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Abstract: Surrogate models have shown to be effective in as-
sisting evolutionary algorithms (EAs) for solving computationally
expensive complex optimization problems. However, the effect-
iveness of the existing surrogate-assisted evolutionary algo-
rithms still needs to be improved. A data-driven evolutionary
sampling optimization (DESO) framework is proposed, where at
each generation it randomly employs one of two evolutionary
sampling strategies, surrogate screening and surrogate local
search based on historical data, to effectively balance global and
local search. In DESO, the radial basis function (RBF) is used as
the surrogate model in the sampling strategy, and different de-
grees of the evolutionary process are used to sample candidate
points. The sampled points by sampling strategies are evalu-
ated, and then added into the database for the updating surro-
gate model and population in the next sampling. To get the in-
sight of DESO, extensive experiments and analysis of DESO
have been performed. The proposed algorithm presents superior
computational efficiency and robustness compared with five
state-of-the-art algorithms on benchmark problems from 20 to
200 dimensions. Besides, DESO is applied to an airfoil design
problem to show its effectiveness.
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1. Introduction

Evolutionary algorithms (EAs) or meta-heuristic algo-
rithms (MAs) have become a popular tool for optimiza-
tion due to their promising global search ability. However,
EAs require a large number of function evaluations dur-
ing the optimization process, which limits their applica-
tion in many real-world problems [1]. In real world, there
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are many computationally expensive numerical simula-
tions and costly experiments, such as computational fluid
dynamics (CFD) [2], computational structural mechanics
(CSM) [3], and finite element analysis (FEA) [4]. Solv-
ing the computationally expensive problems has become
popular in science and engineering. Some of them, such
as the computation of the objective function and con-
straints, are extremely expensive, e.g., single CFD simu-
lation takes from minutes to hours [5]. Such expensive
function evaluations (FEs) cannot be afforded by EAs,
which typically require tens of thousands of FEs to ob-
tain the global optimum.

Surrogate models (also known as meta-models [6])
have been widely used in EAs to reduce the computational
time. The principle of surrogate-assisted EAs (SAEAs) is
that the time cost of surrogate models for predicting the
objective function is insignificant compared with expen-
sive function evaluations [7]. Jin et al. pointed out that sur-
rogates can be applied to almost all operations of EAs [8],
consisting of population initialization, crossover, muta-
tion, local search, fitness evaluation and so on [9-11]. A
variety of machine learning models have been used to
construct surrogates, such as polynomial regression (PR)
[12,13], Gaussian processes (GP) [14—16] (also known as
Kriging [17,18]), radial basis function (RBF) [19], artifi-
cial neural networks (ANNs) [20—22], and support vec-
tor machine (SVM) [23,24]. Moreover, ensemble of sur-
rogates is also used to enhance the performance of SAEAs
[25,26].

With limited computational budgets, researchers have
conducted detailed studies on ways of employing surro-
gate models [7,8]. The choice of a new sampled point for
evaluation is significant for updating the surrogate model
and guiding the optimization process. The sampled points,
which have good fitness values or high-uncertainty, are
promising for fitness evaluation. The sampled points with
good fitness values can accelerate the convergence, and
the points with high-uncertainty can reduce the risk of
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falling into local minima. Generally, uncertainty informa-
tion can be estimated according to the variance provided
by the Kriging model [27], the distance to the evaluated
sample points [28], and the discrepancies among the pre-
dictions of the ensemble surrogates [29]. Jones et al. [27]
developed the efficient global optimization (EGO) meth-
od, where the Kriging model was used to approximate the
exact function and the estimated mean square error was
used to reflect the prediction variance. Several Kriging-
based infill criterions, such as lower confidence bound
(LCB) [15], expected improvement (EI) [30], and proba-
bility of improvement (Pol) [31], have shown promising
performance for low-dimensional optimization problems
with fewer than 15 dimensions. However, due to the
curse of dimensionality, when dealing with high-dimen-
sional expensive optimization problems, the performance
of Kriging-based SAEAs becomes noticeably worse be-
cause it is difficult to build an accurate surrogate model
in high-dimensional space. On the other hand, RBF-based
surrogates are employed widely in high-dimensional ex-
pensive optimization [32,33]. Kriging and RBF are two
widely studied surrogate models. Training of the Kriging
model is time-consuming when the number of samples or
dimensions is large [34]. RBF also is a popular modeling
method with high efficiency and accuracy. RBF is more
suitable for high-dimensional expensive optimization
problems because it works well to approximate high-di-
mensional nonlinear functions and the training time re-
quired for RBF is insensitive to the increase of dimensions.

Various studies indicate that the ability to guide optimi-
zation is more worthy of attention than the accuracy of
models when facing high-dimensional problems [8,32,33].
The surrogate-assisted strategies can be classified into
two main categories, surrogate-assisted prescreening and
surrogate-assisted local search. Surrogate-assisted pre-
screening uses the surrogate’s response function to sort
the candidate offspring points produced by the basic EAs
and then select the points with small predicted responses
as the offspring points. Sun et al. used RBF to sort the
candidate offspring particles and then screen some poten-
tial offspring particles with small response values in the
RBF-assisted social learning particle swarm optimization
(SLPSO) [35]. Li et al. proposed a prescreening criterion
based on the prediction difference of multiple surrogates
[11]. Surrogate-assisted local search is also widely used
in SAEAs, which searches promising sample points in the
local area based on predicted fitness value by surrogate.
Ong et al. employed a trust-region method for the inter-
leaved use of exact models for the objective and con-
strained functions with computationally cheap RBF sur-
rogates during the local search [36]. Wang et al. built a
local RBF model for searching one candidate point by the

differential evolution (DE) optimizer [32]. Cai et al. used
the surrogate-based trust region local search method to
guide the genetic algorithm to search in an accurate way
[34].

Recently, some considerable progress has been made
on improving the SAEAs search schemes. Liu et al.
presented a Gaussian process surrogate model assisted
evolutionary algorithm for medium-scale computation-
ally expensive optimization problems (GPEME) (20-50
decision variables), in which a Gaussian process model
with LCB prescreen solutions in a differential evolution
algorithm and a dimensional reduction technique was
proposed to enhance the accuracy of the GP model [15].
Sun et al. proposed a surrogate-assisted cooperative
swarm optimization (SA-COSO) algorithm, in which a
surrogate-assisted particle swarm optimization (PSO) al-
gorithm and a surrogate-assisted social learning based
PSO algorithm cooperatively search for the global opti-
mum [35]. Yu et al. proposed a surrogate-assisted hierar-
chical PSO (SHPSO) algorithm, which builds a local RBF
model with a certain number of current best samples [33].
On one hand, the optimum of the RBF model is searched
as a candidate point by SLPSO. On the other hand, the
RBF is used to prescreen out some promising particles
whose estimated values are smaller than their personal
bests. Wang et al. proposed a novel evolutionary sampl-
ing assisted optimization (ESAO) method which consists
of two major search strategies, in which a global RBF
model is built to choose the best offspring generated by
evolutionary operators (mutation and crossover), the other
local RBF model is built for searching one candidate
point by the DE optimizer, and the two strategies are em-
ployed alternately in optimization [32].

In order to improve the effectiveness of the SAEAs. In
this paper, we present a data-driven evolutionary sampl-
ing optimization (DESO) framework for expensive op-
timization problems. DESO considers both the surrogate
screening (SS) and surrogate local search (SLS) as two
different degrees of evolutionary sampling strategies.
RBF models are employed as surrogates in the two
strategies because of its high accuracy and fast modeling
for high dimension problems. SS is used as a global
search to find new promising points over the large area.
SLS is used to exploit the most promising area. To ba-
lance exploration and exploitation and avoid falling into
local optima, DESO randomly employs SS or SLS to ob-
tain a new sample point for updating the surrogate model
and guiding the optimization process. In each generation,
population and surrogate models are updated based on a
predefined number of best sample points from database.

The main contributions of the paper are as follows:

(1) Two data-driven evolutionary sampling strategies,
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SS based on evolutionary operators and SLS based on the
evolutionary optimizer, are proposed to sample promis-
ing points. They are used for the global search and local
search, respectively.

(i1) The proposed method uses one of the two evolu-
tionary sampling strategies randomly in each iteration to
balance exploration and exploitation. Moreover, adaptive
parameters are set for different dimensional problems.

(ii1) The proposed method shows superiority compared
to five state-of-the-art algorithms on 30 test functions and
an airfoil design problem.

The remainder of this paper is organized as follows.
Section 2 introduces the related techniques, such as DE
and RBF networks. Section 3 details the data-driven evo-
lutionary sampling optimization framework. Subsequently,
experimental results and analysis are conducted in Sec-
tion 4. Finally, Section 5 concludes this paper and dis-
cusses the possible future work.

2. Related techniques
2.1 DE

DE, proposed by Storn and Price [37], is a very popular
EA, which contains four main operations: initialization,
mutation, crossover, and selection. DE is widely used in
various scientific and engineering optimization problems
[38]. Researchers have proposed different variants of the
basic algorithm to improve its performance [39—41]. In
this work, DE is employed as the optimizer for SLS, and
its mutation and crossover operations are also used to
generate sample points for SS.

Suppose that a population with » individuals is ex-
pressed as P = [x,, x,, ***, x,]. The ith individual with d
dimensions is x; = [x],x7,---,x?] in P. The mutation and
crossover are briefly introduced as follows.

In mutation, the mutant vector v; = [v},v?,---,1¥] can
be obtained by the mutation operator. The commonly
used mutation operators are as follows.

(1) DE/rand/1

Vvi=x,+F(x,-x,3) (1)
(ii) DE/best/1
Vi = Xpes + F(X,1—X,2) (2)
(iii) DE/current-to-rand/1
vi=x;+F(x,—x;)+ F(x,,—Xx,3) 3)
(iv) DE/current-to-best/1
Vi =X+ F(Xpeq—X;) + F(X,1—X,2) @)

where Xx,,, x,,, and x,; are three mutually different indi-
viduals chosen from the current population, and F is a

scaling factor which typically lies in the interval [0.4, 1].
DE/rand/1 is selected in this work.

In crossover, the trial vector, expressed as u; =
[u),u,---,uf], is generated from x; and v;. There are two
kinds of crossover methods: exponential and binomial
method. In this work, we just introduce the binomial,
whose formula can be expressed as

J J S 7

e { Vi, rand/ € [0,1]1 < Cror j = jun ®
x/, otherwise
where u{ is the jth component of the ith offspring. x{ and
v/ are the jth component of the ith parent and mutated in-
dividual. Cr is a constant between 0 and 1. The rand in-
dicates a uniformly distributed random number. j,,.q4 is a
randomly chosen index that ensures u; has at least one
component of v, More introduction of DE can refer to [42,
43]. Other EAs can also be used as the optimizer in SLS
of DESO, such as PSO [44], Jingqiao’s adaptive differen-
tial evolution (JADE) [39], and SLPSO [45], etc.

2.2 RBF network

RBF is widely used as the surrogate model for high-di-
mensional expensive problems (rn > 30) [34]. Given the
sampled points {(x;,y,)lx; € RY,i=1,2,--- N}, RBF uses
a weighted sum of basis-functions to approximate the fit-
ness function landscape as follows:

N
f@ =) welik-x) (©)

where ||-|| is the Euclidian norm, w; is the weight coeffi-
cient and ¢(-) is a kernel function. The commonly used
radial basis kernels are the Gaussian function, thin-plate
splines, linear splines, cubic splines, and multi-quadrics
splines [46]. The Gaussian kernel function ¢(x)=
exp(—x?/B) is chosen in this paper, where 8 denotes the
shape parameter. In addition, the weight vector w =
[wy, s, ,wy]Ty can be computed as follows [33]:

w=(D"D)'d"y (7

where y = [y,,y,,---,yv]T is the output vector and @ is
the following matrix:

d(x; —x)) d(x—xy)

@ = 8)

dxy —xy)

d(xy —x1)

The shape parameter of the Gaussian kernel function,
referred to [33], is set tof8 = Dy (dN)™'¢, where D, is
the maximal distance between the training data. Once
parameter S and the training samples are obtained, the
RBF model can be constructed efficiently.
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3. DESO

In this section, DESO is proposed, which consists of two
evolutionary sampling strategies: SS for global search
and SLS for surrogate local search. They can be seen as
sampling methods with different evolutionary degrees,
because SS contains once evolutionary operators and SLS
finds one candidate by the whole evolution optimization
process. DESO attaches importance to historical sample
points very much. In each generation, evolutionary sampl-
ing strategies obtain a sample point for evaluation, then
the evaluated sample point is added to the database, until
the budget of fitness evaluation uses up. Sample points
with good performance guide DESO to search promising
areas by building RBF models and constituting popula-
tion. In this paper, the evolutionary sampling process em-
ploys randomly one of the two sampling strategies, SS
based on the evolutionary operators and SLS based on the
evolutionary optimizer, to balance exploration and exploi-
tation.

Algorithm 1 Pseudo code of the proposed DESO.

1 Initialize: Generate &V, initial samples {x,, k=1,2, -*-,
N,}, by Latin hypercube design, calculate their original
objective function value f{x,), and initialize the dateset: D =
{6 X)), k=1,2, -+, Noj.

2 FEs = N,;

3 while FEs < FE,,, do

4 D, = sort(D);

5 Randomly set S'to 1 or 2 with same probability

// Evolutionary sampling

6 if S=1 then

//Strategy 1: SS based on evolutionary operators

7 Selet NV best samples from D, as population P;

8  Build the RBF model f, by m best samples;

9 Generate offspring U according to (1) and (5);

10 Obtain the predictions of all offspring using f;

11 Select the most promising candidate solution x,
according to predictions;

12 else

//Strategy 2: surrogate searching based on evol-
utionary optimizer

13 Selet 7 best samples from D, as sample set s;

14 Set search area according to upper bound # and
lower bound / of all samples in s;

15 Build the RBF model f, by t best samples;

16 Obtain the candidate solution x, by minimizing
f; using evolutionary optimizer;
17 endif

18 Evaluate fitness f{x,) of the candidate solution;
19 Add the evaluated sample point into database D;
20 FEs=FEs+1

21 end while

3.1 SS based on evolutionary operators

The pseudo code of SS based on evolutionary operators is
shown in lines 7 to 11 of Algorithm 1. The strategy se-
lects the best N samples in database to form population,
and build an RBF model f, using the best m samples. In
early optimization, all sample points in the database are
used to train the RBF model. When the database is big
enough, we set m to a fixed value avoiding too much
training time. In this work, we set a maximum of m to
300. Then, the population generates the same number of
offspring by evolutionary operators. Different EAs opera-
tors can be used here, such as DE, PSO, and GA. We em-
ploy DE/rand/1 mutation and crossover. The candidate
point x, with the lowest prediction value will be evalu-
ated by using the expensive fitness function. Finally, the
evaluated sample point is added into the database. When
the evaluated sample point is better than the worst of the
sample in population, the new sample will be selected to
form population and then helps guide the optimization
process.

3.2 SLS based on evolutionary optimizer

The surrogate local search strategy aims to find the op-
timum of the local surrogate model to accelerate the con-
vergence of the optimization process. The pseudo code
can be seen in lines 13 to 16 of Algorithm 1. SLS firstly
selects 7 best samples from the database as a sample set §
for local search. The local surrogate model is built by
training the RBF model with the 7 sample points. Differ-
ent from the SS strategy, the SLS strategy builds a sur-
rogate model using a small number of sample points.
Moreover, in order to solve problems of different dimen-
sions, 7 1s set to 25+d and its maximum is 60, where d is
the dimension of the problem. Search area [/, u] is also
determined by the sample set referring to (9) and (10).
For each variable, we set the upper bound and the lower
bound of the sample set as search ranges of the local

search.
l: [ll’ZZ"“ 9ld]
©)
u= [l/tl,l/lz,"' ’ud]
l; = min x|
_ (10)
u; =max x|

where i=1,2,---, 7.

Then the evolutionary optimizer can search one can-
didate sample point by minimizing £, under preset stop-
ping criteria. It should be noted that the stop criterion of
the optimizer does not need to be set very strict since the
surrogate model has error. The evolutionary optimizer
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can be DE, PSO, and GA. For researching the perform-
ance of evolutionary optimizers, we will test different evo-
lutionary optimizers in Section 4. After fitness evaluation,
the new sample point is added into the database. Same as
the surrogate screening strategy, the new sample point
with good performance will help for building RBF mo-
dels and updating search area [/, u] in the next generation.

3.3 Framework of the proposed DESO

The proposed DESO method combines the global search
and the local search to balance exploration and exploita-
tion. They are realized by two different types of evolu-
tionary sampling strategies.

The framework of DESO is shown in Fig.1. The solid
arrows stand for the flows of the algorithm, and the dot-
ted arrows represent the data flow. The pseudo code of
DESO is shown in Algorithm 1. Initially, N, sample
points are generated from the design space by using Latin
hypercube sampling (LHS) [47], which segments the dis-
tribution into » intervals and makes sure that at least one
value is randomly selected form each interval. The num-
ber of intervals, n, is the number of iterations of LHS.

Then, the fitness value of samples is evaluated, and the
database is generated. Database D consists of all evaluated
sample points. Before evolutionary sampling, D is sorted
as D, according to the fittness value. Evolutionary
sampling is used to find the promising sample point for
fitness evaluation. In this phase, DESO randomly selects
a strategy between SS and SLS in each iteration until the
termination condition is met. Through this way, evolu-
tionary sampling effectively accelerates the convergence
and avoids falling into the local optimum. If SS is em-
ployed, N best sample points are used to form the popu-
lation. All sample points are used to build the global RBF
model. As the number of training sample points in-
creases, the process of the training surrogate model be-
comes time-consuming. Thus when the number of sample
points is large enough (more than m), the global RBF
model is built by using m best sample points. If the SLS
strategy is employed, 7 best sample points are used to
build the local RBF model. And the search space is set
based on the 7 best sample points. SS plays the role of ex-
ploration and SLS plays the role of exploitation.

SS based on evolutionary operators
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Fig. 1
4. Experimental study and discussion

The algorithm considers the characteristics of high-di-
mensional problems, and set adaptive parameters in SLS
for different dimensions. Therefore, it can solve the prob-
lems with different dimensions. In this section, we set up
30 test functions including six types of test questions and
five different dimensions, as shown in Table 1. Table 2
shows the result of DESO on 30 test functions. For con-

A diagram of the proposed framework

venience, we use simplified names for easy understand-
ing of a specific problem. For example, G20 represents
the 20-dimensional Griewank problem, and SRR100 rep-
resents the 100-dimensional shifted rotated rastrigin prob-
lem. Moreover, we take the discussion and experimental
study of DESO. On one hand, we discuss the effect of
sampling strategies (SS and SLS) on DESO. On the oth-
er hand, we research the impact of the evolutionary op-
timizer on SLS by testing different optimizers. Finally,
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we compare the proposed DESO algorithm with five state-
of-the-art algorithms. All test problems are limited in

1 000 function evaluations, and 20 independent runs are
performed to obtain statistical results.

Table 1 Properties of the test problems
Abbreviation Problem d Search space  Optimum Property
E Ellipsoid 20,30,50,100,200  [-5.12, 5.12]° 0 Unimodal
R Rosenbrock 20,30,50,100,200 [—2.048, 2.048]’1 0 Multimodal
A Ackley 20,30,50,100,200 [—32.768, 32.768]4 0 Multimodal
G Griewank 20,30,50,100,200  [-600, 600]" 0 Multimodal
SRR Shifted rotated rastrigin (f10 in CECO5 [48]) 20,30,50,100,200 [-5, 5]" —330 Very complicated multimodal

RHC Rotated hybrid composition function (f19 in CECO05 [48]) 20,30,50,100,200

[-5, 5]‘1 10 Very complicated multimodal

Table 2  Statistical results of 30 test problems obtained by DESO
Problem Best Worst Mean Median  Standard
E20 1.64E-16  1.95E-14 3.74E-15 2.55E-15 4.57E-15
E30 1.00E-09  3.96E-07 9.04E-08 8.36E-08 9.19E-08
ES0 1.12E-03  2.70E-02  7.67E-03  5.69E-03 5.80E-03
E100  6.38E+00 1.96E+01 1.23E+01 1.15E+01 4.26E+00
E200  3.12E+02 6.65E+02 4.80E+02 4.62E+02 1.04E+02
R20 1.16E+01 1.65E+01 1.30E+01 1.30E+01 1.14E+00
R30  2.35E+01 2.84E+01 247E+01 2.45E+01 1.27E+00
R50  4.50E+01 4.92E+01 4.66E+01 4.66E+01 9.83E-01
R100  9.78E+01 1.07E+02 1.01E+02 1.00E+02 2.35E+00
R200  2.72E+02 4.25E+02 3.49E+02 3.49E+02 3.68E+01
A20 8.52E-07 1.42E-05 3.96E-06 2.92E-06 3.10E-06
A30 7.64E-06 8.95E-05 3.21E-05 2.56E-05 1.82E-05
A50 4.24E-04 1.37E+00 2.62E-01  1.82E-03 4.80E-01
A100  2.04E+00 3.75E+00 2.89E+00 2.89E+00 4.71E-01
A200  5.10E+00 6.56E+00 5.94E+00 5.94E+00 4.00E-01
G20 2.04E-10 5.01E-01  5.68E-02 1.46E-06 1.52E-01
G30 1.60E-06  1.19E-02 7.96E-04 4.02E-05 2.63E-03
G50 1.47E-03  3.89E-02 9.60E-03  6.03E-03 1.02E-02
G100 9.20E-01 1.10E+00 1.03E+00 1.03E+00 5.66E-02
G200  9.45E+00 2.39E+01 1.61E+01 1.55E+01 3.38E+00

SRR20 —2.12E+02 —1.17E+02 —1.59E+02 —1.55E+02 2.38E+01
SRR30 —1.11E+02 —-3.04E+01 —7.25E+01 —7.72E+01 2.35E+01
SRR50 1.63E+02 3.46E+02 2.30E+02 2.25E+02 4.64E+01
SRR100 9.99E+02 1.20E+03
SRR200 4.55E+03 4.85E+03
RHC20 1.19E+03
RHC30 9.66E+02
RHC50 1.02E+03 1.04E+03
RHC100 1.19E+03 1.35E+03
RHC200 1.19E+03 1.35E+03

1.39E+03
5.14E+03

1.19E+03
4.83E+03

1.18E+02
1.52E+02

1.20E+03  3.59E+01
9.64E+02 1.89E+01

1.11E+03
9.41E+02

1.25E+03
1.02E+03
1.07E+03
1.40E+03
1.50E+03

1.04E+03 1.75E+01
1.37E+03  4.99E+01
1.35E+03  7.49E+01

4.1 Parameter settings

The proposed DESO framework is flexible to implement

a specific algorithm. Parameters are set in this paper as
follows. Initially, N, sample points are generated by LHS,
then the fitness value is evaluated. N, is set to 100 when
the dimension is less than 100, otherwise N, is 200. Data-
base contains all sample points evaluated by the original
objective function. In the SS strategy, we set N to 50 and
m to the number of samples in the database, but limit the
maximum value of m to 300 [33]. In the SLS strategy, in
order to adapt to problems with different dimensions, 7 is
set to 25+d, and the maximum of 7 is set to 60, where d
represents the dimension of the problem. The evolution-
ary operators of DE are used in the two strategies, and F
and Cr are set to 0.5 and 0.9, respectively. In SLS, when
using the evolutionary optimizer to search for candidate
solution, the termination condition of the optimizer is that
the number of surrogate model evaluations reaches 1 000+
100d or the optimizer does not find better predictions for
10 consecutive generations.

4.2 Discussions

4.2.1 Discussion on sampling strategy

The key of DESO is the data-driven evolutionary
sampling strategy. In order to verify effectiveness of the
evolutionary sampling process in this paper, we compare
DESO with its two variants that only use SS or SLS in
the evolutionary sampling process, which are referred to
here as DESO-SS and DESO-SLS. It can be seen from
Figs. 2—5 that DESO-SS has a slower convergence rate
comparing with DESO and DESO-SLS, where NFE
stands for the number of fitness evaluation. The reason is
that the SS strategy prefers exploration rather than ex-
ploitation. On the contrary, DESO-SLS initially con-
verges faster than DESO. However, because the SLS
strategy only focuses on local exploitation, it is easy to
fall into local optimum in the search process. Randomly
employing the SLS strategy and the SS strategy can ba-
lance the two capabilities of exploration and exploitation,
and improve robustness of the algorithm.
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As shown in Table 3, DESO is significantly better than
DESO-SS and DESO-SLS in Ellipsoid, Rosenbrock,
Ackley, and Griewank problems, but for SRR and RHC,

which are very complicated multimodal problems, their
effects are not much different. Even for SRR50, SRR100
and RHC20, DESO-SS is slightly better than DESO.

Table 3 Comparison of DESO using different sampling strategies

Problem DESO-SS DESO-SLS DESO
Mean (Standard) Mean (Standard) Mean (Standard)
E20 3.6664E-07(1.9910E-07) 3.2815E-01(3.5169E-01) 3.7414E-15(4.5651E-15)
E30 7.4239E-03(1.0365E-02) 9.4273E-01(5.4385E-01) 9.0387E-08(9.1891E-08)
E50 3.4855E+00(2.3903E+00) 6.2837E+00(2.2834E+00) 7.6666E-03(5.8049E-03)
E100 2.9328E+02(6.2192E+01) 7.2900E+01(2.8170E+01) 1.2283E+01(4.2566E+00)
R20 1.6134E+01(1.3308E+00) 2.6261E+01(8.6217E+00) 1.3039E+01(1.1425E+00)
R30 2.7951E+01(9.6690E-01) 3.4825E+01(7.0368E+00) 2.4713E+01(1.2670E+00)
R50 6.6163E+01(2.0960E+01) 5.9539E+01(6.9527E+00) 4.6602E+01(9.8297E-01)
R100 3.7220E+02(6.3760E+01) 1.5384E+02(2.1127E+01) 1.0127E+02(2.3479E+00)
A20 1.4194E+00(4.9019E-01) 6.0124E-01(5.2485E-01) 3.9556E-06(3.0972E-06)
A30 3.1331E+00(5.5586E-01) 4.8188E-01(3.1148E-01) 3.2057E-05(1.8247E-05)
A50 4.1422E+00(6.2899E-01) 1.3383E+00(3.4250E-01) 2.6203E-01(4.7966E-01)
A100 7.6050E+00(9.1124E-01) 3.4714E+00(4.7813E-01) 2.8883E+00(4.7124E-01)
G20 5.8210E-01(2.1501E-01) 2.4515E-01(4.0269E-01) 5.6784E-02(1.5159E-01)
G30 5.3728E-01(1.8834E-01) 3.8896E-02(1.9702E-02) 7.9600E-04(2.6309E-03)
G50 1.0964E+00(1.2913E-01) 1.9459E-01(6.1384E-02) 9.5999E-03(1.0159E-02)
G100 1.8652E+01(4.9693E+00) 2.5451E+00(6.6982E-01) 1.0250E+00(5.6619E-02)
SRR20 —1.5860E+02(1.4435E+01) —1.3860E+02(1.828 1 E+01) -1.5919E+02(2.3821E+01)
SRR30 —5.6265E+01(2.6909E+01) —3.8143E+01(3.4480E+01) —7.2471E+01(2.3485E+01)
SRR50 2.2778E+02(5.4075E+01) 2.5261E+02(4.4738E+01) 2.3005E+02(4.6423E+01)
SRR100 1.1417E+03(6.8809E+01) 1.3542E+03(1.0738E+02) 1.2021E+03(1.1833E+02)
RHC20 1.1807E+03(5.0535E+01) 1.2103E+03(6.3443E+01) 1.1926E+03(3.5859E+01)
RHC30 9.6940E+02(2.3313E+01) 1.0127E+03(3.8582E+01) 9.6599E+02(1.8853E+01)
RHC50 1.0631E+03(2.1495E+01) 1.0988E+03(3.6477E+01) 1.0411E+03(1.7546E+01)
RHC100 1.3871E+03(3.8007E+01) 1.3784E+03(3.3023E+01) 1.3541E+03(4.9898E+01)

4.2.2 Discussion on SLS with different optimizers

We consider whether the optimizer used in the SLS
strategy will have a great impact on DESO performance.
Then we compare three variants of DESO, DESO-PSO
using the PSO algorithm as the optimizer, DESO-JADE
using the JADE algorithm as the optimizer and DESO-
DE using the DE algorithm as the optimizer (that is, the
DESO algorithm introduced in this article). The results
can be seen in Table 4. It shows that their results have not
much difference. Different optimizers in SLS just have
slight import to the performance of DESO when the used
optimizers are effective. The reason may be that the SLS
strategy searches on the surrogate model. The candidate
solution depends heavily on the accuracy of the surrogate
model. In high-dimensional problems, it is difficult to
guarantee a promising candidate solution on the surro-
gate model also performs well on the original objective

function. Hence, improving the accuracy of the surrogate
model is a more important issue than the optimizer.

4.3 Comparison with other methods

As seen in Table 2, DESO performs very well on the El-
lipsoid, Rosenbrock, Ackley, and Griewank problems.
The median of E20-E50, A20-A50, and G20-G50 can all
reach the order of 103, and it can be considered that a
suitable optimal solution has been found. Due to the in-
herent characteristics of the Rosenblock function, the late
convergence is very slow. SRR and RHC problems are
very complicated. It is not easy for DESO to find the basin
of attraction of the global minimum, then exert its effi-
cient exploitation capability. For the same type of prob-
lem, the evaluation value of the low-dimensional prob-
lem is smaller than that of the high-dimensional problem,
but G20 is an exception. According to Locatelli’s research
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[49], the reason is that the effect of the production of co-
sine components (the second term of Griewank function)
can be neglected as the dimension increases. In addition,
compared with A30, the difference between the best solu-
tion of A50 and the worst solution of A50 suddenly be-

comes larger. Because as the dimension increases,
it becomes difficult to quickly find the global optimal
solution. In A50, sometimes the global optimal region
can be quickly found by exploration, but sometimes it
cannot. The same problem also occurs on the G20.

Table 4 Comparison of DESO using different local search optimizers

Problem DESO-DE DESO-PSO DESO-JADE
Mean (Standard) Mean (Standard) Mean (Standard)
E30 9.0387E-08(9.1891E-08) 1.0431E-08 (1.2405E-08) 2.0660E-08(3.5522E-08)
ES50 7.6666E-03(5.8049E-03) 2.9575E-03(2.5580E-03) 2.0126E-03(2.1218E-03)
E100 1.2283E+01(4.2566E+00) 3.1564E+00(1.1696E+00) 2.9194E+00(1.4148E+00)
R30 2.4713E+01(1.2670E+00) 2.3802E+01(1.0361E+00) 2.4079E+01(5.9837E-01)
R50 4.6602E+01(9.8297E-01) 4.5721E+01(6.5097E-01) 4.5523E+01(7.1813E-01)
R100 1.0127E+02(2.3479E+00) 9.7918E+01(4.5785E-01) 9.8597E+01(6.2668E-01)
A30 3.2057E-05(1.8247E-05) 4.9287E-01(6.3449E-01) 5.7762E-02(2.5830E-01)
A50 2.6203E-01(4.7966E-01) 7.8886E-01(7.0006E-01) 6.0062E-01(6.9700E-01)
A100 2.8883E+00(4.7124E-01) 2.8424E+00(3.9646E-01) 3.0345E+00(2.9678E-01)
G30 7.9600E-04(2.6309E-03) 1.3273E-02(4.9904E-02) 5.0524E-05(1.5774E-04)
G50 9.5999E-03(1.0159E-02) 2.7314E-03(5.1458E-03) 2.4616E-03(3.0528E-03)
G100 1.0250E+00(5.6619E-02) 4.1510E-01(7.4805E-02) 5.2188E-01(1.2095E-01)

Fig. 2 to Fig. 5 respectively show the convergence pro-
cess of DESO in the 20-dimensional to 100-dimensional
problems, where the x-axis is NFE and the y-axis is the
average current fitness value. Compared with the DE al-
gorithm, DESO significantly accelerates the convergence
speed. With only 1 000 function evaluations, DESO can
obtain an appropriate solution. We compare the DESO al-
gorithm with success-history based adaptive DE
(SHADE) [50], an excellent variant of DE, and four state-
of-the-art SAEA algorithms, such as GPEME [15],
SACOSO [35], SHPSO [33] and ESAO [32]. Compared
with the five algorithms, DESO has obvious advantages
to different dimensions of the Ellipsoid, Rosenbrock,
Ackley, and Griewank problems. DESO converges faster
and has a higher accuracy. The comparison results of

DESO and the five algorithms can be seen in Table 5. In
this table, results of GPEME, SA-COSO, SHPSO and
ESAO refer to their origin literature. N/A means there is
no result of the test function in literature. The best results
of test functions are bold. DESO significantly outper-
forms the SHADE on all benchmark functions. It shows
that SAEA is better than traditional EA in expensive
problems. For different dimensional Ellipsoid, Rosen-
brock, Ackley, and Griewank problems, DESO is signi-
ficantly better than GPEME, SA-COSO, SHPSO, and
ESAO. The result demonstrates DESO has powerful
search capabilities. For SRR and RHC problems, the per-
formance of DESO is not much different from GPEME,
ESAO and SA-COSO, and worse than SHPSO.

Table 5 Comparison of DESO with other algorithms

SHADE GPEME SA-COSO SHPSO ESAO DESO
Problem Mean  Standard Mean Standard Mean  Standard Mean Standard ~ Mean  Standard Mean Standard
E20 121.994 54925  1.300E-05 2.180E-05 N/A N/A N/A N/A 1.81E-04 4.68E-04 3.741E-15 4.565E-15
E30 475.636  121.912 0.076  4.010E-02 N/A N/A 0212 0.152 0.027 0.070  9.039E-08 9.189E-08
ES50 1698723 391.560  221.080  81.612 51.475 16.246  4.028  2.060 0.740 0.555  7.667E-03 5.805E-03
EI00 9140.519 1495311 N/A N/A 1033.200 317.180 76.106 21.447 1282.900 134.390 12.283 4.257
E200 44123.612 6920.598 N/A N/A 16382.000 2981.100 N/A N/A 1.76E+04 1.17E+03  479.920  103.740
R20 363.972  128.456 22.428 18.795 N/A N/A N/A N/A 15.162 1.629 13.039 1.143
R30  1058.046 352.854 46.177 25.520 N/A N/A 28.566  0.404 25.036 1.570 24.713 1.267
R50  2257.047 932.045 258280  80.188 252.580  40.744  50.800 3.031 47.391 1.712 46.602 0.983
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Continued
SHADE GPEME SA-COSO SHPSO ESAO DESO
Problem Mean Standard ~ Mean Standard Mean  Standard Mean Standard Mean Standard Mean Standard
R100 6676.190 1502.416 N/A N/A 2714200 117.020  165.590 26.366 578.840  44.767 101.270 2.348
R200 16730.022 3760.863  N/A N/A 16411.000 4096.500 N/A N/A 4.31E+03 2.84E+02  348.720 36.776
A20 15.800 1.184 0.199  0.577 N/A N/A N/A N/A 6.865 3.259 3.956E-06 3.097E-06
A30 16.507 1.205 3.011  0.925 N/A N/A 1.442 0.774 2.521 0.840 3.206E-05 1.825E-05
A50 17.817 0.841 13.233  1.585 8.932 1.067 1.839 5.637 1.431 0.249 0.262 0.480
A100 18.532 0.411 N/A N/A 15.756 0.503 4.113 0.592 10.364 0.211 2.888 0.471
A200 18.865 0.323 N/A N/A 17.868 0.022 N/A N/A 14.696 0.2193 5.943 0.400
G20 54.934 17.333 0.031  0.068 N/A N/A N/A N/A 0.972 0.039 0.057 0.152
G30 127.121  47.575 0.997  0.108 N/A N/A 0.921 0.088 0.953 0.050 7.960E-04 2.631E-03
G50 280.808  43.906  36.646 13.176 6.006 1.104 0.945 0.061 0.940 0.042 9.600E-03 1.016E-02
G100 726981 103.158 N/A N/A 63.353 19.021 1.070 0.020 57.342 5.839 1.025 0.057
G200 1528.380 190.728 N/A N/A 577.760  101.400 N/A N/A 572903  36.043 16.141 3.381
SRR20  —8.473 59.846 N/A N/A N/A N/A N/A N/A N/A N/A —1.59E+02 2.38E+01
SRR30 179.346  79.508 —21.861 36.449 N/A N/A —92.830 22.544 6.325 26.477 =72.471 23.485
SRR50  633.467  89.457 N/A N/A 197.160  30.599  134.420 32.256 198.610  45.825 230.050 46.423
SRR100 2235.075 267.703 N/A N/A 1273.100 117.190  801.730 72.252 713.470  26.454 1202.100  118.330
SRR200 6480.683 252.517 N/A N/A 3927.500 272.540 N/A N/A 5.39E+03 156.8544 4853.100 151.620
RHC20 1395.179 81.068 N/A N/A N/A N/A N/A N/A N/A N/A 1.19E+03 35.9
RHC30 1229.265 49.472  958.590 25.695 N/A N/A 939.610  9.018 931.670 8.942 965.990 18.853
RHC50 1304.984 33.006 N/A N/A 1080.900 32.859  996.600 22.145 975320  37.110 1041.100  17.546
RHC100 1567.296 48.421 N/A N/A 1365.700 30.867 1419.800 38.238  1372.400 27.539 1354.100  49.898
RHC200 1571.078 38.177 N/A N/A 1347300 24.665 N/A N/A 1.456E+03  20.432 1345.500  74.897

4.4 Application of DESO in an airfoil design problem

After DESO has shown its effectiveness on benchmark
problems, we apply it to an airfoil design problem. The
airfoil geometry is parameterized by the parametric sec-
tion method (PARSEC) geometry representation method
[51] in this work. Design variables for PARSEC are
shown in Fig. 6. The optimization problem includes 11
variables. We have chosen the NACA2411 airfoil as the
baseline because it is considered to be a good demonstrat-
or for low subsonic flows [52]. The design values of the
initial airfoil and search range are provided in Table 6. As
the original value is p and the search range is 7, the search
area is [p—r, ptr]. We employ an objective function that
solves the coefficient of lift of an airfoil using the Vortex
panel method given input parameters. The goal of the op-
timization problem is to obtain the maximum lift coeffi-
cient through searching PARSEC parameters. To com-
pare the algorithm with ESAO, SHPSO, and DE, we set
the same parameters in experiment. The initial sample
points number is 50. The population size is set to 30. The
budget of fitness evaluations is 500. For each algorithm,
20 independent runs are carried out and the statistical re-
sults are given. Table 7 shows the statistical results of the
airfoil problem using DESO, ESAO, SHPSO, and DE.

DESO performs the best on all the criteria. ESAO and
SHPSO obtain some worse designs, and they hold almost
the same performance. DE performs the worst. Fig. 7
shows the best optimized geometries of the airfoil by the
four algorithms. The results of DESO, ESAO and SHPSO
are basically in the same shape. The shape of DE is
slightly different from them. Fig. 8 shows the original
shape and the DESO optimized shape. The optimized
shape has obvious changes. In addition, the convergence
history of the airfoil problem using four algorithms is
showed in Fig. 9. The result shows DESO performs the
best over the whole optimization process. Especially,
when the fitness evaluation is less, for example, 150 or
300, DESO outperforms other algorithms.

YXX,,

Fig. 6 Design variables for PARSEC
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Table 6 Optimized PARSEC parameters

Design parameter Original value ~ Search range

(R,) Leading edge radius 0.021 6 0.001 5
(X,) Position of upper crest 0.344 5 0.025
(Y,,) Upper crest point 0.079 12 0.015
(YXX,,) Upper crest curvature —0.644 8 0.01
(X,,) Position of lower crest 0.17 0.02
(Y,,) Lower crest point —-0.033 797 0.015
(YXX,,) Lower crest curvature 0.674 8 0.075
(Trg) Trailing edge thickness 0 0
(T,5) Trailing edge offset 0 0
(arg) Trailing edge direction angle 0 0.175
(Bre)) Trailing edge wedge angle 0 0.05
Table 7 Results of comparison
Algorithm Best Worst Mean Median  Standard
DESO 095881 0.95862 0.95876 0.95878 0.000 049
DE 09585 095214 095651 0.95661 0.001 502
SHPSO  0.95878 0.95732 0.95853 0.95863 0.00033
ESAO 095868 0.95791 095838 09584 0.000 221
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Fig. 7 Geometry of the best optimized airfoils of four algorithms
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Fig. 9 Convergence history of the airfoil problem using four al-
gorithms

5. Conclusions

To solve the expensive optimization problems, this paper
proposes a DESO framework, which combines two dif-
ferent degrees of evolutionary sampling strategies, SS
and SLS. These two sampling strategies use the historical
data to construct global surrogate and local surrogate to
assist sampling, respectively. Moreover, DESO sets adap-
tive parameters for different dimension problems. Experi-
ments with different sampling strategies show that ran-
domly employing two sampling strategies can balance
global search and local search and avoid falling into the
local optimum. The proposed algorithm is compared with
five state-of-the-art algorithms on six widely used bench-
mark problems of different dimensions ranging from 20
to 200. The results indicate that DESO is effective and ef-
ficient. Finally, an application of the airfoil design prob-
lem also shows the superiority of DESO. In the future,
more efficient sampling strategies need be studied for
higher-dimensional problems. Moreover, DESO works
well to accelerate the convergence, but its exploration
ability should be further improved when handling very
complicated problems.
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