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Abstract: The  flexible  job  shop  scheduling  problem  (FJSP),
which  is  NP-hard,  widely  exists  in  many  manufacturing  indus-
tries.  It  is  very  hard  to  be  solved.  A  multi-swarm  collaborative
genetic algorithm (MSCGA) based on the collaborative optimiza-
tion algorithm is proposed for the FJSP. Multi-population struc-
ture  is  used  to  independently  evolve  two  sub-problems  of  the
FJSP in the MSCGA. Good operators are adopted and designed
to  ensure  this  algorithm to  achieve  a  good performance.  Some
famous FJSP benchmarks are chosen to evaluate the effective-
ness of the MSCGA. The adaptability and superiority of the pro-
posed method are demonstrated by comparing with other repor-
ted algorithms.
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1. Introduction
Scheduling is  an important  aspect  of  planning in  current
manufacturing  systems;  production  scheduling  allocates
relative  production  resources  to  tasks  and  order  to  meet
all  constraints  and  optimization  goals  [1−3].  Therefore,
the scheduling technology can improve manufacturing ef-
ficiency  by  reducing  scheduling  conflicts,  and  reducing
process time [4]. In modern manufacturing system, intel-
ligent systems and machines are used to improve produc-
tion efficiency [5]. The intelligent systems and machines
are widely used in modern manufacturing systems so that
the  same  machine  can  perform  multiple  operations.  [6].
In  this  case,  the  flexible  job  shop  scheduling  problem
(FJSP)  has  attracted  increasing  attention  because  it  con-
siders machine flexibility [7].

The  FJSP  is  a  typical  scheduling  problem  in  modern
manufacturing systems [8,9].  It  is also an NP-hard prob-

lem [10].  In  1990,  Brucker  & Schile  [11]  first  presented
this problem and some methods to solve it. The methods
to solve the FJSP primarily include the genetic algorithm
(GA) [12,13], the iterated greedy algorithm [14], the tabu
search  (TS)  [15],  the  variable  neighbourhood  search  al-
gorithm  (VNS)  [16],  the  particle  swarm  optimization
(PSO)  algorithm  [17]  and  some  hybrid  algorithms
[18,19]. The results of research on the FJSP are also ap-
plied to several practical cases [20−22].

The  FJSP  can  be  decomposed  into  two  different  sub-
problems:  machine  selection  (MS)  problem  and  opera-
tion  sorting  (OS)  problem.  At  present,  unified  coding  is
usually  used  to  solve  the  problem.  However,  due  to  the
different  characteristics  of  these  two  sub-problems,  uni-
fied  coding will  make the  solution space  more  complex,
which  is  not  conducive  to  the  solution  of  the  algorithm.
Therefore,  to  solve  the  FJSP,  a  multi-swarm  collabora-
tive genetic algorithm (MSCGA) based on the collabora-
tive optimization algorithm is proposed [23−25]. The col-
laborative  evolutionary  algorithm  simulates  the  evolu-
tionary  process  of  interaction  between  two  species  in
nature. [26]. While a species is evolving, it interacts with
and  adapts  to  other  species.  This  situation  is  similar  to
that  of  the  two  sub-problems  in  the  FJSP.  In  this  algo-
rithm, the coevolution of different populations is used to
solve two sub-problems. The experimental results demon-
strate  that  the  proposed  MSCGA  algorithm  has  obvious
advantages.

The  main  innovation  of  this  paper  is  to  combine  the
characteristics of the FJSP, combining the advantages of
the evolutionary algorithm and collaborative optimization
to improve the GA. This outcome indicates that  the pro-
posed approach is an effective method to use in FJSP re-
search.

The  remainder  of  this  paper  is  organized  as  follows.
Section  2  provides  details  on  the  literature  review.  Sec-
tion 3  describes  the  problem formulation.  Section 4  pre-
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sents  the  MSCGA-based  approach  for  solving  the  FJSP.
Section 5 reports the experimental results.  Section 6 dis-
cusses the conclusions and future studies. 

2. Literature review
After the FJSP was first presented in 1990, many solving
methods  have  been  published.  At  present,  there  are  two
categories  to  solve  permutation  flow  shop  scheduling
problem  (PFSP):  the  exact  method  and  the  approxima-
tion method.

Brucker  &  Schile  [11]  presented  this  problem  firstly
and  proposed  a  polynomial  graphical  algorithm.  Gomes
et  al.  [27]  presented  a  new  integer  linear  programming
model and used commercial software to solve it. However,
it  is  difficult  to  obtain  a  satisfactory  solution  in  a  short
time  when  an  accurate  algorithm  is  used  to  solve  large-
scale problems [12]. Therefore, approaches used for solv-
ing the FJSP focus on approximation methods [7,10].

Kacem  et  al.  [28]  used  a  localization  approach  to  ad-
dress the MS sub-problem and applied a GA to solve the
OS sub-problem. Ho et al.  [29] proposed a learnable ge-
netic  architecture  (LEGA).  Yin  et  al.  [30]  proposed  a
multi-objective genetic algorithm to solve the FJSP. Ho-
mayouni  et  al.  [13]  proposed  an  operation-based  multi-
start  biased  random  key  genetic  algorithm  (BRKGA)
coupled  with  greedy  heuristics  for  the  FJSP  with  trans-
portation. Shi et al. [31] proposed a multi-population ge-
netic  algorithm  (GA)  with  an  Erdos  &  Renyi  (ER)  net-
work  for  solving  the  FJSP.  Chen et  al.  [32]  presented  a
self-learning genetic algorithm for FJSP. Ding et al. [17]
proposed an improved PSO algorithm. By improving the
encoding/decoding  scheme,  a  good  solution  was  ob-
tained.  Ricardo  and  Arturo  [19]  proposed  a  Pareto  ap-
proach for the FJSP with process plan flexibility. Lu et al.
[33] presented a new multi-objective discrete virus optim-
ization  algorithm.  Li  et  al.  [12]  improved  the  Jaya  al-
gorithm  to  solve  the  FJSP  with  transportation  and  setup
times. Alejandro et al.  [34] showed a biomimicry hybrid
bacterial  foraging  optimization  algorithm  for  the  FJSP.
Ding  and  Gu  [17]  improved  the  PSO  algorithm  for  the
FJSP by considering a new encoding and decoding method.

There are also several hybrid algorithms for the FJSP.
Zribi  et  al.  [35]  proposed  a  hierarchical  method  for  the
FJSP. Gao et al. [36] proposed a hybrid genetic for solv-
ing  the  FJSP.  The  variable  neighborhood  descent  algo-
rithm is  also  used  to  speed  up  the  search  process  of  the
GA  algorithm.  Li  et  al.  [18]  proposed  a  hybrid  GA  and
TS algorithm for the FJSP and achieved good results. Wu
et  al.  [37]  presented  a  hybrid  pigeon-inspired  optimiza-
tion and simulated annealing algorithm for the FJSP.

In  this  paper,  the  MSCGA is  developed  for  the  FJSP.
Few  papers  have  used  the  co-evolutionary  algorithm  to
solve this problem [38]. Only Rou et al. [39], Xing et al.
[40] and Shi et al. [31] have designed three co-evolution-
ary algorithms for solving the FJSP. Therefore, it is com-
pared to these three algorithms. The proposed method ob-
tains better results than these algorithms. 

3. Problem model

{Oi1,Oi2,Oi3, · · · ,Oini
}

Oi j(i = 1,2, · · · ,n; j = 1,2, · · · ,ni)
Mi j ⊆ M

There exists a set of n jobs J = {J1, J2, J3,···, Jn} and a set
of m machines M =  {M1, M2, M3,···, Mm}.  Each  job Ji

consists of a sequence of operations 
where ni is the number of operations in Ji. Each operation

 must  be  processed  by
one machine in a set of given machines  [18].

The  scheduling  goal  of  this  paper  is  to  minimize  the
maximal  completion  time,  also  known  as  the  makespan.
It  contains  two  sub-problems,  making  the  FJSP  become
more complex and challenging [29].

The  hypotheses  considered  in  this  paper  are  summa-
rized as follows [7]:

(i) All machines and jobs are available at time zero.
(ii) No precedence constraints among operations of dif-

ferent jobs.
(iii) Each job cannot be processed by two machines at

the  same  time  and  each  machine  can  only  perform  one
operation at the same time.

(iv) The transfer time between machines is assumed to
be negligible. 

4. The proposed MSCGA for solving FJSP
 

4.1    Optimization strategy of MSCGA

Because  of  the  collaborative  optimization  strategy,  the
proposed MSCGA explores the solution space of the MS
and OS separately and collaboratively. This optimization
process is performed until the termination criterion is ob-
tained. In this method, each job contains one MS swarm
to  determine  the  selected  machines  for  each  operation.
There is one OS swarm to optimize the scheduling of all
jobs.  Under  this  optimization  strategy,  each  swarm  can
choose  its  own  algorithms.  This  helps  ensure  the  most
suitable algorithm for each swarm on the basis of its own
features.  In  this  study,  the  GA is  used  for  each  MS and
OS swarm. Therefore, the overall process of the MSCGA
proposed in this paper is as follows [26]:
Step 1　Parameters setup.
Step  2　 Initialization.  Generate N+1  swarms,  where

there  are N MS  swarms  and  one  OS  swarm,  and  select
one individual from every N+1 swarm to form one FJSP
solution.
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Step 3　Evaluation. Calculate the fitness value of each
individual in the swarm and combine it with selected in-
dividuals from other swarms.
Step  4　Terminate  criteria  satisfied?  If  yes,  stop  and

output the results, otherwise go to Step 5.
Step  5　Collaborative  evolution.  Generate  new  indi-

viduals  for  each  swarm  according  to  the  genetic  opera-
tors. Go back to Step 3. 

4.2    Encoding and decoding

The encoding method in [18] is adopted in this paper. Be-
cause  there  are  two types  of  swarms  in  this  method,  the
two sub-problems require different encoding methods.

n∑
i=1

Oni

The encoding method of an operating system cluster is
composed of job numbers. Assuming there are n jobs, the

length of the OS string is equal to . The initial OS

population is generated  according  to  the  encoding  prin-
ciple.

Each MS swarm represents the MS of the correspond-
ing job. The chromosome length is equal to the number of
operations in the relative job.

An FJSP solution is made up by one OS individual and
N MS  individuals  selected  from the  MS swarms  one  by
one. [18]. The procedure of decoding is as follows:
Step 1　Generate the machine of each operation based

on the MS string.
Step 2　Determine the set of operations for every ma-

chine.
Step 3　Determine the set of machines for every job.
Step 4　Calculate the allowable starting time for every

operation.
Step 5　Check the  idle  time of  the  machine,  and  ob-

tain the idle areas. Then, check these areas in turn.
Step 6　Calculate the completion time of every opera-

tion.
Step 7　Generate the sets of time for every operation

of every job. 

4.3    Initial population and fitness evaluation

The operation-based encoding method is employed in this
paper. Therefore, any chromosome can be decoded into a
feasible solution. The optimization goal of this paper is to
minimize the maximum completion time. 

4.4    Genetic operators

Good  and  effective  genetic  operators  are  important  for
the proposed algorithm, as they can effectively handle the
problem.  There  are  three  genetic  operators  in  a  GA:  se-
lection, crossover and mutation. This paper uses two dif-

ferent  coding  methods:  OS  swarms  and  MS  swarms.  In
addition, these swarms have their own genetic operators.
This operation is described in the following sub-sections. 

4.4.1    Selection

In  this  paper,  the  OS  swarms  and  MS  swarms  have  the
same selection operator.  In  addition,  this  paper  uses  two
selection  operators.  The  first  one  is  the  elitist  selection
scheme where the good fitness in parents is transferred to
offspring.  The other selection operator is  the random se-
lection  operator.  In  this  case,  the  algorithm  will  ran-
domly select individuals for crossover and mutation opera-
tions. 

4.4.2    Crossover

The  OS  swarm  adopts  precedence  operation  crossover
(POX). With POX, the offspring effectively inherits good
characteristics  from the  parents.  The process  for  POX is
shown as  follows  (P  stands  for  the  parent  and  O for  the
offspring):
Step 1 　Job set J = {J1, J2, J3,···, Jn} is randomly di-

vided into two groups Jobset1 and Jobset2.
Step 2　Move the job in P1 that belongs to Jobset1 to

the position O1; move the job belonging to Jobset2 in P2
to the position O2.
Step 3　Put the remaining jobs in P2 into O1, and the

remaining jobs in P1 into O2.
An  example  is  shown  in Fig.  1.  This  example  repre-

sents four jobs, and Jobset1 = {1, 4}.
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Fig. 1    An example of POX for the OS swarm
 

In  this  paper,  two-point  crossover  is  used  for  MS
swarm crossover operation. This crossover operation ran-
domly  chooses  two  positions  at  first.  Then,  this  al-
gorithm generates  two child  strings  by swapping all  ele-
ments  between  the  positions  of  the  two  parent  strings.
This crossover ensures the generation of the feasible off-
spring when the selected parents are feasible. 

4.4.3    Mutation

In this paper, two mutation operators are adopted for the
OS  swarm.  In  MSCGA,  one  mutation  operator  is  selec-
ted  randomly  (50%)  to  mutate  the  individual  in  the  OS
swarm.
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The first one is the swapping mutation. The process for
swapping mutation is shown as follows.
Step 1 　Select two positions in P.
Step 2　Swap the elements in the selected positions to

generate O.
The  second  mutation  operator  is  based  on  the  neigh-

borhood mutation method.
Step 1 　Select  three jobs in the parent,  and generate

all neighborhood chromosomes.
Step  2　 Select  the  best  chromosome  as  the  current

chromosome in the neighborhood chromosome.
For the MS swarm, a mutation operator is designed as

follows:
Step 1 　Select r positions in the parent.
Step 2　Change the value of each location to another

machine in the corresponding collection.
 

4.5    Terminating criteria

If  the  current  iteration number  reaches  the  maximum al-
gebra, the algorithm stops.
 

4.6    Framework of the MSCGA

The basic procedure of this algorithm is described as fol-
lows [26]:
Step 1　Set the parameters of the MSCGA.
Step  2　 Initialization.  Generate N+1  swarms,  where

there  are N MS  swarms  and  one  OS  swarm,  and  select
one individual from every N+1 swarm to form one FJSP
solution.
Step  3　Each  individual  in  each  population  is  evalu-

ated,  where  individuals  are  combined  with  all  randomly
selected partners from other populations. When Gen = 1,
the optimal fbest is recorded.

Gen ⩽
maxGen
Step  4　 Is  the  terminating  criteria  satisfied?  (

?)
If yes, go to Step 6; if it is not, go to Step 5.
Step  5　 Collaborative  evolution.  Generate  the  new

swarms; q is  the serial  number of each swarm (q = 1,  2,
3,···, i,···, N, N+1), and initialize q = 1.
Step 5.1　The operator is used to generate a new popu-

lation, which is set as the qth group.
q ⩽ N +1Step 5.2　Is ?

If yes, go to Step 5.3.
If it is not, set Gen = Gen+1 and go back to Step 3;
Step 5.3　Set q = q+1 and go to Step 5.1;
Step 6　Output the best fitness fbest with the solution.

The flow chart is shown in Fig. 2.
 

Population initialization

Collaborative evolution

Generate the new swam?

Output the best

solution

Y

Y N

N

Set the parameters

of MSCGA

Evaluate every individual

in each swarm

Is the

terminating criteria

satisfied?

Gen=Gen+1 q=q+1

Fig. 2    Framework of MSCGA 

5. Experimental results
This  paper  selects  three  well-known benchmarks  to  eva-
luate  the  performance  of  the  proposed  MSCGA.  These
benchmarks include 48 open problems for the FJSP. The
first  instance  is  the  MK  data  with  10  problems  from
Brandimarte [41]. The second consists of data of 18 prob-
lems from Peres et al. [42]. The third instance is the Fat-
tahi data with 20 problems from Fattahi et al. [43]. Com-
parisons  between  the  proposed  algorithm  and  other  al-
gorithms  including  three  co-evolutionary  algorithms  are
also provided.

The  algorithm  parameters  in  this  paper  are  set  as  fol-
lows: the size of the population of the OS swarm Popsize1=
300; the population size of the MS swarm Popsize2= 300;
the  maximum generations  maxGen  =  200;  the  crossover
probabilistic  of  OS  swarm pc1=0.8;  the  crossover  proba-
bility  of  MS  swarm pc2=0.8;  the  mutation  probability  of
the  OS  swarm pm1=0.2;  and  the  mutation  probability  of
the MS swarm pm2=0.2.  The proposed MSCGA is  coded
in C++ and implemented on a computer with a 2.3 GHz
Core (TM) i7 CPU with 16 GB RAM memory. 

5.1    Results and comparison with the MK data

The MK data with 10 problems are among the most well-
known benchmarks for the FJSP. Many researchers have
used  this  benchmark  to  evaluate  algorithms. Table  1
shows  the  results  of  the  proposed  algorithm.  LB  is  the
lower bound, and UB is the upper bound. MSCGA is the
proposed algorithm. LEGA2008 [12], VNSGA2019 [39],
HBFOA2020  [35],  PSO2020  [17],  SLGA2020  [32],  and
two  collaborative  evolutionary  algorithms,  CCGA2010
[39] and MPICA2011 [40] are selected for comparison.

Table  1 shows  that  the  proposed  MSCGA obtains  the
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nine  best  results  among  these  algorithms.  This  indicates
that  the proposed approach achieves good results  for  the

MK  data. Figs.  3−5 illustrate  the  Gantt  charts  of  prob-
lems MK02, MK09 and MK10 respectively.
 

 

Table 1    Experimental results of MK data and comparison with other methods

Problem (LB, UB) LEGA2008 VNSGA2019 HBFOA2020 PSO2020 SLGA2020 CCGA2010 MPICA2011 MSCGA
MK01 (36, 42) 40 40 40 40 40 41 39 40
MK02 (24, 32) 29 26 26 29 27 27 29 26
MK03 (204, 211) — 204 204 204 204 204 204 204
MK04 (48, 81) 81 60 60 66 60 62 65 60
MK05 (168, 186) 186 173 172 175 172 173 173 173
MK06 (33, 86) 86 58 57 77 69 64 67 57
MK07 (133, 157) 157 144 139 145 144 140 144 139
MK08 (523, 523) 523 523 523 523 523 523 523 523
MK09 (299, 369) 369 307 307 320 320 328 311 307
MK10 (165, 296) 296 198 205 239 254 225 229 198
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Fig. 3    Gantt chart of problem MK02 (Makespan=26)
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Fig. 4    Gantt chart of problem MK09 (Makespan=307)
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5.2    Results and comparison with the Peres data

The  Peres  data  with  18  problems  were  adopted  from
Peres  et  al.  [42]. Table  2 shows the experimental  results
and comparisons with the other algorithms. The MSCGA
is  the  proposed  algorithm.  Integrated  approach  tabu
search  (IATS),  TS,  general  PSO  (GPSO)  and  discre-
pancy search (DS) represent the reported algorithms from
Peres et al. [42], Mastrolilli et al. [15], Gao et al. [44] and

Hmida  et  al.  [45]  respectively.  The  proposed  MSCGA
obtains  the  13  best  results  among  these  five  algorithms.
The experimental results show that the number of the best
results  obtained  by  MSCGA  is  greater  than  the  number
obtained by the other algorithms. This means that the pro-
posed approach can obtain increasingly better results than
the other approaches. Figs. 6−8 illustrate the Gantt charts
of problems 01a, 07a and 11a respectively.
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Fig. 5    Gantt chart of problem MK10 (Makespan=198)

 

Table 2    Experimental results of Peres data and comparisons with other methods

Problem (LB, UB) IATS TS GPSO DS MSCGA

01a (2 505, 2 530) 2 530 2 518 2 539 2 518 2 515

02a (2 228, 2 244) 2 244 2 231 2 244 2 231 2 231

03a (2 228, 2 235) 2 235 2 229 2 232 2 229 2 229

04a (2 503, 2 565) 2 565 2 503 2 523 2 503 2 506

05a (2 189, 2 229) 2 229 2 216 2 234 2 216 2 216

06a (2 162, 2 216) 2 216 2 203 2 218 2 196 2 197

07a (2 180, 2 408) 2 408 2 283 2 361 2 283 2 279

08a (2 061, 2 093) 2 093 2 069 2 086 2 069 2 069

09a (2 061, 2 074) 2 074 2 066 2 073 2 066 2 066

10a (2 198, 2 362) 2 362 2 291 2 362 2 291 2 287

11a (2 010, 2 078) 2 078 2 063 2 083 2 063 2 060

12a (1 969, 2 047) 2 047 2 034 2 050 2 031 2 033

13a (2 161, 2 302) 2 302 2 260 2 342 2 257 2 248

14a (2 161, 2 183) 2 183 2 167 2 174 2 167 2 167

15a (2 161, 2 171) 2 171 2 167 2 173 2 165 2 165

16a (2 148, 2 301) 2 301 2 255 2 324 2 256 2 255

17a (2 088, 2 168) 2 169 2 141 2 162 2 140 2 142
18a (2 055, 2 139) 2 139 2 137 2 157 2 127 2 132
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Fig. 6    Gantt chart of problem 01a (Makespan=2 515)
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Fig. 8    Gantt chart of problem 11a (Makespan=2 060)
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5.3    Results and comparison with Fattahi data

The  Fattahi  data  with  20  problems  is  adopted  from Fat-
tahi  et  al.  [43]. Table  3 shows  the  experimental  results
and comparison with the other  algorithms.  The MSCGA
represents the proposed algorithm. The results of the arti-
ficial  immune  algorithm  (AIA)  and  the  hybrid  harmony
search (HHS) are adopted from Yuan et al. [46]. The re-
sults of the second mathematical evaluation model (M2),
mixed integer linear programming (MILP), modified iter-

ated  greedy  (MIG)  and  multi-population  genetic  algo-
rithm-ER (MPGA-ER) are adopted from Demir et al. [47],
Birgin et  al.  [48],  Aqel  et  al.  [14]  and Shi  et  al.  [31]  re-
spectively.  The  proposed  MSCGA  obtains  the  18  best
results. The experimental results show that the number of
the  best  results  obtained  by  MSCGA  is  greater  than  the
other  algorithms  except  HHS,  which  also  obtains  the
same number of results as the proposed algorithm. Fig. 9
and Fig. 10 illustrate the Gantt charts of problems MFJS09
and MFJS10 respectively. 

 

Table 3    Experimental results of Fattahi data and comparison with other methods

Problem AIA HHS M2 MILP MIG MPGA-ER MSCGA
SFJS01 66 66 66 66 66 66 66
SFJS02 107 107 107 107 107 107 107
SFJS03 221 221 221 221 221 221 221
SFJS04 355 355 355 355 355 355 355
SFJS05 119 119 119 119 119 119 119
SFJS06 320 320 320 320 320 320 320
SFJS07 397 397 397 397 397 397 397
SFJS08 253 253 253 253 253 253 253
SFJS09 210 210 210 210 210 210 210
SFJS10 516 516 516 516 516 516 516
MFJS01 468 468 468 468 462 468 468
MFJS02 448 446 446 446 446 446 446
MFJS03 468 466 466 466 450 466 466
MFJS04 554 554 564 554 554 554 554
MFJS05 527 514 514 514 514 514 514
MFJS06 635 634 634 634 634 634 634
MFJS07 879 879 928 879 881 879 879
MFJS08 884 884 / / 889 884 884
MFJS09 1 088 1 055 / / 1 059 / 1 055
MFJS10 1 267 1 196 / / 1 214 / 1 196
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Fig. 9    Gantt chart of problem MFJS09 (Makespan=1 055)
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5.4    Analysis of experimental results

Table 4 gives the overall experimental results. The statis-
tical  data  demonstrates  that  the  accuracy  of  the  solution
of the proposed algorithm is obviously better than that of
other  algorithms.  The  superiority  of  the  number  of  opti-

mal  solutions  shows that  the  algorithm has  a  strong abi-
lity of searching for optimal solutions. At the same time,
the average error reflects the stability of the algorithm. To
sum up, the proposed MSCGA has certain advantages in
the FJSP.

 
 

Table 4    Overall experimental results

Benchmark MK data Peres data Fattahi data

Number of optimal solutions
MSCGA 9 13 18

Optimal comparison algorithm 9 12 16

Average error
MSCGA 0.147 3 0.019 1 —

Optimal comparison algorithm 0.151 0 0.019 3 —
 
 

6. Conclusions and future studies
The FJSP is an important problem in modern manufactur-
ing systems. This paper develops an MSCGA to solve it.
Moreover,  some  famous  FJSP  benchmarks  are  used  to
evaluate  its  effectiveness.  The  contributions  of  this  re-
search include the following:

Based  on  the  features  of  the  FJSP,  we  design  all  the
parts of the MSCGA method. The MSCGA has been suc-
cessfully used to solve the FJSP. This outcome indicates
that  the  MSCGA  is  an  effective  method  to  use  in  the
FJSP research.

The MSCGA combines the advantages of evolutionary
algorithms  and  collaborative  optimization.  It  provides  a
new way to solve problems that contain several sub-prob-
lems.

Future  work  will  expand  on  the  implementation  and
scope  of  the  algorithm.  First,  to  obtain  more  new  solu-

tions,  additional  effective  algorithms  can  be  combined
with collaborative optimization to solve the FJSP. Second,
we can extend this new way to solve the multi-objective
FJSP or other  scheduling problems in the manufacturing
field.
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