines, and so on. Halstead complexity es-
timates the program complexity by counting operators
and operands in a module. McCabe complexity measures
the complexity of a module’s inner structure. These me-
trics, i.e., features, can be widely used in SDP. However,
the effectiveness of current methods is influenced by ir-
relevant and redundant features select features.

The pseudo code of the algorithm is as follows:

Algorithm SDP based on RFC

Input T,k F,0,r,

Output S;

1.§ =0

2. Calculate the relevance between features and the tar-
get class;

3. Construct the vector W = {w;,i=1,2,--- ,M};

4. for i=1 to M do

5. if (w; < 8) then

6. F=F-f;

7. for i=1 to m do

8. forj=1tomdo
2AG(ff)

% SUGH= G a

10.  Construct matrix A;
1 m
11.  AvgRel(f)=— ) SU(f.,f);
vgRel(f) p ;:] (fis 3

12. Sort the features according to AvgRel in the des-
cending order;

13. Select the top k features as initial medoids;

14. Partition features into k& clusters;

15. for i=1 to k do

16. For feature cluster C,, select cluster’s medoid;

17.  Sort the remaining features;

C|x
18.  Select top H—;’} — 1 from each cluster;
m

19. Return §

In the pseudo code, T is the dataset; k is the number of
feature clusters for software defect prediction; F is the
original software defect feature set; J is the threshold; 7 is
the number of selected software defect features; S is the
output software defect feature subset; w; denotes the rele-
vance between feature f; and the target class; C; repre-
sents the ith feature cluster; |C| is the size of the cluster; m
represents the number of feature subset; and r represents
the number of the final feature subset.

For example, to the kc3 dataset, the index of the final
selected feature subset is (31 35 16 24 27 7). These fea-
tures are highly correlated with the target class, lowly
correlated with each other.

4. Experiments and performance analysis
4.1 Datasets and experimental platform

In order to verify the effectiveness of our proposed me-
thod, nine software defect datasets are selected from the
NASA Metrics Data Program (MDP) repository [29],
which mainly design the measurement from LOC counts,
Halstead complexity and McCabe complexity, stored in
attribute-relation file format (ARFF), were processed
with Weka. Table 2 describes these data in terms of the
number of instances, the number of features, the number
of defective modules, and the number of defect modules.

Table 2 Descriptions of the datasets

Dataset Attribute Module Defective module
pel 37 1107 76(6.87%)
pc3 37 1563 160(10.24%)
pcé 37 1458 178(12.21%)
kel 22 2109 326(15.45%)
ke3 39 458 43(9.39%)
ke4 39 125 61(48.80%)
mc2 39 161 52(32.30%)
cml 37 505 48(9.50%)
mwl 37 403 31(7.69%)

The hardware for experiments is as follows: 8 G RAM,
Intel core i5 processor at 1.8 GHz, and 500 GB hard disk.

4.2 Metrics

In order to evaluate the prediction results, it is necessary
to select reasonable performance evaluation metrics. SDP
can be simplified to a two-class problem. In Table 3, TP
and TN denote the number of positive and negative
samples that are classified correctly, while FP and FN de-
note the number of misclassified positive and negative
samples respectively.

Table 3 Confusion matrix for a two-class problem

Class Predicted positive Predicted negative
Positive TP FN
Negative FP N

Precision is defined as

TP

Precision .
recision TP+ TP (6)
Recall is defined as
TP
TP =Recall = ———
rate = Reca TPTN @)
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which indicates the ratio of positive samples that are clas-

sified correctly to actual positive samples.
F-value is defined as

(1+p?)-Precision - Recall
3% - Precision + Recall

F-value = (®)
F-value is a combination of Recall and Precision which
are effective metrics for information retrieval community.
F-value is high, if both Recall and Precision are high. It
can be adjusted through changing the value of §. § corres-
ponds to relative importance of Precision vs. Recall, and
is usually set to 1.
The true positive rate (TPR) is the same as Recall.
The false positive rate (FPR) is defined as
_FP
- FP+TN

The receiver operating characteristic (ROC) curve de-
scribes the relationship between TPR and FPR.

On an ROC graph, the TPR is plotted on the Y axis and
FPR is plotted on the X axis. In the ROC space, each clas-
sifier with a given class distribution and cost matrix is
represented by a point on the ROC curve. The area under
curve (AUC) is a single-value measurement that origin-
ated from the field of signal detection. The value of the
AUC ranges from 0 to 1. On the ROC curve, points clos-
ing to (0, 1) are preferable, which means low false posi-
tive error rate and high recall value. A perfect classifier
provides an AUC that equals 1.

AUC is used for evaluating the predictive capability of
classifiers. Jiang et al. [30] selected different proportions
of training sets on the NASA dataset for experiments to
compare the performance differences of different evalu-
ation metrics. The experimental results indicate that AUC
is a more stable measurement than F-value.

FPR ©

4.3 Parameter setting

The main parameters of RFC include the number of
clusters &, and the threshold J of ReliefF. We select
[log,M] relevant features from the original dataset to
construct the final selected feature subset, inspired by
Gao et al. [23], where M represents the number of origi-
nal features. By adjusting ¢ via experiments, the final fea-
ture number is close to [log, M. k is set to be [log, (m/2)]
heuristically, and m represents the number of remaining
features after removing irrelevant features with ReliefF.

In defect predictor construction phase, we employ the
Naive Bayes and the J48 classification algorithm. We im-
plement 10x10 fold cross validation. The measurement of
performance is averaged.

First, we implement experiments to compare our pro-
posed method with the method using all the original fea-

tures, denoted as NONE. Then, we compare our pro-
posed method with four representative feature selection
methods. Both IG and Chi-Square (CS) consider the rele-
vance between feature and target class in terms of IG and
card square value respectively. ReliefF measures the rele-
vance between the features and the target class based on
instances. Compared with ReliefF, we can find out the in-
fluence of feature clustering. Compared with IG and CS,
we can find out the influence of different correlation mea-
surement methods on prediction performance. Correlation-
based feature selection (CFS) [31] exploits the best first
search based on the evaluation of a subset that contains
features highly correlated with the target class, yet uncor-
related with each other. This method can deal with both
irrelevant features and redundant features.

4.4 Experimental results

The performance of the feature selection algorithm can be
usually evaluated from two aspects: in the case of the
same classification effect, the smaller the feature subset,
the better the performance; in the case of the same effect
on the feature reduction, the better the classification ef-
fect, the better the performance.

(i) For J48 classifier

Table 4 shows that the RFC algorithm has obvious ad-
vantages compared with NONE, IG, CS, ReliefF and CFS
based on AUC, which greatly improves the performance
of the classifier. RFC achieves the best performance on
datasets pc3, kc4 and cml. On dataset mc2, RFC per-
forms only worse than NONE, and on dataset mw1, RFC
performs only worse than CFS. AUC of RFC on average
is 0.673, and AUC of CFS is 0.676. Table 5 shows that
the F-value of RFC is better than other methods on most
datasets.

Table 4 AUC of the J48 classifier after using different feature se-
lection methods

Dataset NONE 1G CS ReliefF  RFC CFS
pel 0.669  0.753  0.699 0.519 0.715  0.727
pc3 0.647 0.602  0.601 0.534 0.668  0.646
pc4 0.755 0.873  0.881 0.511 0.680  0.859
kel 0.700  0.747  0.746 0.715 0.737  0.702
ke3 0.567 0.574  0.624 0.547 0.656  0.679
ke4 0.738 0.750  0.751 0.757 0.767  0.761
mc2 0.647 0.562  0.577 0.611 0.639  0.550
cml 0.531 0.561  0.553 0.500 0.631  0.575
mwl 0.429  0.551 0.553 0.527 0.564  0.583
Average  0.631 0.664  0.665 0.580 0.673  0.676
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Table 5 F-value of the J48 classifier after using different feature
selection methods

Dataset NONE 1G CS ReliefF  RFC CFS
pcl 0.309 0230 0.191 0.025 0.289  0.222
pc3 0282  0.016 0.012 0.012 0.133  0.027
pc4 0.518 0471 0.465 0.004 0.118  0.393
kel 0.381 0.320 0.330 0.285 0.273  0.277
ke3 0.292  0.040 0.195 0.088 0.094 0.279
kc4 0.789  0.768 0.776 0.778 0.806  0.789
mc2 0487 0367 0377 0.414 0.464  0.330
cml 0.132  0.026  0.026 0.014 0.103  0.061
mwl 0.213 0.207  0.231 0.139 0.200  0.303

Average 0378 0272  0.289 0.195 0276  0.298

(i1) For Naive Bayes classifier

Table 6 shows that the RFC has advantages over the
NONE, IG, CS, ReliefF, and CFS. Based on AUC, RFC
achieves the best performance on datasets pcl, kc4, mc2,
cml, mc2 and mwl. On the dataset kcl, the performance
of RFC is very similar to ReliefF. AUC of RFC on aver-
age is the highest, followed by NONE and CFS. As
shown in Table 7, RFC can achieve the best performance
to F-value on most datasets, and F-value of RFC is the
highest on average, followed by CFS.

Table 6 AUC of Naive Bayes after using different feature selec-
tion methods

Dataset NONE 1G CS ReliefF  RFC CFS
pel 0.733 0.703  0.687 0.712 0.749  0.75
pc3 0.767 0.79 0.8 0.744 0.771 0.78
pc4 0.836  0.825 0.823 0.805 0.813  0.818
kel 0.792  0.769 0.771 0.789 0.788  0.75
ke3 0.814  0.751  0.765 0.772 0.791  0.787
kc4 0.752  0.742  0.743 0.739 0.753  0.701
mc2 0.703 0.627  0.636 0.628 0.712  0.652
cml 0.736  0.748  0.741 0.745 0.768  0.746
mwl 0.751 0.753  0.727 0.686 0.755  0.751
Average  0.765 0.745  0.744 0.736 0.767  0.748

Table 7 F-value of Naive Bayes after using different feature selec-
tion methods

Dataset ~NONE 1G CS ReliefF  RFC CFS
pel 0.278 0.269  0.288 0.081 0267 0277
pc3 0256 0348  0.348 0.171 0.338  0.373
pc4 0.434 044  0.437 0.388 0.447 043
kel 0.4 0.381  0.383 0.429 0.421 0.38
ke3 0346 0345 0.341 0.324 034  0.378
kec4 0.508 0.441 0437 0.644 0.532  0.433
mc2 0.448 0.425 0.425 0.366 0.49 0.45
cml 0307 0294 0.296 0.304 0.333  0.303
mwl 0326 0361 0.365 0.203 0.403  0.391

0367 0367 0.369 0.323 0397 0379

Average

Figs. 2—5 show AUC and F-value of different feature
selection algorithms based on the J48 and Naive Bayes
classifiers. For the J48 classifier, Fig. 2 and Fig. 4 indic-
ate that the advantage of RFC against other algorithms is
significant. Compared with the Naive Bayes defect pre-
dictor, RFC also has obvious advantages.

10,
0.8}
L 06
-]
<04

0.2

pcl pe3 ped kel ke3 ked me2 eml mwl
u:NONE; m:IG; n:CS; =: ReliefF; m: RFC; n: CFS.

Fig. 2 AUC of J48 after using different feature selection methods

1.0
0.8
206
s
704
0.2

pcl pc3 pc4 kel ke3 ked me2 cml mwl
#:NONE; m:IG; #:CS; =: ReliefF; m: RFC; »n: CFS.

Fig.3 F-value of J48 after using different feature selection methods

1.0

0
pcl pc3 pc4 kel ke3 ked me2 cml mwl
#:NONE; ®:1G; #n:CS; n: ReliefF; m: RFC; »: CFS.

Fig. 4 AUC of Naive Bayes after using different feature selection
methods

0
pcl pe3 ped kel ke3 ked me2 cml mwl
#5:NONE; #:1G; #n:CS; =: ReliefF; m: RFC; n: CFS.

Fig. 5 F-value of Naive Bayes after using different feature selec-
tion methods
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We present the proportion of selected features by all
the feature selection methods for each dataset in Table 8.
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Table 8 Proportion of features selected with different feature se-

lection methods

The number of features retained by RFC is set to be close Dataset IG CS ReliefF RFC CFS
to or same as the number of features retained by the IG, pcl 15 15 15 17.25 20.67
CS, and ReliefF. pe3 15 15 15 1725 2342
From Table 8, we can see that RFC on average can ob- pe4 15 15 15 18.41 12.50
tain 18.43% of selected features. IG, RFC, and CSF rank kel 23.81 23.81 23.81 27.78 4175
first with 13.8% of selected features. RFC performs simi- ke3 15 15 15 1725 1935
lar to those methods only using feature ranking on the ked 15 15 15 17.25 14.75
proportion of selected features. Table 9 lists the indexes me2 15 15 15 1725 27.67
of the features selected by different feature selection al- eml 15 15 15 1617 23.25
gorithms. RFC can select fewer features than CFS, and Aj::ge 151598 151598 151598 i;ij ig'z;
more than CS, IG and ReliefF. - - - - -
Table 9 Indexes of features on all data sets selected with different feature selection methods
Dataset IG CS ReliefF RFC CFS
pcl 0404341936 3394043436 38401627711 038227341136 031340430719 36
pe3 0340193436 0340341936 38401627711 0313816191136 038340427192634
pc4 380340295 2838340295 938401624 14 9383935162427 38340168
kel 2116111512 172116 1512 21191398 201971398 06213791818
ke3 40232222326 402322216 40161824277 31351624277 34032
ked 12314023010 12314023010 31394022711 12312713011366 12314021
me2 1221402 18 30 12402 1820 30 401618277 11 21635182720711 28210340 183324222030 14
cml 39403515434 39403515434 383140242711 313835242711 38404 15207191036
mwl 12 40 22 30 34 36 120403036 10 384024271911 283839527834 11 2104045301934 10

4.5 Performance analysis

From the experimental results, we can analyze and draw
the following conclusions about the performances of RFC
and other methods:

(i) With each above feature selection method, SDP can
achieve a better performance with fewer features. All
these five feature selection methods can help to select
more information content and more distinctive features.

(i) RFC performs similar to ReliefF on the proportion
of selected features. From Table 4 to Table 7, we can see
that RFC has a better performance than ReliefF. RFC can
effectively improve the performance of SDP by feature
clustering.

(iii) As shown in Table 8, RFC selects more features
than IG, CS, and ReliefF. The reason is that the number
of features selected in each cluster is related to the scale
of the cluster, and at least one feature is selected from
each cluster.

To sum up, based on clustering, RFC can effectively
improve the performance of SDP.

4.6 Time complexity

Suppose that N represents the number of instances of the
dataset, M represents the number of features of the original

dataset and k represents the number of feature clusters.
The calculation time of RFC is mainly composed of five
parts:

(i) Calculate relevance between feature and target
class.

ReliefF updates the weight of the sample. Its time com-
plexity is O (M x N). Repeat multiple times, and the num-
ber of executions is close to the number of instances.
Therefore, the time complexity of ReliefF is O (M x N?).

(i1) Calculate the correlation between features.

After ReliefF removes the irrelevant features, the num-
ber of remaining features is m. The time complexity of
using SU to calculate two features on dataset of N in-
stances is O(N). Therefore, the time complexity of calcu-
lating the correlation between features is O (N x m?).

(iii) Calculate and rank the average correlation degree
of features.

The time complexity of computing the average correla-
tion degree of features is O(m?*), and then quick sorting.
Therefore, the time complexity of this part is O (m?).

(iv) Cluster features.

Divide the original feature set into & clusters, and then
update the medoids. The time complexity of this part is
o (m?).

(v) Select representative features.
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Select the medoid of the cluster, and sort these fea-
tures according to their relevance with the target class in
the descending order. The time complexity of this part is
O (mlog,m).

The number of instances N is much larger than M and
m, so that the time complexity of RFC is O(N?). There-
fore, we can find that the time complexity of RFC is not
higher than the typical feature selection algorithms based
on filter, and lower than the feature selection algorithms
based on the embedded method.

5. Conclusions

In this paper, we propose a new feature selection algori-
thm RFC, which first removes irrelevant features, then
clusters the remaining features, and finally selects repre-
sentative features from each cluster. The experimental re-
sults demonstrate that RFC achieves a better perform-
ance compared with other classical feature selection algori-
thms on most datasets, which proves the effectiveness of
the RFC algorithm in SDP. However, RFC can be further
optimized. Our future work will focus on the redundant
features of high-dimensional datasets.
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