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Abstract: It is of great significance to carry out effective
scheduling for the carrier-based aircraft flight deck operations. In
this paper, the precedence constraints and resource constraints
in flight deck operations are analyzed, then the model of the
multi-aircraft integrated scheduling problem with transfer times
(MAISPTT) is established. A dual population multi-operator ge-
netic algorithm (DPMOGA) is proposed for solving the problem.
In the algorithm, the dual population structure and random-key
encoding modified by starting/ending time of operations are
adopted, and multiple genetic operators are self-adaptively used
to obtain better encodings. In order to conduct the mapping
from encodings to feasible schedules, serial and parallel
scheduling generation scheme-based decoding operators, each
of which adopts different justified mechanisms in two separated
populations, are introduced. The superiority of the DPMOGA is
verified by simulation experiments.
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1. Introduction

The carrier battle group is an important symbol of national
maritime comprehensive strength. As the core of the of-
fensive and defensive system of the carrier battle group,
the aircraft undertakes most of the combat mission. Its
sortie rate is closely related to the ability to efficiently
complete flight deck operations such as inspection, fuel-
ing, and oxygen filling. The purpose of the flight deck
operations scheduling problem (FDOSP) is to shorten the
makespan and efficiently complete all operations by rea-
sonably arranging resources. Compared to the ground ope-
rations of aircraft on the airport, the carrier deck space is
narrower, and the performing environment is more change-
able, so operation and resource constraints of the aircraft
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carrier are more complicated [1]. With the increasement
in the sortie rate and the number of aircraft, higher re-
quirements have been imposed on the flight deck opera-
tions scheduling capability, and the experience-based
manual scheduling is inefficient in FDOSP [2].

In view of importance, complexity and the critical role
in combat for FDOSP, it is of great significance to carry
out effective scheduling for the aircraft fleet deck opera-
tions and resource allocation, establish a feasible schedul-
ing model, and produce an efficient scheduling scheme
[3]. In recent years, FDOSP has become an emerging hot
spot and many scholars have carried out a large number
of studies on this issue.

This paper focuses on the scheduling of flight deck ope-
rations for the pre-flight preparation stage. On the basis
of analysis of various constraints in the pre-flight prepa-
ration stage, the multi-aircraft integrated scheduling prob-
lem with transfer times (MAISPTT) is established, and
the dual population multi-operator genetic algorithm
(DPMOGA) is presented for the MAISPTT. The main
contributions of this research are as follows:

(1) The precedence constraints, resource constraints,
and transfer times of personnel and support equipment in
the pre-flight preparation stage are described in detail.
The MAISPTT is formulated as a mixed integer mathe-
matical programming model with the objective of mini-
mizing the makespan.

(i) A scheduling optimization algorithm called
DPMOGA is proposed. The dual population structure and
random-key encoding modified by starting/ending time of
operations are adopted. Various types of genetic opera-
tors are proposed, and the serial scheduling generation
scheme (SSGS) or the parallel scheduling generation
scheme (PSGS) are used to generate feasible schedules.
An adaptive selection mechanism for genetic operators is
designed.

The remainder of this paper is organized as follows.
Section 2 presents a brief literature review of related
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work. Section 3 describes the MAISPTT. A mathemati-
cal programming model is presented in Section 4. In Sec-
tion 5, the DPMOGA is proposed. Section 6 reports and
discusses the results of the simulation. Finally, this paper
is concluded by Section 7.

2. Literature review

2.1 Flight deck operations for pre-flight
preparation stage

There are several variations of the scheduling model for
pre-flight preparation according to different degrees of
abstraction, which mainly include the hybrid flow-shop
scheduling model [4], the flexible job-shop scheduling
model [5], and the resource-constrained project schedul-
ing problem (RCPSP) model [6—11]. Researches based
on the hybrid flow-shop scheduling model and the flex-
ible job-shop scheduling model have disadvantages in
meeting the complex networked constraints of operations,
so most researches for FDOSP are based on RCPSP re-
cently. In these researches, the support task of an aircraft
is considered as a project, and the personnel and support
equipment on the flight deck are considered as resources.
Additionally, during the actual flight deck operations, it
takes a certain amount of time to transfer personnel and
support equipment from one work station to another, so
the transfer times of personnel and support equipment
between different work stations have to be considered.

2.2 Solving methods for RCPSPs

The RCPSP is an NP-hard combinatorial problem, and
several methods for solving RCPSPs, including exact
methods, heuristics and meta-heuristics, have been pro-
posed. From the perspective of practicability and per-
formance, the exact methods are computationally expen-
sive for large-scale scheduling problems. Compared to
exact methods, heuristics are easy to implement and com-
putationally cheaper, but it is difficult to find an efficient
priority rule that performs well for a broad range of
RCPSPs [12]. The meta-heuristics use intelligent optimiz-
ation algorithms to find better encoding, then generate a
feasible schedule using schedule generation schemes
(SGS), which provide the best trade-off between practic-
ability and performance, and have attracted the attention
of researchers and provided improvements for solving
RCPSPs. Several meta-heuristics, including the differen-
tial evolution algorithm [12], improved particle swarm
optimization (IPSO) [13], and the hybrid estimation of
distribution algorithm (HEDA) [14], were proposed for
solving the RCPSPs. As a classic evolutionary algorithm,
the genetic algorithm (GA) has been widely used for
RCPSPs [15—19]. To the best of our knowledge, GA has

not been applied to the pre-flight preparation operations
scheduling problem with resource transfer times. And
how to effectively select each genetic operator to im-
prove the search ability and convergence speed for spe-
cific problems remains to be studied.

3. Description of MAISPTT
3.1 Description of flight deck operations

The launching and landing cycle of the aircraft fleet is a
multi-stage task. After the deck operations are completed,
the aircraft will taxi to the designated catapult to com-
plete launching according to the sortie plan. After com-
pleting the combat mission in the air, the aircraft finally
completes the recovery mission and return to the aircraft
carrier. If it is necessary to dispatch these aircraft again,
they will repeat the above process [10]. Pre-flight prepa-
ration, which is the main stage of flight deck operations
of FDOSP, has complicated precedence and resource
constraints. After aircraft landing on the flight deck, a
tractor will tow it from the temporal parking spot to the
service parking spot for pre-flight preparation. Once
chocked and chained, the aircraft will turn to the pre-
flight preparation stage, during which inspections, align-
ment of inertial navigation system (INS), fueling, oxygen
filling and nitrogen charging, are completed by different
professional personnel. Support equipment mainly
provides various types of supply resources such as fuel,
ammunition, oxygen and nitrogen [20].

The launching and landing cycle of the aircraft is pro-
ceeded in a deck cycle way, which means an aircraft fleet
will go through pre-flight preparation, launching and
landing on the flight deck within a deck cycle. To avoid
the disorder and ensure the sustainability of cyclic opera-
tions, the duration of each deck cycle is regulated, includ-
ing the modes of 1+00 (1 h 0 min), 1+15 (1 h 15 min),
etc. Any delay of pre-flight preparation may disturb the
operating tempos under such a time-critical scheduling
[11]. The goal of MAISPTT is to minimize the makespan
and increase sortie rates.

3.2 Constraints of MAISPTT

Constraints of MAISPTT consist of precedence con-
straints and resource constraints. Specifically, resource
constraints can be divided into personnel constraints, sup-
port equipment constraints, work station space con-
straints, and supply resource constraints.

(1) Precedence constraints

For a given sortie mission, an aircraft fleet (denoted as
aset I ={1,2,---,]I]}) is designated to perform the flight
deck operations before launching. The operations of each
aircraft i € [ is denoted as J; = {1,2,---,|Ji|}, containing a
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dummy starting operation, a dummy ending operation,
and |J|—2 real operations. All operations of fleet are de-
noted as J ={(i,j)|i € I, j € J;}. Referring to the RCPSP,
the support task of a single aircraft can be regarded as a
project, and the precedence constraints of the aircraft fleet
can be described by the activity on node (AoN) network
as shown in Fig. 1, where an operation is represented by a
node, and the precedence constraints between activities
are denoted by the arcs.

(Aircraft ] O

X oo )®
0——09
0.

Fig. 1 AoN network for aircraft fleet

In Fig. 1, O;; denotes the jth operation of the ith air-
craft, Os and Oy are the dummy starting operation and the
dummy ending operation respectively. The operation Oy,
whose work station space is W;;, cannot be performed
earlier than operations in its immediate predecessors set
¥;;. The starting time and ending time of operation Oy are
denoted as S§,; and E;; respectively, and E;; =S +d;;,
where d;; is the duration of O;. A, denotes the set of ope-
rations of aircraft i/ which are active in period ¢.
Moreover, aircraft i cannot start its operations until it has

been chocked and chained in the service parking spot p;
at the released time FEXx;.

(ii) Personnel constraints

Kp denotes the set of personnel trade types, Lp; de-
notes the set of personnel with trade k(ke Kp), Lp, =
{1,2,---,ILpil}, rp;j denotes the number of personnel
with trade k(k € Kp) required for performing operation
O;;. The transfer time of personnel with trade k(k € Kp)
between operation O,, and operation O, is denoted as
APfjeg’ APj'(jeg = D(Wij’ Weg)/Vpks where D(W/ij’ Weg) de-
notes the distance between work station space W; and
W.. vpi denotes the transfer velocity of personnel with
trade k(k € Kp).

(iii) Support equipment constraints

There are two kinds of support equipment, i.e., sharing
equipment Ke, and exclusive equipment Ke,. Ke de-
notes the set of support equipment trade types,
Ke=Ke,UKe,, Le;, denotes the set of support equip-
ment of the type k(k € Ke), Le, ={1,2,---,|Le;l}. A%, =1
denotes the /th support equipment of the type k(k € Ke)
which can reach the pth parking spot, otherwise, A}, = 0.
Equipment can only support the aircraft which are within
the range of their pipelines. re;; denotes the number of
support equipment of the type k (k € Ke) required for per-
forming operation O;;, re;; € {0,1}. The transfer time of
the support equipment of the type k between operation
0., and operation O is denoted as AE},,, which consists
of setup time of the support equipment of the type k (de-
noted as u;), and moving time of the support equipment
from work station space W;; to W,, (denoted as Tr},,,
Trf.‘jeg = D(W,;;,W,,)/ve,, where ve, denotes the transfer
velocity of equipment). The setup time is considered both
before and after performing operation, so AE¥ =

ijeg —
Trfjeg +2u;. Fig. 2 shows a sketch map of personnel and

equipment transfer process on flight deck of the Admiral
Kuznetsov aircraft carrier.
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Fig. 2 Resources on flight deck of the Admiral Kuznetsov aircraft carrier

(iv) Work station space constraints
These constraints are considered only for the work sta-
tion with limited space (e.g., cockpit) for personnel. Ks

denotes the set of work station space types, and ns; de-
notes the maximum number of personnel who are per-
forming concurrently in the kth (k € Ks) type work sta-
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tion space of the ith aircraft. Set rs;; =1 if operation O;;
is performed in work station space of the type k(k € Ks),
otherwise, rs;; = 0.

(v) Supply resource constraints

Kw denotes the set of supply resource types. Lw; de-
notes the maximum number of aircraft that the supply re-
source of type k(k € Kw) can support at the same time,
and set rw;; = 1 if the supply resource of type k(k € Kw)
is required while performing O;;, otherwise, rw;; = 0.
4. Mathematical formulation of MAISPTT

4.1 Problem assumptions

(1) Each operation cannot be interrupted during its exe-
cution.

(i1) The duration of each operation is deterministic.

(ii1) All kinds of resources are available for each ser-
vice parking spot.

4.2 Decision variables

Besides S;;,E;;,V(i,j) €J, the other relevant decision
variables used in the model are as follows:
1, operation O;; is allocated to
Xpiju = personnel / with trade k
0, otherwise
1, operation O;; is allocated to
Xej = support equipment / of the type k
0, otherwise
1, personnel [ with trade & transfers
u to perform operation O,, after
ZPijec™ completing operation O;;

0, otherwise

1, support equipment / of the type k
transfers to perform operation O,
ijeg™ after completing operation O;;

0, otherwise

4.3 Mathematical expression of MAISPTT

MAISPTT is formulated as a mixed integer mathemati-
cal programming model:

min C,x (1)

Su>Ex, Viel )
Sy>Su+dy Vih) e WG, j)ed 3)
Z Z rwii < Lwg, Yk € Kwi¥i>0 4)

iel (i,j)eA;

Z TSijk Z rpijw S NSy, Yie [1Vke Ks;¥t>0  (5)

(i.))eAy k'eKp

Zzzxeukl'(l—ﬂf)):& Viel (6)

(i,j)e] keKe leLey

ki
Eij + APij(g < Seg + BM ° (1 _Zpijeg)’
VkeKp,Vleka,V(l,]),(e,g)EJ (7)
k ki
E+AE;, <S,+BM-(1-Zej,,),
Vke Ke, NA(Nk € Ke,,i + e);
Vi€ Le; Y@, j),(e,g) €] ®)
Z re[jk-sgn[ Z Xeijk, =
(i.))eAy (i, ))€Ay
D Xey- sgn( > reijk], VieI;Vk e Ke,;¥l€ Le,
(i, ))€Ai (i, ))EA;
®

leLp,

erijkl:reijk» V(i,j)eJ;VkeKe (11)
leLe;
pr-‘,'-eg S XPijia* XPegits

V(i,j),(e,g) € J;Vk € Kp;Vie Lp, (12)

kil
Zeijeg < Xe,-jk, . Xe(,gk],

V(,j),(e,g) e J;Vke Ke;YIe Le; (13)
XPijkl»Xeijk'l',ZPgeg,Zeg; ={0,1}
Vk e Kp;Vile Lp;Vk' € Ke;
VI,ELek’;v(i’j)9(esg)eJ. (14)

Formula (1) represents that the objective is to mini-
mize the makespan C,,,, of the aircraft fleet. Constraint (2)
indicates that aircraft i cannot start its operations until it
is chocked and chained in the service parking spot at the
released time Ex; Constraint (3) denotes the precedence
constraints of operations. O, cannot be performed earlier
than its immediate predecessors. Constraint (4) states that
the total number of aircraft on the flight deck that are sup-
ported by supply resource of the type k(k € Kw) concur-
rently at the time period ¢ is smaller than the maximum
number Lw;. Constraint (5) indicates that the number of
personnel who are performing concurrently in the kth
(k € Ks) type work station space of the ith aircraft at the
time period ¢ is smaller than the maximum number ns;.
Constraint (6) denotes that equipment can only support
the aircraft which are within the range of their pipelines.
Constraint (7) represents that if operation Oy precedes op-
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eration O,, and they are allocated to the same personnel /
with trade k(k € Kp), the operation O,, cannot be per-
formed until this personnel transfers to work station space
W,, after completing operation O, where BM is a large
enough positive number. Constraint (8) is related to the
transfer time sequence relationship between two adjacent
operations, which are allocated to the same exclusive sup-
port equipment, or the same sharing support equipment
while these two operations do not belong to the same air-
craft. The transfer time sequence is similar to that in con-
straint (7). Constraint (9) indicates that if more than one
operation of aircraft 7 require a sharing equipment of the
type k(k € Ke,) at any time period, these operations are
allocated to the same one. Constraints (10) and (11) to-
gether make sure that the number of personnel or equip-
ment required for performing operation O; is equal to the

Input the support mission,
resource data and deck cycle

v

Initialization of PopL and
the fitness of individuals

!

Select individual S;; of PopL in turn, then
select S, with two-tournament selection in
the rest of PopL, and S, and S, are parents

]

Select a crossover operator according to the selection
probablity of each crossover operator, and apply the crossover
operator to parents to generate offsprings S, and S},

Apply mutation
operator or not?

Select a mutation operator according to the selection
probablity of each mutation operator, and apply the
mutation operator to S}, and S,
|

335

total number of personnel or equipment allocated to it re-
spectively. Constraints (12) and (13) express relation-
ships between decision variables. Constraint (14) indi-
cates the values of decision variables.

5. The proposed DPMOGA

MAISPTT is a large-scale combinatorial optimization pro-
blem where precedence constraints and four renewable re-
sources constraints need to be premeditated. In this paper,
MAISPTT is considered as a resource-constrained multi-
project scheduling problem with transfer times, and it is
an NP-hard optimization problem. Hartmann et al. [21]
pointed out that the most successful approaches for
RCPSPs were meta-heuristics, one of which was GA. In
this section, we describe DPMOGA to solve MAISPTT.
The flowchart of the DPMOGA is shown in Fig. 3.

Right-justified
scheduling mechanism

Left-justified
scheduling mechanism

Select individual Sy, of PopR in turn, then select Sy,
—» with two-tournament selection in the rest of PopR, and |4
Sy, and Sy, are parents

Select a cross over operator according to the selection
probablity of each crossover operator, apply the crossover
operator to parents to generate offsprings Sy, and Sk,

Apply mutation
operator or not?

Select a mutation operator according to the selection
probablity of each mutation operator, and apply the

mutation operator to Sy, and S,
»l

o
Select the SSGS/PSGS decoding operator according to the
selection probablity of each decoding operator. Apply the
decoding operator to Sj, and S}, and generate the
left-justified schedule respectively

'
Select the SSGS/PSGS decoding operator according to the
selection probablity of each decoding operator. Apply the
decoding operator to §’,, and §',, and generate
right-justified schedule respectively

Evaluate fitness of S}, and S7,, select better one to encode
the individual in PopR, record the historical optimal solution,
and update the selection probablity of each operator

completed or not?

Evaluate fitness of Sy, and Sj,, select a better one to
encode the individual in PopL, record the historical optimal
solution, and update the selection probablity of each operator

PopR is
completed or not?

Reach the number

of evaluation
or not?

Output the optimal schedule

Fig.3 Flowchart of DPMOGA
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A left population PopL and a right population PopR are
involved in our algorithm. In PopL, a right-justified sche-
duling mechanism is adopted to generate the right-justi-
fied schedule and the starting time of each operation in
the schedule is used to encode the individual in PopL,
while in PopR, a left-justified scheduling mechanism is
adopted to generate the left-justified schedule and the end-
ing time of each operation in the schedule is used to encode
the individual in PopL.

Various types of genetic operators are proposed in our
algorithm. In addition, an adaptive operator selection
mechanism is set to choose the best performing genetic
operator according to the performance of operators at
each iteration. The fitness of individual S is denoted as
fs, which can be represented by the C,,,, of the generated
schedule, and a lower C,,,, indicates a better fitness.

Compared with the GA, the DPMOGA is mainly im-
proved in the following aspects.

(i) The dual population structure [18] is adopted, and
the evolution process of population is divided into the left-
justified scheduling mechanism and the right-justified
scheduling mechanism. The double justification (DJ)
technology is applied to all individuals in the population
to enhance the algorithm’s performance.

(i1) The encodings of individuals are modified by the
starting/ending time of operations, which promises that
one schedule can be represented by one encoding. Addi-
tionally, encodings are adjusted between the starting and
the ending time of the operations of the scheduling plan,
which increases the diversity of population.

(iii) Different genetic operators behave differently dur-
ing the execution of the algorithm, and the best perform-
ing genetic operator will be selected by the adaptive ope-
rators selection mechanism for the evolution of the popu-
lation. This method increases the stability and the proba-
bility of the DPMOGA.

5.1 Solutions encoding

Kolisch and Hartmann [22] distinguished five different
schedule encodings, but the activity-list (AL) encoding
and the random-key (RK) encoding are the most wide-
spread. Debels et al. [23] indicated that the RK leads to
promising results due to the use of the topological order-
ing (TO) notation. In our algorithm, the RK encoding
modified by the starting/ending time of operations is
adopted. Compared with AL and RK, our encoding pro-
mises that one schedule can be represented by one encod-
ing. Set the encoding of individual § as § = [RK||,
RK >, - ,RK, ], where RK; indicates the priority of ope-
ration O

(i) For PopL, after generating the right-justified sche-
dule, we encode the individual Sy in PopR using the start-
ing time of each operation in the schedule, i.e., Sk =

[511,512,”‘ ’Sn|1,,\]~

(i) For PopR, after generating the left-justified sche-
dule, we encode the individual S; in PopL using the end-
ing time of each operation in the schedule, ie., S, =
[Ev,Ery  Eg,l-

5.2 Crossover operators

We adopt four kinds of crossover operators, which are
described with taking PopL as an example.

Crossover 1: One-point crossover operator. An integer
pos is generated randomly, where 1 < pos < |S;|, then en-
codings of parents after the posth encoding are ex-
changed to generate offsprings.

Crossover 2: Two-point crossover operator. Integer
posl and pos2 are generated randomly, where 1 < posl <
pos2 <|S;|, then encodings of parents between the
poslth encoding and the pos2th encoding are exchanged
to generate offsprings.

Crossover 3: Arithmetic crossover operator. When this
crossover operator is applied to parents S;, and S;,, the
offsprings S}, and S}, are calculated as

S’ =aSu +bSp,
{ ' = bS,, +aS (15)

where a and b are random numbers, a,b € [-0.5,1.5],a+
b = 1. The values of a and b are not limited to [0,1], which
ensures that the search area of the arithmetic crossover
operator covers the parents’ neighborhood more widely.
Crossover 4: Direction-based heuristic crossover opera-
tor. The origin version of this operator was proposed by
Wang et al. [24], who indicated that there is a great
chance to produce better offsprings to improve the con-
vergence speed of the algorithm. Denote C =S;,-S;,,
ryand ry(i=1,2,---,J) are random numbers limited to
[0,1], Ci =[ricilixs» Co=[racilixs, step A =1, the off-
springs S7, and S}, are calculated as
8’1 =8Su+4C,
{ S'=8Sn+1C, - (16)

5.3 Adaptive mutation probability and

mutation operators
5.3.1 Adaptive mutation probability

Our adaptive mutation probability P, is based on mean
fitness variance:

. 1 NP(fj—favg)z

=— !
T TNP4\TD {17

where NP is the population size, and D represents the maxi-
mum deviation between the fitness of individuals in the

3

population and the average fitness, D = max {| fi = fave
I<j<NP

P,, is calculated as
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k, 0% <o’

P = { P,o, other{;vise (18)
where £ is a random number limited to [0.3,0.6], and o7
is a threshold value. P, is a relatively small initializing
mutation probability. When the individual difference in
the population decreases, the mean fitness variance of the
population decreases accordingly. At this time, increas-
ing the individual mutation probability has an advantage
of helping the algorithm jumping over the local optimal
solution. In addition, a random number rand is generated
in each cycle, rand € [0, 1], if rand < P,,, a mutation ope-
rator is selected and applied to individuals.

5.3.2 Mutation operators

We adopt four kinds of mutation operators in our algorithm.
Mutation 1: One-point mutation operator. An encod-
ing is selected randomly and then modified to (rand —0.5)-
RK..x, Where RK,,,, is the maximum of encodings.
Mutation 2: One-operation mutation operator. An opera-
tion O; with the latest ending time #, of its predecessors
and the earliest starting time #, of its successors in the
schedule, is selected randomly. The encoding of opera-
tion O, is modified to a random number limited to

[t +di;,1,] (for individual in PopL) or a random number
limited to [#,,7, — d;;] (for individual in PopR).

Mutation 3: Multi-operation of one aircraft mutation
operator. Na(Nae€ Z[|J;|/3,|J:/x2/3]) operations of a
single aircraft i are selected randomly, then each encod-
ing of them is modified by the method in Mutation 2.

Mutation 4: Project reorganization mutation operator.
Aircraft i(i € I) is selected randomly and the encodings
of all the operations of this aircraft are initialized accord-
ing to precedence constraints.

5.4 Decoding operators

Decoding is a key stage to conduct the mapping of indi-
vidual encoding to schedule and evaluate the fitness by
using SGS. The most widespread SGS in RCPSPs is
SSGS or PSGS [25]. In our algorithm, the SSGS-based
decoding operator and the PSGS-based decoding opera-
tor are proposed simultaneously. For PopL, the right-jus-
tified SSGS-based or right-justified PSGS-based decod-
ing operator is applied to generate the right-justified
schedule, while for PopR, the left-justified SSGS-based
or the the left-justified PSGS-based decoding operator is
applied to generate the left-justified schedule. The re-
lated notations are described in Table 1.

Table 1 Related notations in decoding operators

Notation Definition
C, The set of scheduled operations at stage g
D, The set of eligible operations at stage g
tg The earliest feasible scheduling time of stage g
Ag The set of operations active in period t, of stage g
fy The earliest precedence-resource-feasible scheduling time of stage g
”LPLI 0, if personnel / with trade k(k € Kp) is not performing or transferring in period #; 1, otherwise
nLe;d 1, if support equipment / of the type k (k € Ke) is supporting aircraft i (i = 1,2,---,n) in period ¢;
—1 if this support equipment is transferring; 0, otherwise
nLst 1, if work station space of the type k(k € Ks) in aircraft 7 in period # is occupied; 0, otherwise
anf( The remaining number of aircraft that supply resource of the type k (k € Kw) can support in period ¢
ES;j The earliest precedence-feasible starting time of operation Oy
SP; The earliest personnel-feasible starting time of operation O,
SPijk The earliest personnel-feasible starting time of operation Oy for personnel with trade k(k € Kp)
SPijia The earliest personnel-feasible starting time of operation O, for personnel / with trade k (k € Kp)
SE; The earliest equipment-feasible starting time of operation O,
SE; jk The earliest equipment-feasible starting time of operation O; for support equipment of the type k(k € Ke)
SE;jjut The earliest equipment-feasible starting time of operation O for support equipment / of the type k(k € Ke)
SS;; The earliest space-feasible starting time of operation O,
N/ The earliest supply resource-feasible starting time of operation O,
ERS;; The earliest precedence-resource-feasible starting time of operation O;
IPL The set of personnel with trade k (k € Kp) that can perform operation to be scheduled at period ¢
le} The set of support equipment of the type k(k € Ke) that can perform operation to be scheduled at period ¢
Lef‘ The set of support equipment of the type k(k € Ke) that can reach the service parking spot p;, Lei"' = [MZ =1,le Lek}
RP; The set of personnel with trade k(k € Kp) that are not performing or transferring at period ¢
RE], The set of support equipment of the type k(k € Ke) that are not performing or transferring at period ¢
APy The set of scheduled operations of the personnel / with trade k (k € Kp)
AEy The set of scheduled operations of the support equipment / of the type k (k € Ke)
TTu The accumulated transfer distance of the personnel / with trade k(k € Kp)

TRy The total performing time remaining in the cover area of the support equipment / of the type k (k € Ke)
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5.4.1 Left-justified SSGS-based decoding scheme

There are |J] stages totally in SSGS. C, is initialized with
the dummy starting operation of each aircraft, and the
starting time of operations in C, are set as the released
time of corresponding aircraft. At each stage g, the set of
eligible operations is calculated, from which the opera-
tion to be scheduled O;; with the highest priority (mini-
mal RK) is chosen.

Then the earliest precedence-resource-feasible starting
time of operation O;; is initialized by the earliest prece-
dence-feasible starting time of it. To arrange the opera-
tion which satisfies the constraints of personnel, support
equipment, work station space and supply resource in the
duration, the time ERS;; is postponed until the earliest
resource-feasible starting time of the four kinds of re-
source is equal, i.e., SP;; = SE;; =88 = SW,;.;.. After-
wards, the starting time S, is determined as the earliest
precedence-resource-feasible time. In order to allo-
cate personnel and support equipment for the operation
after determining S ;, the personnel allocation rule and
the support equipment allocation rule simultaneously are
proposed as follows.

Rule 1: Personnel allocation rule based on the mini-
mum accumulated transfer distance first (MATDF). If the
operation to be scheduled requires personnel with trade
k(k € Kp), the accumulated transfer distance 7T}, of each
personnel / with trade k that can support the operation is
calculated, then personnel are allocated for the operation
with the ascending order of T'7T},.

Rule 2: Support equipment allocation rule based on the
minimum total performing time remaining in the cover
area (MTRCA). If the operation to be scheduled requires
support equipment of the type k(k € Ke), the total per-
forming time remaining in the cover area of each support
equipment / of the type k that can support the operation
TRy, is calculated as follows:

TRy = Z dij (19)
Gl
where the set of remaining operations is J'; = {(i, j)| (i, j) €
J—-C, A =1,re;; > 0}.

At the end of this loop, all the state parameters and the
set of scheduled operations are updated for the next stage.
The pseudo code of the left-justified SSGS-based decod-
ing scheme is shown in Algorithm 1, Algorithm 2 and Al-
gorithm 3.

Algorithm 1 Algorithm of the left-justified SSGS-
based decoding scheme

Input Priority of operations: RK,

Output Temporal schedule {S,;,E;;}, scheduling plan
{XpijklaxeijkhZpi‘{;gg9ze?]]‘eg}

Ol:Initialize  wLp;, nle,, nlw,,nLs; ,TTy,TRy,Sy:=

Ex;, En:=Ex;,8:=1,Cy:= Ui {(i, 1)}

02: While |C,| < |J]

03: Dyi={(i, )|(i. j) & C, Py S} () = ming, cp,
{(i, h ’RK,-]- = jnf (RK,,q)}, ES;j:=max{E;|G. j) € Py |

04: ERS,, =ES,;

05: Repeat

06: Calculate SP;;., Ip,, Vke Kp Arp;. i >0(t=SP;;)
using Algorithm 2

07: Calculate SE;;., le}, Vk € Ke Are;p . > 0(t = SE;;)
using Algorithm 3

08: SS;:=min{t|t > ERS ;. ,rs; ;- nLsl, # 1,k € Ks,
TE [t t+d;;)}

09:  SW,;:=min{t|lt > ERS ;j.,rwyj nlwi, k € Kw, T €
[t,t+d:)}

10: ERS;;:=max{SP;;,SE..,SS ;,SW;}

11: Until SP;.;. =SE, ;. =85, =SW,;

12:  S..:=ERS,;, E;;:= ERS ;; +d;;

13: For Vke KpArp;i ;>0

14: Arrange all personnel [ € Ip{ (=S P;.;.) in the
ascending order of 7T},

15: For p=1:rp;;, Db Let I be the personnel in
position p in the set Ip} (t = SP;.;.), Xpiju := 1

End For

16: End For

17: For Vke KeAre; ;>0 select I" e le, (1 =SE;. ),
according to MTPTRCA, Xe;. .y :=1

End For

Tle?: Update Zpf;,,. Zef,,,

19: gi=g+1,C,:=Cy U{(", J)}

20: End While

Algorithm 2 Algorithm of calculating SP.;, Ip;,
Vke KpArpq i >0(t=SP;;)

Input (", j*) ERS

Output SP;. ., Ip,,Yke KpArp; ;> 0(t=SP;;)

01:Initialize SP; ;,:=k,Vke€ Kp k:=1, SP;;:= ERS

nLp,,, nle,, nLw,,nLs,,TTy,

02:Repeat
03: Ifk>|Kp| Then k:=1
End If

04: Ifrp;.;,=0Then SP;;:= ERS;; k:=k+1

05: Else

06: RP, ={linLp,, = 0,1 € Lp,,t = ERS ;.;.}, Initial-
ize Ip, =0 (¥t > 0)

07: For V€ RP(t = ERS ;) ARP, #0

08: Judge whether personnel / can perform opera-
tion (i*, j*) according to Fig. 4 and calculate Ip} (t = ERS ;)

09: End For

10:  If |Ip}|>rpij«(t=ERS,;) Then SP.:=
ERS,;, ki=k+1

11: Else ERS ;;.:= ERS ;; +1
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122 EndIf
13: EndIf

14:Until(k = [Kp|) A (SPy 1 =SP4 VK K" € K )
15:SP,., := ERS ;.

(i) Ocr ]
77777777777 T T T T T T T T T T 7 Scheduled
(ii) | oL ¢ o | operation
77777777777 E—————
Transfer times
O 0. ]
N R —
. | Operation to
[ % N O [0y ]! bescheduled

ERSpn SPyjuyy (SE i)
Fig. 4 Scheduling timeline of personnel or support equipment

Algorithm 3 Algorithm of calculating SE;.;., lef,
Vk e KeArej >0(t = SE;. )

Input (i, j*) ERS; ;

Output SE; ;, le!, Vke Ke Are. ., > 0(t =SE;. ;)

Ol:InitializeSE; ;, =k,Yk € Ke,k:=1,SE;; :=ERS;;

02: Repeat
03: Ifk>|Ke| Then k:=1
End If

04: Ifre.., =0 Then SE; ;. := ERS,; k:=k+1

05: Else

06: Initialize /e, =0 (Vt > 0)

07: If (k € Ke)) A({linLe}, = i*,l € Le}" ,t € [ERS ;;.,
ERS,; +d;;)} #)@ Then

08: SE, .+ :=ERS; le} :={linLe| =i"leLe}" ,te
[ERS.;,ERS ., +d;;)}(f = ERS )

09: k:i=k+1

10: Else

11: RE, ={llnLe;, =0,l € Le}" ,t = ERS ;. ; }

12: For Vi€ RE.(t = ERS ;) ARE. #0

13: Judge whether support equipment / can

support operation (i*, j*) according to Fig. 4 and calcu-
late le, (t = ERS ;)

14: End For

15: If |lel| > re;;+(t=ERS;;) Then SE.;; :=
ERS,;, k:i=k+1

16: Else ERS ;.. :=ERS ;. +1

17: End If

18: End If

19: EndIf

20: Until (k = |Ke|) A(SE; jr = SE;j1, YK ,k" € Ke)

21: SE.; :=ERS;;

The difference for scheduling timeline between person-
nel and support equipment is transfer times in Fig. 4. The
procedure to judge whether personnel / can perform ope-
ration O; and to calculate [pj (t = ERS ;) is described as
follows, and the procedure to judge support equipment

and to calculate /e (f = ERS ;) is similar.

Situation 1: This personnel does not support any sche-
duled operations. It is feasible to allocate this personnel to
perform operation O;;., and SP;. ;. := ERS ;. Ip}, = Ip} |
{I}(t = SP;j1).

Situation 2: The last scheduled operation of this per-
sonnel is O,, and ERS;; > E,,. It is feasible to allocate
this personnel to perform operation O;.;., and SP; ;j :=
max {Eeg +AP,,. . ERS }, Ip, =1p, U} (t=SP; ;).

Situation 3: The first scheduled operation of this per-
sonnel is 0, and ERS ;. +d;.; + AP}, <8 ,,. It is feasi-
ble to allocate this personnel to perform operation O;..,
and SP; .y :=ERS -, Ip} := Ip, | J{l}(t = SP: j1i).

Situation 4: ERS.; is between the starting time of
scheduled operations O,, and O,,, and E,+AP;, .+
dij+ AP, < S, It is feasible to allocate this person-
nel to perform operation O;;, and SP; ;. := max{E,+
AP, . ,ERS,; ,} Ip = Ip. U (2 = SPi ).

5.4.2 Left-justified PSGS-based decoding scheme

The pseudo code of the left-justified PSGS-based decod-
ing scheme is shown in Algorithm 4. In this operator,
there are |J| stages at most. At the beginning, when g=1,
the sets 4, and C, are initialized with the dummy starting
operation of each aircraft and null set respectively, and
the starting time of operations in 4, are set as the re-
leased time of corresponding aircraft. Then at each stage
g, if all the processors of an operation are scheduled, the
operation can be added into set D,. ¢, is calculated as the
earliest ending time of operations in set A,_;. All opera-
tions in D, are arranged in the ascending order of RKj.
For each operation O, € D,, if required resources are
feasible at period t,, its starting time S is set as the
carliest time when all required personnel and support
equipment are transferred to work station W, ;. Since
S =1, it is necessary to determine whether any other
personnel or support equipment can perform operation
O, ; at period S, ;. The personnel allocation rule and
support equipment allocation rule are also Rule 1 and
Rule 2 simultaneously.

Algorithm 4 Algorithm of the left-justified PSGS-
based decoding scheme

Input Priority of operations: RK;;

Output Temporal schedule {S;;,E;}, scheduling plan
{Xpijk/,XeijklaZPf][-egazeggg}

O1l:Initialize nlLp},nLe},, nlwi,nLs,,TTy, TRy,APy,
AE A =Uig (G, 1)},C =0, S, ;= Ex;,E;y :=Ex;,g:=

02: While |C,_, UA, | <|J]|

03: £ :=min{S,;+d; |G j) € Agr . Ag = Ay = (. )]
(i,]) € Agy Aty = Eyj)

04 Coi=Coy UG, )G, j) € A Aty = Ey}, Dy =
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(@D GJ)EA, Py SCyf

05:  Arrange all operations (i, j) € D, in the ascend-
ing order of RK;;, ¢ :=1

06:  While g < |D,|

07: Let (i*, j*) be the operation in position g in D,,
Initialize Ip, =9, SP.j:=t,,Vk € Kp,le,, :=0,
SE;jp =1, Vk' € Ke

08: For Vke Ks

If rs; ;4 -nLs:, =1 Then ¢:=q+1, Turn to

line 06
End If
End For
09: For Yk € Kw
If rw; ;> ani“ Then g:=qg+1,
Turn to line 06

End If

End For
10: For Vke KpArp; ;>0
11 RP; :=|llnLp}; = 0,1 € Lp,}
12: If |RP;| > rp; ;« Then
13: For VI € RP; SP; = max{ max {E,+

’ (e,9)€APy
APt
End For

14: Arrange all personnel /€ RP; in the as-

cending order of SP;. .y, delete the last |RP2| —rD;jx per-
sonnel

15: SP; jic := MaXyeppr {SPi o} Ip), 1= RP{(1 =
SPi*j*k)

16: Else g :== g+ 1, Turn to line 06

17: End If

18: End For

19: For Yke KeAre; ;>0

20: If (ke Ke)A({llnLe;,=1i",l¢ Lel" | #0)
Then SE,. ;. = t,.le, := {linLe;; = i*,1 € Le}" | (t = SE,. ;)

21: Else

22: RE; :={llnLe!, = 0,1 € Le!"}

23: If |RE}’| > re; ;+ Then

24: For VI€RE; SE;ju=

k
max {(efggxyzkl {Egg-i-AEegi,ﬁ} , tg}
End For

25: SE; ji := minyegps {SE; jua}, 2=
{ISE; i = SE. ;.1 € RE[), lel := {I'} (t = SE, ;1)

26: Else g:=g+1, Turn to line 06

27: End If

28: End If

29: End For
30' Si*j' = max {SPi”j‘k9SEi’j‘k’}7Ei‘j' ::Sixj"i‘disjw,

keKp,k'eKe

=8 Ay =AU, ') /
31: ForVke KpArp; ;x>0 lpZ” =1p (t=SP; )
End For
32:  For VkeKeAre, ;>0 le, := e} (t = SE; 1)
End For
33: For Vke Kp Arp;yj >0
34: For VI € RP —RP.*

If max {E(,g +AP!

(e,9)€APy sty

, } <t Then Ip] =
Ip," Vil)
End If

End For
35: End For
36: For Vk € Ke Are; ;>0

37 If (k € Ke)A ({lInLey =i'.1¢ Lel}  0)
continue
End If
38: For Vi€ RE} —RE,"
t, I max {Ec+AES, ) <, Then Ie]" :=
le; U{l)
End If
End For

39: End For
40: For Vke KpArp; >0

41: Arrange all personnel / € lpi*’ in the ascend-
ing order of TTy,

42: For p=1:rp;;

43: Let [* be the personnel in position p in the
set lp,i“’, Xpiju =1

44: End For

45: End For

46: For Yk € Ke Are;. ;> 0 Select I € leZ*’ accord-
ing to MTRCA, Xe; ;i :=1

End For
47: Update Zpj,,,, Zef,,, nLpj, nLe},, nLw;, nLs,

TTy, TRy, APy, AE;,q = q+1
48: End While
49: g:=g+1
50: End While

5.4.3 Right-justified SSGS/PSGS-based
decoding scheme

Operations can also be scheduled oppositely by the right-
justified scheduling mechanism, that is, all operations are
shifted to the right except for the first and last operations,
and the schedule starts from the final operation’s immedi-
ate predecessors. In this way, the ending time is set as late
as possible.

Contrary to the left-justified scheduling mechanism,
the operation Oy is added to C,, if and only if all the suc-
cessors of O; are scheduled. C, is initialized with the
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dummy ending operation of each aircraft, and the ending
time of operations in C, are set late enough to ensure that
all operations start from a positive time. A larger RK in-
dicates a higher priority in the right-justified scheduling
mechanism. The personnel allocation rule and the sup-
port equipment allocation rule are also Rule 1 and Rule 2.
Then after the right-justified scheduling plan {S;, E;;} is
generated, the makespan can be reduced by subtracting a
span AT" from the whole schedule, where AT’ =min
(S;—Ex;), and the final right-justified scheduling plar{ais
obtained as (S;;, E;;) = (S, Ei;;) — AT".

5.5 Adaptive operators selection mechanism

This section describes how to select a genetic operator.
Our selection mechanism is based on the mechanism in
the consolidated optimization algorithm (COA) proposed
by Elsayed et al. [12]. Nf denotes the type number of ge-
netic operators, for crossover operators and mutation ope-
rators, Nf=4, for decoding operators, Nf=2. Let’s take the
crossover operators as an example. In the CSth cycle, the
improvement rate of the ith crossover operator is
denoted as 7,,(CS,i)(i=1,2,--- ,Nf). Initialize I,,(1,i) =
0(i=1,2,---,Nf) at the beginning of the algorithm, once
the ith crossover operator is applied to the individual S in
the CSth cycle, 1,,(CS,i) is updated as

max,old — Cmax

1,(CS. i) =1,(CS — 1,0+ & (20)

Cmax,old
where C,0q 1S the minimal C,, in the last cycle. The
improvement rate is updated in PopL or PopR respect-
ively. Moreover, if I,(CS,i) <0, it is initialized to a
small enough positive number SM = 107, It is worth not-
ing that there is a mutation probability before applying a
mutation operator. If no mutation operator applies to the
individual, the improvement rate will not update. The se-
lection probability of the ith crossover operator in the
next cycle is calculated as

prob(CS +1,i) =

Nf
max{O.l,min{0.9,Im(CS,i)/ZIm(CS,i)}}. 2n

i=1
Also, in the case that no improvement in the fitness
after a crossover operator is applied to the individual, all

the selection probabilities of each crossover operator in
the next cycle are set to be equal.

5.6 Computational complexity analysis

The crossover operators, the mutation operators, and the
decoding operators are key parts of the DPMOGA. The
complexity of crossover and mutation operators is shown
in Table 2. The computational complexity of DPMOGA
is mainly reflected in decoding operators. According to

[26], the complexity of SSGS and PSGS is both O(|J’R),
where R is the number of renewable resource types. In
the MAISPTT, the decoding operation of PopL and
PopR is consistent. The status of four resources have to
be considered while finding feasible resources, and the
complexities for finding personnel, support equipment,

supply resources, and work station space are
0(|J|ZZ|ka| : 0[|J|2Z|Lek|], 0[|J|2Z|ka|), and
keKp keKe keKw

O(|JI* X |K s]) respectively.

Table 2 Complexity of genetic operators

Crossover operator Mutation operator

Crossover 1 O(NP) Mutation 1 O(NP)
Crossover 2 O((J]-2)xNP) Mutation 2 O(NP)
Crossover 3 O(|J|*NP) Mutation 3 O(NaxNP)
Crossover 4 O(|J|xNP) Mutation 4 O(|J|xNP)

6. Simulation experiments
6.1 Mission cases generation

The simulation cases are generated based on the Admiral
Kuznetsov flight deck as shown in Fig. 2. The general
AoN network is shown in Fig. 5. There are 19 real opera-
tions to be performed for each single aircraft except for
the dummy starting operation (numbered 1) and the
dummy ending operation (numbered 21). The numbers
regarding the types of personnel, support equipment and
supply resources are |Kp|=4, |Ke|=7, and |Kw|=5 respect-
ively, and the required unit of personnel and support
equipment for all the relevant operations is 1. Only one
kind of work station space (cockpit) is considered, i.e.,
|Ks|=1, and the maximum number of personnel who are
performing concurrently in cockpit is 1. In addition, the
maximum number of aircraft that each supply resource
can support at the same time is set as [Lw;, Lw,, -+, Lws] =
[9,14,2,4,6].

Fig. 5 AoN network of single-aircraft

According to [10], the configured number of personnel
should be determined based on mission and experience.
PS denotes the average personnel strength, and the num-
ber of personnel with trade k (k € Kp) is calculated as
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PS - Z rp,'jkd,'j
@i.)el

Cd

max

ILpil= (22)

In our simulation experiments, the deck cycle is set as
C¢ . =380 min.

The first five types support equipment (numbered 1-5)
are fixed stations, and their configured numbers are
[|Leil,|Lesl, - ,|Les]] =1[7,16,6,6,8]. Among these fixed
stations, support equipment No.2 is sharing support
equipment, while others are exclusive support equipment.
Moreover, support equipment No.6 and No.7 are mobile

equipment, which can be regarded as stationary equip-

ment whose support coverage is the whole area of flight
deck, and their configured number is sufficient and
without constraints.

The personnel transfer velocity is set as vp, =5 km/h,
Vke Kp. For support equipment numbered 1-6, their
transfer velocity is set as 3 km/h, and the setup time is set
as [uy,uy, -+ ,ug] =[20,10,30,30,20,20]. The distance
matrix between work stations, the requirements and dura-
tion of each operation are large-scale and not listed.

Three types of mission cases are described in Table 3.
There are two average personnel strengths, PS=1.8 and
PS=3.2 in each mission case.

Table 3 Mission cases

Service parking spot number

._.
(S}
w
~
W
=N

Mission case 7

9 10 11 12 13 14 15 16

Aircraft type; released time/min

Mission 1 A0 B0 C;0 C0 D;0 D0 D0
Mission 2 A0 B0 A0 C0 C0 C;0 C;0
Mission 3 A;0 B0 A;0 C;0 C,0 C;0 C,0

D;0 — — — — — — — —
D;0 D;8 D;7 D;12 E;11 — — — —
C;0

[OR] D;7 D;12 D;11 D;l16 D;15 D;20 E;19

6.2 Parameters setting

There are three key parameters needed to be discussed in
the proposed DPMOGA, i.e., the population size NP in
each population, the threshold value ¢ in adaptive muta-
tion probability, and the initializing mutation probability
P,o. The Taguchi method of design of experiment (DOE)
[27,28] is used to determine a set of suitable parameters
for the DPMOGA in this section. Combinations of differ-
ent values of these parameters are shown in Table 4. Ex-
perimental evaluation among three mission cases with
PS=1.8 is conducted. We run the DPMOGA 20 times in-
dependently for each mission case with the maximum
number of evaluation 0=10 000. The average response
variable (ARV) values are the following average devi-
ation values:

ARV = i i Gy~ LB; /(20% 3)

~IB (23)

=1 j=1

where C;; is the jth makespan of the ith mission case ob-
tained by the DPMOGA, LB; is the lowest makespan of
the ith mission case obtained by the DPMOGA.

Table 4 Combinations of parameter values

Level
Parameter
2 3 4 5
NP 30 60 90 120 150
o—g, 0.01 0.05 0.09 0.13 0.17
Puo 0.005 0.05 0.1 0.2 0.3

The average ARV of each level for parameters is
shown in Table 5, where Delta is the range of average
ARV for each parameter, and Rank is the significance
rank of each parameter.

According to Table 5, it can be seen that NP is the
most significant parameter among the three parameters.
The best combination of parameter values are NP=60,
02=0.13,and P,,=0.2.

Table S Average ARV of orthogonal experiments

Level NP o Puo
1 0.0128 0.01158 0.01247
2 0.0092 0.01061 0.01205
3 0.01427 0.01384 0.01176
4 0.0119 0.01016 0.00972
5 0.01129 0.01328 0.01347
Delta 0.00507 0.003 68 0.003 74
Rank 1 3 2

6.3 Comparisons with existing algorithms and
discussion

To evaluate the performance of the proposed DPMOGA,
experiments comparison among different mission cases is
conducted. Four different algorithms for RCPSPs, i.e., the
efficient genetic algorithm (EGA) [17], IPSO [13], the
multi-modal genetic algorithm (MMGA) [16], and HEDA
[14], are used to make a comparison with DPMOGA. All
settings for the compared algorithms are using the same
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settings proposed in the previous studies.

After 20 independent runs for each algorithm with the
maximum number of evaluation 0=10000, the results are
shown in Table 6. The performance of each algorithm is
measured by the average makespan (Avg.), the best
makespan (Best.), and the variance of 20 results of each
algorithm (Var.). Furthermore, according to [29—32], the
minLTF priority rule or the minSLK priority rule per-
forms better while solving the RCPSP, so comparisons
with priority rules are also conducted. The evolutionary
convergence curves of the five algorithms for three mis-
sions with two PS levels are shown in Fig. 6. In Table 6,
for all cases and PS levels, the average makespan and the
best makespan obtained by DPMOGA are better than that

343

obtained by other algorithms, and except Mission 2 with
PS=1.8, the variance of results obtained by DPMOGA is
also better than that obtained by other algorithms. From
the prospective of average makespan in all the mission
cases with PS=1.8, we can see that as the number of
aircraft increases, the difference between the average
makespan obtained by DPMOGA and that obtained by
other algorithms is increasing. The heuristics using PSGS
with the minLTF priority rule and the minSLK priority
rule perform poorly, but the calculation speed is fast.
Also, the value of PS has a strong impact on the
makespan. When PS is larger, the configured number of
personnel in each mission case increases, so the best and
the average makespans obtained decrease obviously.

Table 6 Results of experiments

Mission case PS Performance measurement Algorithm Priority rule
DPMOGA EGA IPSO HEDA MMGA minLFT minSLK
Avg. 75.7 76.215 76.615 76.345 79.115
1.8 Best. 75.2 75.7 75.3 75.9 77.4 93.8 87.3
Mission 1 Var. 0.0758 0.0824 2.2529 0.25 0.576 1
fsston Avg. 57.565 58.565 5879 58805  59.195
3.2 Best. 56.8 58 58 58.5 58.6 65 63.5
Var. 0.055 0.0971 0.3052 0.0373 0.0637
Avg. 74.695 75.825 76.6 78.53 79.445
1.8 Best. 74.0 75.2 74.6 77.3 77.8 95.6 87.7
Mission 2 Var. 0.1689 0.1472 2.5274 0.398 0.4847
fsston Avg. 57.41 583867  59.335  59.085 59.2
3.2 Best. 57.1 57.4 58.2 58.6 58.7 63.1 68.8
Var. 0.0378 0.1998 0.434 0.054 0.0674
Avg. 74.35 77.72 78.155 80.36 80.83
1.8 Best. 74 76.1 75.5 79 79.3 87.6 83.4
Mission 3 Var. 0.0553 0.5164 2.5626 0.3099 0.8843
Avg. 61.805 62.435 63.58 62.815 62.45
32 Best. 61.6 62 62 61.9 61.7 66.1 67.4
Var. 0.0268 0.1645 2.0312 0.1413 0.0521

As for the four compared algorithms, their perform-
ance is different in different cases. For EGA, it outper-
forms the other three compared algorithms from the per-
spective of the average makespan in Table 6. The vari-
ance of results obtained by EGA is relatively small, and
especially in all the mission cases with PS=1.8, EGA gets
the smallest variance in the four compared algorithms.
The best makespan obtained by EGA is usually better
than that obtained by MMGA and HEDA. In the EGA,
another two genes are added into the AL encodings in or-
der to select the SGS and justification direction. Similar
to our DPMOGA, this algorithm can adaptively select a
better performing SGS and justification direction during
the iteration process to generate a scheduling plan. For
IPSO, the best makespan obtained is better than that ob-
tained by other three compared algorithms in most mis-
sion cases. However, it can be seen in Table 6 that the
variance obtained by IPSO is the largest. Also, this al-
gorithm no longer converges after a certain number of ite-

rations as shown in Fig. 6. These phenomena show that
the IPSO has poor stability and is easy to fall into the lo-
cal optimal solution. For HEDA, this algorithm performs
moderately but better than MMGA in most mission cases
from the perspective of three performance measurements.
For MMGA, it usually performs the worst in the four
compared algorithms, whether from the perspective of the
average makespan or the perspective of the best make-
span. We can also find that the convergence speed of the
MMGA is slower from Fig. 6. However, MMGA obtains
the lowest best makespan in Mission 3 with PS=3.2. Ano-
ther phenomenon (also appears on HEDA) is that, when
the value of PS decreases, the variance of results ob-
tained by MMGA becomes larger. As the PS value de-
creases, the number of personnel decreases, and the op-
timization space becomes smaller, so it is difficult for
MMGA to find a better solution within a limited number
of iterations.
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Fig. 6 Evolutionary convergence curves for mission cases

The EGA performs better than the other three com-  and EGA come from the same sample. The result of the
pared algorithms. In order to show the improvement of  hypothesis test is shown in Table 7. We can see that the p-
the DPMOGA, the Kruskal-Wallis test for the results ob- ~ values under different test conditions are all extremely
tained by DPMOGA and EGA is carried out. We pro-  small. Therefore, we have sufficient certainty to reject the

pose the null hypothesis Hy: results obtained by DPMOGA  null hypothesis.
Table 7 Results of the Kruskal-Wallis test

Mission 1 Mission 2 Mission 3

PS=1.8 PS=32 PS=1.8 PS=3.2 PS=1.8 PS§=32

p-value

p 3.23x 107 5.59% 1078 1.12x 1077 3.45%x 1077 6.17x1078 7.62% 1077
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7. Conclusion and future work

In this paper, the scheduling problem of flight deck ope-
rations for the pre-flight preparation stage is studied. The
MAISPTT is considered as a resource-constrained multi-
project scheduling problem with transfer times. In view
of the NP-hard nature of MAISPTT, the DPMOGA is
proposed. In the simulation section, the best combination
of parameter values are determined by the Taguchi me-
thod. To evaluate the performance of the proposed
DPMOGA, simulation experiments among different mis-
sion cases with different personnel strengths are conducted.
Simulation experiment results show that the DPMOGA
outperforms some other state-of-the-art algorithms.

In the future, three main tasks require more in-depth
research. Firstly, as we can see in Section 6, the value of
PS has a strong impact on the makespan. This inspires us
to analyze the impact of resource composition, and then
study the joint optimization method for scheduling and
resource configuration. Secondly, more efficient optimi-
zation algorithms for FDOSP need to be studied. Thirdly,
many uncertain factors may influence the operation
scheduling, so the dynamic scheduling method and the
robust scheduling method also need to be considered.
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