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Abstract: Multi-manned assembily line, which is broadly utilized
to assemble high volume products such as automobiles and
trucks, allows a group of workers to assemble different tasks
simultaneously in a multi-manned workstation. This additional
characteristic of parallel operators increases the complexity of
the traditional NP-hard assembly line balancing problem. Hence,
this paper formulates the Type-lI multi-manned assembly line
balancing problem to minimize the total number of workstations
and operators, and develops an efficient migrating birds optimi-
zation algorithm embedded into an idle time reduction method.
In this algorithm, a new decoding mechanism is proposed which
reduces the sequence-dependent idle time by some task assign-
ment rules; three effective neighborhoods are developed to
make refinement of existing solutions in the bird improvement
phases; and temperature acceptance and competitive mecha-
nism are employed to avoid being trapped in the local optimum.
Comparison experiments suggest that the new decoding and
improvements are effective and the proposed algorithm outper-
forms the compared algorithms.
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1. Introduction

The assembly line, one of the flow-oriented production
systems, is widely used in the manufacturing industries to
process large and complex productions such as cars and
electronics. Its corresponding problem, named the as-
sembly line balancing problem, optimizes some specific
objectives by assigning a set of tasks with precedence re-
lationships into a series of workstations. Based on the ob-
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jective functions, the assembly line balancing problems
can also be divided into four categories [1]: Type-I mini-
mizes the number of workstations for a given cycle time;
Type-II minimizes the cycle time for a predefined num-
ber of workstations; Type-E maximizes the line effi-
ciency when the cycle time and the number of worksta-
tions are unknown; Type-F aims to find a feasible solu-
tion when the number of workstations and cycle time are
given. These problems are proven as NP-hard problems
since a bin-picking problem without involving the pre-
cedence relationships is NP-hard in the strong sense [2].

In industrial manufacturing, different conditions need
to be considered in assembly line balancing problems.
These new problems are named general assembly line
balancing problems. The multi-manned assembly line
balancing is one of the general assembly line balancing
problems. Current research assumes that only one opera-
tor in each workstation assembles the tasks. However,
when the assembled products are more complex, the lines
would need hundreds of workstations, resulting in the in-
crease of production costs and space occupancy. Hence,
to avoid this situation, Akagi et al. [3] first proposed the
multi-manned workstations and formulated the multi-
manned assembly line balancing problem (MALBP)
where more than one operator can be assigned to each
multi-manned workstation. It should be noted that if each
workstation is assigned with two operators and operation
direction constraints are involved, then the MALBP be-
comes a two-sided assembly line balancing problem.
With multi-manned workstations, the space utilization in-
creases, the production costs decrease, and thereby the
line efficiency is improved [4]. To our best knowledge,
limited studies explore the MALBP. Hence, this paper fo-
cuses on the MALBP.
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Since this work focuses on multi-manned assembly
line balancing, we first investigate the latest develop-
ments of the assembly line balancing, and later present a
review on MALBP.

To achieve the optimization of assembly line balan-
cing problems, three solution procedures including mathe-
matical programming approaches, heuristic and meta-
heuristic algorithms are developed [5]. For mathematical
programming approaches, Gokcen et al. [6] developed a
goal programming approach; Sewell et al. [7] and Li et al.
[8] designed a branch, bound and remember algorithm.
For heuristic algorithms, Balakrishnan et al. [9] designed
a single-pass heuristic; Sternatz [10] proposed an en-
hanced multi-Hoffmann heuristic; Li et al. [11] de-
veloped three rules including task selection, task assign-
ment, and task exchange. For meta-heuristic algorithms,
the more common and improved algorithms include the
genetic algorithm (GA) [12,13], the simulated annealing
algorithm (SA) [14,15], particle swarm optimization
(PSO) [16], and ant colony optimization (ACO) [17].

The above research just considers one operator in each
workstation; while as the scale of products increases, the
assembly line needs hundreds of workstations to ensure
smooth production. This situation increases the produc-
tion costs and space occupancy. To improve this situ-
ation, more research begins to study the MALBP which
allows some operators to work in the same workstations.

For the MALBP, Dimitriadis [18] first examined the
performance of MALBP and proposed a modified heu-
ristic procedure to minimize the workstation idle time.
This approach started from the first workstation and con-
secutively assigned tasks into this workstation until an
upper bound was reached. Later, the research about
MALBP can also be divided into three categories accord-
ing to the solution procedures mentioned above.

The mathematical programming approaches used in
MALBP mainly include the branch and bound method
[19], the benders’ decomposition algorithm [20] and the
constraint programming model [21]. These approaches are
effective in small- and middle-scale instances. However,
when the scales increase, it is difficult to solve the re-
lated problems.

Regarding the heuristics, Kellegoz et al. [22] designed
a priority rule-based heuristic. Lopes et al. [23] deve-
loped a novel model-based heuristic procedure. These
heuristics are convenient for implementation and can find
feasible solutions quickly, but they cannot ensure that all
the obtained solutions are efficient for all the instances.

For the meta-heuristics, Fattahi et al. [24] developed an

ACO to solve the MALBP. Roshani et al. [25] con-
sidered the line efficiency, line length, and smoothness as
the objectives of MALBP and proposed an SA to achieve
the balance. Kellegoz [26] considered that some opera-
tors cannot work at the same physical location of multi-
manned assembly lines and further proposed a GanttSA
algorithm. Chen [27] designed a new decoding mechanism
and then employed the SA algorithm to solve the MALBP.
In another study, Chen et al. [4] further studied the resour-
ces including machines and tools constraints in MALBP
and proposed a hybrid GA algorithm to minimize the num-
ber of workstations, operators and resources. Sahin et al.
[28] considered the resource investment, and adapted a
PSO to solve this problem. These meta-heuristics are
proved to be more effective in solving large-scale instances
of MALBP.

The multi-manned assembly lines are widely used to
assemble complex products such as home appliances and
vehicles. However, limited research studies MALBP.
Therefore, aiming at the Type-I MALBP, this paper
mainly has the following contributions.

(1) A new decoding mechanism with idle time reduc-
tion is proposed to build feasible and efficient solutions.
This decoding improves the quality of solutions by redu-
cing the sequence-dependent and remaining the idle time.
The final experiments prove that the proposed decoding
strategy outperforms the existing decoding mechanisms.

(i1) An efficient migrating birds optimization (EMBO)
algorithm is first developed for the Type-1 MALBP. This
algorithm designs three improvements, including mul-
tiple neighborhoods, acceptance criteria and competitive
mechanism, to enhance its performance.

The remainder of this paper is organized as follows.
Section 2 defines the MALBP. Section 3 demonstrates
the proposed EMBO. Section 4 reports the results of the
comparison experiments. Section 5 concludes the find-
ings and suggests future avenues.

2. Type-1 MALBP

For convenience, the related notation is defined in Table 1.
This paper considers the Type-I MALBP, in which each
task i (i=1, 2,---, n) should be allocated to some multi-
manned workstations J (J={1, 2,---, m}). For each work-
station j, if this workstation is opened (Z=1), it may be
allocated with more than one operator to perform the
tasks, and the admitted maximum number of operators in
each workstation is u,,,. For each task i, it must be as-
signed to only one workstation and processed by only one
operator.
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Table 1 Description of the notation

Notation Description
ih Index of task
j Index of workstation
k Index of operator
I Set of all the tasks
J Set of all the workstations
K Set of all the operators in each workstation
P’ Set of tasks that have no immediate predecessors
P(@i) Set of immediate predecessors of task i
n The total number of tasks
" The admitted maximum number of operators in each
e workstation
Ccr Cycle time
M A very large positive number
t; The processing time of task i

Binary variable. 1: if tasks i and / are assigned to the same
Wy operator and task i is performed immediately before task #; 0:

otherwise.
Binary variable. 1: if task 7 is operated by operator & at

Xij o .
workstation j; 0: otherwise.
y Binary variable. 1: if operator & is employed in workstation j; 0:
* otherwise.
Z Binary variable. 1: if workstation j is opened; 0: otherwise.
FT, Continuous variable. The finishing time of task 7.

In this paper, we aim to minimize the number of opera-
tors and workstations. As the labor costs have rapidly in-
creased in recent years, we regard the optimization of the
number of operators as the primary objective and the mini-
mization of the total workstations as the secondary ob-
jective. Therefore, the final objective function is shown as

minZZYﬂ(+$;Zj. (1)

jeJ kek

2.1 Mathematical model

The final objective function subjects to
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The objective function (1) points to optimize the num-
ber of laborers as the essential objective and the number
of workstations as the auxiliary objective according to
[24]. Limitation (2) guarantees that each task is allocated
precisely to one position of one worker at one worksta-
tion. Limitation (3) addresses the precedence relations.
Limitation (4) is the cycle time constraint. Limitations
(5)—(7) control the sequencing limitations. Limitations
(8)—(10) are the operator constraints. Limitations (11)—
(13) limit the variable Z;. The above limitations (8)—(13)
tightly limit the decision variables. Limitation (14) ad-
dresses the minimum value of the finishing time. Limita-
tions (15)—(18) indicate binary variables.

2.2 Illustrative example

An illustrative example with nine tasks is presented to in-
troduce the MALBP. The precedence diagram is shown
in Fig. 1(a) for instance. The processing time of each task
is also presented above the task node in this figure. The
cycle time CT is 8 and at most three operators can work
in each workstation (u,,,,=3).
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(a) Precedence diagram
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Fig. 1 Illustrative example

One solution is depicted in Fig. 1(b). From this figure,
it can be observed that one task (task 1) and one operator
are assigned to workstation 1, and five tasks (tasks 2, 3, 4,
5 and 6) and three operators are assigned to workstation 2,
and three tasks (tasks 7, 8 and 9) and two operators are
assigned to workstation 3, respectively. Here, there is a
total of three workstations and six operators. Under the
cycle time constraint, all the tasks are finished before 8 s.
As stated previously, all these task assignments also
should meet the precedence relation constraint. For ex-
ample, task 5 cannot be assigned until their predecessor
task 2 and task 3 have been completed, hence, operator 2
in workstation 2 first processes task 3 while operator 1
processes task 2 at the same time. After the completion of
task 2 and task 3, operator 2 starts the procession of task 5.
In a word, there is a total of six operators and three work-
stations. Instead, if one operator is allowed for each
workstation, one of the optimal task assignment plans is:
task 1 in workstation 1, task 2 in workstation 2, task 3
and task 5 in workstation 3, task 4 and task 6 in worksta-
tion 4, task 8 and task 9 in workstation 5, and task 7 in
workstation 6. In this assignment plan, there are a total of
six operators and six workstations.

Through the comparison of these two task assignment
plans, it can be concluded that MALBP can get a better
plan with fewer workstations due to the multi-manned
workstations, and further saves a lot of opening-worksta-
tion costs.

Since the MALBP is a strong NP-hard problem, the
optimal solution can only be obtained by the above model
on small-scale instances. For this reason, heuristics need
to be developed to achieve the optimization of middle-
and large-scale instances. Hence, this paper develops an
EMBO embedded with an idle time reduction decoding
mechanism.

3. EMBO algorithm

The migrating birds optimization (MBO) algorithm starts
with a set of initial birds where each bird is improved by
some neighborhood search methods. In MBO, after «
birds are randomly generated in the initialization, S
neighbor solutions around the leader are generated. If the
best neighbor solution is superior to the leader, it re-
places the leader. Then X best unused neighbor solutions
are shared with the first following bird at the following
two lines. For each bird in the following lines, it is im-
proved by the S-X neighbor solutions and joins the X
shared solutions from the previous following bird. This
sharing mechanism enhances the communication between
the birds [29]. Finally, after the improvements for Y
times, the current leader moves to the end of the forma-
tion and the first following bird in the left or right line be-
comes the new leader.

Currently, the MBO algorithm has shown superior per-
formance in simple and U-shaped assembly line balan-
cing problems [29,30]. Thus, this paper develops an
EMBO to deal with the MALBP. The algorithm not only
considers the features of MALBP, but also designs tem-
perature acceptance and competitive mechanism to en-
hance its performance. The details of the proposed al-
gorithm are described as follows.

3.1 Decoding with idle time reduction for MALBP

When assigning tasks to the multi-manned workstations
in MALBP, the idle time including sequence-dependent
idle time and remaining idle time will also occur. In
Fig. 1(b), the region marked grey presents the sequence-
dependent idle time and that marked green expresses re-
maining idle time. Since the reduction of the total idle
time can improve the quality of solutions, we develop
some task assignment rules embedded into the decoding
mechanism to select operator processing tasks.

3.1.1 Task assignment rules for reducing the idle time

Before assigning each task into the multi-manned work-
stations, four types of time and one candidate set should
be determined first.

T start;: the earliest start time of the current task i in
the current workstation. If some predecessors of task i are
assigned to current workstations, 7' start; is equal to the
maximum finishing time of these predecessors. Other-
wise, T _start; is 0.

T finish;: the finishing time of operator £ before as-
signing task i.

T begin,: the ecarliest start time of operator £ in the
current workstation when processing task i. It is equal to
the maximum value of 7' start; and T finish,.
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Idle time,: the sequence-dependent idle time of the ope-
rator when processing task i. If 7 start; is not more than
T finish,, Idle time, is equal to 0; otherwise, Idle time,=
T start—T finish,.

CA: Set of operators that can process the current task.
If operator £ processes task i and the finishing time of
task 7 does not exceed the cycle time, which can also be
expressed as T_begin,+ ¢,<CT, the operator £ is added in-
to CA. This set aims to check the cycle time constraint.

When assigning task i in each workstation, we first
construct set CA. If CA is an empty set, another worksta-
tion is opened and continues to assign the current task.
Otherwise, we select the operator with the smallest value
of T begin, from CA to process task i. Since the task can
be processed at the earliest start time with this assign-
ment rule, the remaining idle time can be reduced. If
more than one operator is processing the current task at
the earliest start time, the operator with the smallest value
of Idle time, will be selected. This assignment rule aims
to reduce the sequence-dependent idle time.

3.1.2 Decoding mechanism with the task
assignment rules

To build a feasible balancing solution with less idle time,
a new decoding mechanism combining the decoding pro-
posed by Chen [27] and the above task assignment rules
is proposed and described as follows.

Step1 Open a new workstation.

Step 2 Assign the tasks. Firstly, it is assumed that
there is one operator in the current workstation. The tasks
from the feasible task assignment set are assigned to the
current workstation with the above task assignment rules
in turn until C4 becomes an empty set. Then, the number
of operators is gradually increased and tasks are reas-
signed to obtain different assignment plans of the current
workstation.

Step 3  Calculate the efficiency of different plans. An
assignment efficiency is used to evaluate different assign-
ment plans and is expressed as follows: (efficiency of
each plan) = (the total processing time in current worksta-
tion)/[(number of operators)x(cycle time)].

Step 4 Select a plan with the minimum efficiency
and update the feasible task assignment set. The assign-
ment plan with the minimum efficiency is selected for the
current workstation. The corresponding assigned tasks are
removed from the feasible task assignment set.

Repeat the above steps until the feasible task assign-
ment set is empty.

3.2 Initialization

In the proposed algorithm, each bird is encoded with the
priority list of tasks. The length of this list is equal to the

number of task n. The value of position i in this list rep-
resents the priority value of task i, and each priority value
is randomly generated between 1 and n without repeti-
tion. For instance, one bird is constructed as [5, 1, 3, 6, 2,
7,9, 8, 4], where the priority value of task 1 is 5 and that
of task 2 is 1 and so on. This encoding provides the prior-
ity value of each task instead of the task assignments.
Thus, this paper first determines the feasible task assign-
ment set based on the above encoding, and then employs
the above proposed decoding with idle time reduction to
assign each task to a specific operator and workstation.
The procedure to obtain a feasible task assignment set is
as follows.

Step 1  Set position x=1.

Step 2 Construct the task candidate set. A task can be
put into this set if:

(1) The task is unassigned;

(i1) Its predecessors have been put into the feasible task
assignment set.

Step 3 Put the task with the largest priority value from
the candidate set in the xth position of the feasible task
assignment set.

Step 4 Remove the above task from the candidate set
and x=x+1.

Repeat the above steps until all the tasks are assigned
to the feasible task assignment set.

3.3 Neighborhood structure to improve the birds

Since EMBO is a neighborhood search meta-heuristic
algorithm, the choice of neighborhood structures is cru-
cial to generate a great quality solution [31]. Thus, in the
leader and following bird improvements, the proposed
algorithm employs three neighbor search methods, inclu-
ding swap, insert and a new generation to optimize prob-
lems. All the methods are depicted as follows.

For the swap, two positions of the priority list are se-
lected and the values of these positions are swapped. For
the insert, a position is determined and the value of this
position is inserted into another position. For the new
generation, the priority list of tasks is regenerated ran-
domly to replace the original list.

In the above neighbor structures, the swap and insert
enhance the local search capability and the new genera-
tion can prevent the algorithm from falling into the local
optimum. Thus, when a bird needs to be improved, one
search method is randomly chosen to generate new neigh-
bor solutions.

3.4 Acceptance criteria

In the original MBO, f neighbor solutions around each
following bird will be generated by some neighbor search
methods. Only when the best neighbor solution is superior
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to the current bird, it replaces the current leader. This ac-
ceptance criterion may lose some great code snippets of
the neighbors and make the algorithm get into a local op-
timization trap. Hence, a new acceptance criterion [30]
based on the temperature in the SA algorithm is applied
to our algorithm to avoid the above situation. In this cri-
terion, if the best neighbor solution is not better than the
current following bird, this neighbor is accepted with the
probability of ¢ ™, where A=objective (neighbor)—ob-

jective (current solution) and temp = T Z t;1/10n.
i=1

3.5 Competitive mechanism

After the algorithm improves the leader and the follow-
ing birds for ¥ times, the first following bird in the left or
right line will replace the current leader and hence has
more opportunities to share its neighbors. However, this
leader replacement is not fair for some birds emerging in
the tail since these birds may have a great performance
but have few opportunities to share their neighbors. There-
fore, a competitive mechanism [32] is applied here to
make up for this defect. After the leader replacement step,
this mechanism is executed to adjust the position of the
following birds. In each following line, all the birds are
sorted in the descending order of the objective function.

4. Computational study

The presentation of the computational study consists of
four parts: first, the proposed EMBO and the compared
methods are calibrated by the design of experiments
(DOE) technique coupled with the means of the multi-
factor analysis of variance (ANOVA) to ensure the com-
parison fairness; second, the original MBO and SA (the
procedure of SA can refer to the research by Chen [27])
embedded with different decodings are employed to eva-
luate the effectiveness of the proposed decoding; third,
several EMBO variants are compared with each other to
demonstrate the significance of the proposed improve-
ments; finally, EMBO is compared with the state-of-the-
art methods with a target to tackle MALBP to test the
performance of efficient EMBO.

To complete the above comparison experiments, 372
benchmark problems proposed for Type-I simple as-
sembly line balancing problems are applied to Type-I
MALBPs. Among them, 144 benchmark problems can be
downloaded from the assembly line website: <\http://as-
sembly-line-balancing.mansci.de/>. The other 228 prob-
lems come from the research by Otto et al. [33] and con-
tain 100 small-, 100 middle- and 28 large-scale instances.
The parameter u,,, is set 3 according to [4]. In the com-
putational study, all the algorithms are encoded in C++
programming language and are run on a computer with

Intel(R) Core (TM) i5 CPU, 2.80 GHz and 2.00 GB
RAM. Besides, this paper employs the relative percent-
age deviation (RPD) to evaluate the results of all experi-
ments. The calculation of RPD is

Objective,, — Objectivey

RPD =
Objectiveye,

x100  (19)

where Objectivey, is the objective function of the solu-
tion; and Objectivey., is the best objective function ob-
tained by all algorithms.

4.1 Calibration of the proposed algorithm

Since the parameters have an awesome impact on the per-
formance of EMBO, it has to calibrate its parameters and
select the best parameter configuration. For the proposed
algorithm, five parameters need to be calibrated and are
called as the number of initial solutions a, the number of
neighbor solutions to be considered f, the number of
neighbor solutions to be shared X, the number of tours ¥
and the initial temperature 7. The levels of these parame-
ters are listed as follows:

(1) The number of initial solutions a at eight levels: 7,
9,11, 13,15, 17, 19 and 21.

(i1) The number of neighbor solutions to be considered
p at four levels: 5, 6, 7 and 8.

(ii1) The number of neighbor solutions to be shared X at
six levels: 2, 3,4, 5,6 and 7.

(iv) The number of tours 7 at eight levels: 50, 100, 150,
200, 250, 300, 350 and 400.

(v) The initial temperature T at six levels: 0.4, 0.5, 0.6,
0.7,0.8 and 0.9.

Through the full factorial design, there is a total of
8X4X6x8x6=9216 parameter configurations. Each
configuration is tested with 10 calibration instances whose
task numbers are equal to 100. Note that these calibration
instances come from the research by Otto et al. [33] and
are different from the above 372 testing instances. Each
configuration is solved 10 times to obtain 10 results. The
stopping criteria for all the experiments are set as a CPU
time limit of nxXnXp milliseconds where p=5. After 9 216x
10x 10=921 600 experiments, the DOE technique coupled
with the means of the multifactor ANOVA is used to ana-
lyze all the results. The means plots of RPD with Tukey’s
honest significant difference (HSD) 95% confidence in-
tervals are used for the calibration of the proposed al-
gorithm and shown in Fig. 2. The analytic results from
Fig. 2 indicate that the best parameter combination is
{0=13, p=7,X=5, V=350 and 7=0.6}. Besides, we also use
this method to verify the parameters of other compared
algorithms, and the best parameter combinations are
shown in Table 2 where HGA means the heuristics-mixed
genetic algorithm.
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Fig. 2 Means plots of RPD with Tukey’s HSD 95% confidence intervals for all the factors in the ANOVA calibration experiment for the
proposed EMBO

and EMBOI use our proposed decoding with idle time re-
duction. SA2 and EMBO?2 use the decoding proposed by

Table 2 Parameter values of all algorithms

. Selected
Algorithm Parameter Range value [24] and [25]. SA3 uses the decoding proposed by Kel-
a 9,11,13 9 legoz [26]. All these algorithms are run on 372 bench-
EMBO/EMBO1/ B 56,7 7 mark instances with two stopping criteria nxnx10 and
MBO_CPT/ 2 2,3,4 4 nxnx20, and each experiment is run for 10 times to ob-
MBO_ACT y 50, 100, 150 150 tain 10 results. Hence, a total of 18 600 experiment re-
T 0.4,0.5,0.6 0.6 sults are analyzed by the ANOVA technique and thus
a 9,11,13 13 shown in Fig. 3 and Fig. 4.
5,6,7 7
g 20
EMBO2 x 2,3,4 4
y 50, 100, 150 100
T 0.4,0.5,0.6 0.5 15t
Population size 30, 40, 50 30
a
Crossover rate Crossover on all the 10 ; 10
solutions
Mutation rate Mutation on all the 1.0
SA1/SA2 solutions : 51
HGA .
The initial 100, 1000, 10 000 10 000
temperature 0 1 1
Cooling rate 0.85,0.90,0.97  0.90 EMBOl EMBO2 SAl  SA3  SA2
Number of iterations Fig. 3 Means plot with Tukey’s HSD intervals at the 95% confi-
for eachléeréllperamre 100, 150, 200 200 dence level of the minimum solutions by different decoding schemes
P b . 1 insert under nxnx10
TCSS based 1nse:
move tabu length 34,5 4 10
Probability of
selecting 0.3,0.4,0.5 0.5
GanttSA/SA3 move type 8
Cooling rate 0.85,0.90, 0.97 0.97
Number of iterations 6r MBOT EMBO2  SA
for each temperature 100, 150, 200 100 o) v
level & 4
4.2 [Evaluation of the proposed decoding mechanism 2r
and improvements ol
For type-I MALBP, there are three existing decoding EMBO1 EMBO2 SAL_SA3 _SA2

mechanisms. To test the effectiveness of the proposed de- Fig. 4 Means plot with Tukey’s HSD intervals at the 95% confi-

Coding, this paper develops different versions of SA and dence level of the minimum solutions by different decoding schemes
EMBO by applying different decodings. Specifically, SA1 under nxnx20
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In the two figures, it is clear that the SA1 is superior
over SA2 and SA3 significantly and EMBO1 also outper-
forms EMBO2. These results suggest that the proposed
decoding mechanism can reduce the remaining and se-
quence-dependent idle time effectively. In this compari-
son, we employ a population algorithm and a local search
algorithm which are proved to have a great performance
and have been widely used in assembly line balancing
problems. Whether it is a population algorithm or a local
search algorithm, our proposed decoding is very well em-
bedded and performs the best. Besides, in terms of these
two algorithms, no matter which decoding mechanism is
embedded, the population algorithm EMBO outperforms
the local search algorithm SA. Hence, this paper pro-
poses EMBO to tackle MALBP.

Our proposed EMBO designs two improvements in-
cluding acceptance criteria and competitive mechanism
with a target to minimize the total number of worksta-
tions and operators. Hence, this section aims to evaluate
the effectiveness of the two improvements and compares
four MBO variants including original MBO considering
nothing, MBO_ACT just considering acceptance criteria,
MBO_CPT just considering competitive mechanism and
EMBO considering all improvements. All these MBO
variants are run on 372 benchmark instances with the
stopping criteria nxnx20, and each experiment is run for
10 times to obtain 10 results. Hence, a total of 14 880 ex-
periment results are analyzed by the ANOVA technique
and shown in Fig. 5.
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Fig. 5 Means plots with Tukey’s HSD intervals at the 95% confi-
dence level of the minimum solutions by all MBO variants under
nxnx20

In Fig. 5, it can be observed that the average RPD va-
lues of all instances obtained by the variants MBO ACT
and MBO CPT are both smaller than those obtained by
the original MBO. This means that in MALBP the two
proposed improvements embedded into MBO can effect-

ively improve the performance. Meanwhile, the proposed
EMBO considering both improvements performs better
than MBO_ACT and MBO_CPT, which indicates that
the combination of two improvements is more effective
than the separate improvement.

Hence from the two above comparison experiments,
the effectiveness of proposed decoding and improve-
ments is positive.

4.3 Comparison with the state-of-the-art methods

To test the performance of the proposed EMBO al-
gorithm, this paper further compares the proposed EMBO
with four state-of-the-art algorithms. The compared al-
gorithms are HGA [34], SA1 [27], SA2 [25] and Gantt-
SA [26]. All these algorithms have been successfully ap-
plied to solve Type-I MALBP. Two stopping criteria with
nxnxp where p=10 and p=20 are set for the comparison
experiments. Each algorithm is also run on 372 instances
for 10 times and the minimum and average results are
presented in Tables 3—5 for comparison.

Table3 Comparison results for small-scale instances

p=10 p=20
Algorithm — —
Minimum Average Minimum Average

HGA 0.53 1.03 0.07 0.46
GanttSA 6.27 15.08 3.45 10.60
SAl 0.02 0.45 0.01 0.18
SA2 10.91 12.29 8.13 9.43
EMBO 0.00 0.29 0.00 0.15

Table 4 Comparison results for middle-scale instances

p=10 p=20
Algorithm — —
Minimum Average Minimum Average
HGA 0.97 2.16 0.36 1.10
GanttSA 3.97 9.59 2.60 6.01
SAl 0.83 1.47 0.54 0.92
SA2 5.37 7.90 2.69 441
EMBO 0.27 0.94 0.09 0.61

Table 5 Comparison results for large-scale instances

p=10 p=20
Algorithm
Minimum Average Minimum Average

HGA 1.63 3.04 0.02 0.03
GanttSA 3.87 8.39 0.03 0.08
SAl 1.10 1.50 0.01 0.01
SA2 27.95 31.49 0.06 0.07
EMBO 0.05 0.31 0.00 0.01
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Table 3 reports the comparison results for small-scale
instances including Merten7, Bowman8, Jaeschke9, Jack-
sonll, Mansoorll, Mitchell21, Roszieg25, Heskia28,
Buxey29 and 100 small-scale instances proposed in [30].
For the small-scale instances, the proposed EMBO per-
forms the best compared with the four state-of-the-art
methods. Specifically, EMBO is ranked first, followed by
SA1, HGA in turn; while GanttSA and SA2 are the worst
performers. Although the performances of the four state-
of-the-art methods are a little bit worse, SA1 and HGA
can also obtain the best results as well as EMBO for most
instances, and GanttSA and SA2 obtain the same results
as EMBO for several instances.

Table 4 reports the comparison results for middle-scale
instances including Sawyer30, Lutz32, Gunther35, Kil-
bridge45, Hahn53, Warnecke58 and 100 middle-scale in-
stances proposed in [30]. For middle-scale instances un-
der the stop criterion nxnx10, the average mini-
mum values of RPD by HGA, GanttSA, SA1, SA2 and
EMBO are 0.97, 3.97, 0.83, 5.37 and 0.27 respectively.
The proposed EMBO also has the best performance while
the SA2 obtains the worst results. If the RPD is used to
rank algorithms, apart from EMBO, SA1 ranks the first
and HGA follows with GanttSA and SA2 being the worst
two. For the stop criterion nxnx20, it has the same con-
clusion that EMBO performs the best.

Table 5 reports the comparison results for large-scale
instances including Tonge70, Weemag75, Arcus§3,
Lutz89, Mukherje94, Arcuslll, Barthol148, Scholl297
and 28 large-scale instances proposed in [30]. For large-
scale instances under two stop criteria nxnx10 and
nxnx20, it is clear that the proposed EMBO is superior
over the other four compared algorithm. As the scale of
instance is extended, it turns more and more difficult for
SA1 and HGA to obtain the best results as EMBO. If the
RPD is used to rank algorithms, it has the same ranks as
that of the middle-scale instances. In summary, we can
conclude that our proposed algorithm is more effective in
solving the Type-I multi-manned assembly line balan-
cing problem.

Furthermore, we further apply the ANOVA method to
analyze the performance of the proposed algorithm. The
means plots with Tukey’s HSD intervals at the 95% con-
fidence level of the minimum and average solutions by
different algorithms under nxnx10 and nxnx20 are depic-
ted in Fig. 6 and Fig. 7. For the space limitation, this pa-
per just presents the plots of the minimum solutions. In
the presented figures, the algorithms are sorted in an as-
cending order of RPD. It is observed that EMBO is still
ranked the first, followed by SA1 and HGA; while Gantt-
SA and SA2 are the worst performers. Hence, we can
conclude again that the proposed EMBO outperforms the
compared algorithm from a statistical viewpoint.
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Fig. 6 Means plots with Tukey’s HSD intervals at the 95% confi-
dence level of the minimum solutions by different algorithms under
nxnx10
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Fig. 7 Means plots with Tukey’s HSD intervals at the 95% confi-
dence level of the minimum solutions by different algorithms under
nxnx20

In summary, due to the characteristics of MALBP, the
proposed algorithm designs a decoding mechanism with
idle time reduction and two improvements including ac-
ceptance criteria and a competitive mechanism to mini-
mize the total number of workstations and operators. Cor-
respondingly, the computational study carries out three
types of comparison experiments to obtain three main
conclusions:

(1) The proposed decoding mechanism is more effect-
ive in terms of reducing the idle time compared with the
existing decoding methods. It can also be very well em-
bedded into the population and local search algorithms.

(i1) The proposed two improvements are proved to be
successful in improving the performance of the original
MBO. The improvement effect of the combination is
more significant.

(iii) The proposed EMBO outperforms the state-of-the-
art methods in all small-, middle- and large-scale MALBP
instances.

5. Conclusion and future work

Due to the complexity of the assembly tasks of products
such as the engine, the central assembly plants usually
employ many operators instead of robots to complete the
production. Hence, this paper addresses the MALBP to
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minimize the total number of workstations and operators.
Following the problem description, EMBO is developed
for problem settlement. In this algorithm, task assign-
ment rules are applied to the decoding mechanism to re-
duce the sequence-dependent and remaining idle time.
Three neighbor structures are blended to improve the
leader and the following birds. Besides, new acceptance
criteria and a competitive mechanism are employed to en-
hance the performance of EMBO. Finally, three compari-
son experiments are designed to analyze the performance
of the proposed decoding mechanism and improvements
of EMBO. In the experiments, two existing decoding
mechanisms, four MBO variants and four algorithms are
involved. The computational results indicate the effect-
iveness of the proposed decoding and two improvements.
The proposed EMBO outperforms the four compared al-
gorithms.

The developed decoding mechanism and EMBO can
assist production managers to adjust or design the multi-
manned assembly line layouts to further reduce the line
length and operator costs. Nevertheless, the lack of more
realistic constraints and multi-objective optimization makes
it difficult to solve a practical problem. Hence, based on
this work, future research will consider the resource con-
straints in MALBP. Additionally, future research can also
consider that some robots may replace part operators in
multi-manned workstations and further achieve the op-
timization of this new problem.
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