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Abstract: A consensus-distributed fault-tolerant (CDFT) control
law is proposed for a class of leader-following multi-vehicle co-
operative attack (MVCA) systems in this paper. In particular, the
switching communication topologies, stochastic multi-hop time-
varying delays, and actuator faults are considered, which may
lead to system performance degradation or on certain occa-
sions even cause system instability. Firstly, the estimator of ac-
tuator faults for the following vehicle is designed to identify the
actuator faults under a fixed topology. Then the CDFT control
protocol and trajectory following error are derived by the rele-
vant content of Lyapunov stability theory, the graph theory, and
the matrix theory. The CDFT control protocol is proposed in the
same manner, where a more realistic scenario is considered, in
which the maximum trajectory following error and information on
the switching topologies during the cooperative attack are avail-
able. Finally, numerical simulation are carried out to indicate that
the proposed distributed fault-tolerant (DFT) control law is ef-
fective.
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1. Introduction

At present, countries with considerable military might be
attempting to enhance the capability of air defense sys-
tems further, thereby significantly increasing the possibi-
lity of intercepting a single vehicle and preventing the
vehicle from achieving attack tasks. The concept of multi-
vehicle cooperative attack (MVCA) has been proposed
herein to complete the attack tasks more effectively.
Clearly, the MVCA system will undergo further develop-
ments because of the various tactical formations, lower
flight cost, and increased vehicles’ number [1-8].
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In fact, vehicles can be treated as multi-agent (MA)
nodes, because the relative distance among vehicles dur-
ing a cooperative attack is large. Therefore, the consensus
theory for multi-agents can be used in such systems
[6—8]. Different types of time delays and actuator faults
during cooperative attacks have been investigated. For
example, Li et al. [9] studied a distributed optimization
problem associated with a time-varying MA network
considering the network delay, in which each agent has
an influence on its convex objective function (COF), and
the sum of the COF can be minimized cooperatively. On
the basis of the mirror descent method, a distributed
method was developed by exploring the delayed informa-
tion of gradient. Moreover, an influence of the delayed
gradient on the algorithm convergence was analyzed, and
according to the network size, topology and delay para-
meter, an exact bound on the convergence rate was
provided. Wang et al. [10] firstly converted the asympto-
tic consensus problem of the multi-missile cooperative
guidance time into the asymptotic stability problem of
different systems based on the graph theory. Thereafter,
the asymptotic stability problem of different systems with
a communication delay and topological uncertainty was
analyzed based on the Lyapunov theorem. Furthermore,
the above method was expanded to the situation under a
switching topology for analyzing the guidance time con-
sensus, and relatively sufficient conditions were obtained.
Li et al. [11] studied the output consensus problem of li-
near discrete-time multi-agent systems (LDTMASSs) con-
sidering heterogeneous dynamics as well as a communi-
cation delay (CD), and the networked predictive control
scheme was introduced to make up for the network delay,
for the sake of eliminating the worse influence of the CD.
Moreover, a novel distributed protocol was given with the
estimation of the agent outputs, and sufficient conditions
of the output consensus were obtained for the LDTMAS
with heterogeneous agents and a constant CD. The con-
sensus of MA systems with constant communication time
delays was investigated in [12—15]. Aimed at the con-
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sensus for the LDTMAS with CDs under directed topolo-
gies, Liu et al. [12] assumed that the CDs were constant
but unknown, and based on the networked predictive con-
trol scheme, a consensus protocol to compensate for un-
known delays was proposed. Wang et al. [13] studied the
consensus among identical agents that were extremely
coupled and easily divergent, through networks with a
uniform constant CD, obtaining the delay tolerance’s up-
per bound, which explicitly relied on the network topo-
logy as well as agent dynamics in the case of directed net-
works. A method of controller design was proposed even
when the network topology is not exactly known, re-
sulting in achieving the MA consensus in a series of un-
known networks for any delay satisfying the above bound
for delay tolerance. It is clear that a higher delay toler-
ance is possible if the network topology can be known.
Considering linear time-delay MA systems with a cooper-
ative connected switching network, Lu et al. [14] studied
the cooperative output regulation problem, and two lem-
mas were first established to provide the basis for solving-
the problem, following which, by means of the dynamic
state as well as the dynamic measurement output feed-
back control protocol, the solution to the problem was
presented. Based on the fact that the dynamic agent is
casily divergent and the diagraph is not directed, Wang et
al. [15] considered a consensus design problem for con-
tinuous-time first-order MA systems with a uniformly
constant CD. The novel technique was that the historical
input information was adopted in the protocol. In addi-
tion, the consensus of MA systems with time-varying CD
has been studied in detail [16—19]. In directed networks,
Xi et al. [16] studied the consensus problem considering
arbitrary finite time-varying CD, under the fixed as well
as switching topologies. Based on the feedback lineariza-
tion and graph theory, the linear guidance law for each
missile was obtained, and the consensus problem was
successfully converted into the problem of judging the
corresponding error system. Xia et al. [17] considered
group consensus problems of continuous-time MA sys-
tems with time delays, in which the agent states were in-
fluenced by the information obtained from their neigh-
bors at certain discrete instants. The case with a fixed to-
pology and time-invariant delays, and the general case
with switching topologies and time-varying delays, were
respectively taken into account by using the graph theory
and the nonnegative matrix theory, and several group
consensus solutions were got in the cases, indicating that
the agents in the non-zero in-degree groups (IDG) can be
converged to the convex hull in the zero IDG. Aimed at
the attitude dynamic tracking control for spacecraft form-
ation considering non-measurable velocity, time-varying
delays and switching topology, by a designed extended
state observer, Yang et al. [18] developed a nonlinear atti-
tude tracking control method for a spacecraft attitude

model which was formulated by Euler-Lagrangian equa-
tions.

Qiao et al. [19] considered the delay-dependent coup-
ling studied linear time-invariant MA consensus system,
in which the homogeneous delays have effects on commu-
nication among agents. The coupling among the agents
was designed as an explicit delay parameter, allowing for
the couplings to adapt autonomously based on the delay
values. The above works focused on single-hop time
delays, while Ji et al. [20] investigated consensus prob-
lems of first-order MA systems with multiple time delays,
which included three cases: discrete, continuous and a
continuous system with a proportional derivative control-
ler. In each case, the system contained communica-
tion and input time delays simultaneously. Moreover, it
was concluded that the system convergence condition de-
pends mainly on the input time delay of each agent and
the adjacent weights, but has nothing to do with the com-
munication delays among agents, regardless of whether
the system is discrete or continuous.

MA systems with actuator faults have gained attention
intensively. In [21], the current research progress in the
fault-tolerant control problems and fault parameter identi-
fication problems of multi-agent systems was summari-
zed in detail, and several future research directions in re-
lated fields were clearly stated. By constructing a high-
gain observer protocol and a cooperative fault-tolerant
controller, an adaptive fault-tolerant control method is
proposed for heterogeneous high-order cooperative MA
systems, which can solve the problem of actuator faults
and network disconnections [22]. Wang et. al. [23] in-
vestigated leader-following cooperative control with actu-
ator faults for a multi-agent system with unknown nonli-
nearity. To detect actuator faults, a fault estimator was de-
signed firstly. Secondly, a distributed fuzzy fault-tolerant
control consensus algorithm was proposed, achieving effe-
ctive tracking of the leader agents by the following
agents. For a pure-feedback nonlinear MA system, the
output-tracking consensus was well considered in [24],
even though it had actuator faults. The consensus track-
ing of specific objects, for example, a power generation
network, was solved based on distributed fault detection
and fault-tolerant control. Experiment on the real power
generation network verified the accuracy of the method
[25].

Chen et. al. [26] investigated the fault-tolerant con-
sensus in an MA system by a distributed adaptive pro-
tocol (DAP). They first proposed distributed adaptive on-
line updating strategies for certain parameters by the par-
tial information of the structure of network, and then, for
the leaderless MA system, using parameters updated on-
line, the DAP was improved to eliminate the fault and un-
certainty effects. Meanwhile, the DAP gain was propo-
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sed, which resulted in a fully distributed continuous ad-
aptive fault-tolerant consensus protocol design based on
the local state information of neighboring agents. Simi-
larly, a DFT leader-follower consensus protocol for the
MA system was then presented.

According to the above mentioned research considering
MA systems with time delays and actuator faults, it can
be concluded that the consensus problem of MA systems
with time delays and actuator faults simultaneously has
not been considered deeply, that is, few works exist re-
garding the above interests. However, considering the
problem whereby actuator faults and time delays in the
leader-following MVCA system may lead to poorer per-
formance of the consensus and the cooperative attack
failure, it is significant to design a consensus algorithm
that can eliminate the influence of time delays and actua-
tor faults. Owing to the fact that the signal transmission
power of vehicles in a multi-hop communication topolo-
gy can be reduced, and the electromagnetic interference
can be restrained effectively, the communication topo-
logy in this case is a multi-hop, as opposed to a single-
hop, communication topology, which is of great practical
significance for the valuable space and limited power
capabilities of the vehicles.

Based on the above analysis, we make several efforts
regarding the above problem. (i) For a fixed topology, we
first design a fault estimator to detect the actuator faults,
following which the consensus-distributed fault-tolerant
(CDFT) control law is obtained after solving the Riccati
equation and a linear matrix inequality (LMI) in the ex-
ample that the communication topology of the following
vehicles is already known, and the tracking error’s upper
bound is obtained. On the basis of the Lyapunov stability
theory, it proves that, when actuator faults cannot work
properly, the following vehicles can maintain consensus
with the leader vehicle effectively, and the tracking error’s
upper bound is ultimately obtained. (ii) For switching to-
pologies, we similarly design a fault estimator, and the
CDFT control protocol and upper bound of the error dur-
ing the cooperative attack are also obtained. (iii) Finally,
the numerical simulation is conducted to verify the effect-
iveness of the CDFT control law proposed in this paper.

2. Preliminaries

A following vehicle with actuator faults can be modeled
in the following:

X‘,—x = Ax,x+Bu,+Ew,([) (1)

where x;, is the state of the following vehicle i in the
direction of the x -axis belonging to the multi-vehicle
common reference coordinate system (MVCRCS), u; is
the control input actuating the following vehicle to track
the state of the leader vehicle, and w;(t) = [w; (1),

w;p(1),+ - ,w;i,(1)] € R? is the signal of the actuator fault.
The state differential equation along the z-axis and y-axis
for the following of the MVCRCS has a similar form of
(1), and the states of these following vehicles can be in-
fluenced by their neighbor states as well as the leader
through the interactive communication among these vehi-
cles.
The leader vehicle can be modeled as

Xo, = Axo, 2

where x,, is the state of the leader vehicle with the num-
ber marked 0 in the direction of x-axis of the MVCRCS.
It should be pointed out that the leader state will not be
influenced by the following ones, and its velocity is a
constant value. Furthermore, the state differential equa-
tion along the z-axis and y-axis for the leader vehicle of
the MVCRCS has the same form of (2).

3. DFT control of MVCA system

3.1 Fault-tolerant cooperative control with multi-hop
time delay under fixed topology

As we all know, the communication topologies between
multiple vehicles are always fixed at any moment or in a
very small period of time. Therefore, we first study the
consensus fault-tolerant control of cooperative attack sys-
tems under the fixed topology. In this section, certain fun-
damental knowledge regarding the graph theory under a
fixed communication topology is firstly provided.

The directed graph G = {v,&,A} describes the commu-
nication situations among the following vehicles. Here, v =
{ny,n,,--- ,ny} is the set of all following vehicles, where
n; represents the ith following vehicle; & = {(n;,n;) € v X v}
is the set of all edges, and (n;,n;) € & means that the ith
following vehicle can get the information from the jth
following vehicle. Defining the adjacency set of n; as
N; ={jl(n;,n)) € &}, and A = [a;;] € R™" as the adjacency
matrix, if (n;,n;) € €, a;; = 1; otherwise, a;; = 0. Assume
that the vehicle is not connected to itself, that is, a; = 0.
Define the Laplacian matrix of the directed graph G as
L=[l;1]eR™, and [;=—a; while i# j; otherwise,

l;; = d;, where d; = Zaij. Thus, L = D—A. The adjacen-

cy matrix of the leajcei[ev:'r vehicle is A, = diag(ay), and if n;
has the information transfer channel with the leader O,
a; = 1; otherwise, a;, = 0.

For further analysis, the following assumptions and
lemmas are required.

Assumption 1 The communication topology among
the following vehicles is a directed graph with a spanning
tree, and the following vehicle with root node status can
obtain the leader vehicle information. Thus, all of the fo-
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llowing vehicles can obtain the information of the follow-
ing vehicle with root node status.

Assumption 2 In the communication topology, the
pattern of the CD among adjacent vehicles is the same,
while the CD among non-adjacent but reachable vehicles
is the sum of the CDs on the path.

Lemma 1 If there exists a spanning tree in the direc-
ted graph G, i.e., the following vehicle with root node
status can obtain the leader vehicle information, let the
symbol L be the Laplacian matrix of the graph G, A, be
the adjacent matrix of the leader vehicle, and A =
[a;;] € RY be the adjacent matrix of the following vehi-
cles. Then, define

H=L+A,,
I=[1,1,---,1]"eR",
q=1q1, ¢ . qy]"=H'1,
T = diag(t,) = diag(1/¢), i=1,2, --- N,
G=H'T+TH,

where H and T are both positive definite matrices.

Assumption 3 The actuator fault satisfies Hw,-,k(t)” <
Wi @@ < W andi=1,2, -+ N, k=1,2, -, ¢,
Wity > 0, wpy >0, and ||| denotes the 2-norm of a cer-
tain matrix.

Assumption 4 (A, B) is controllable, i.e., rank(B) =
rank(B, E), then it can be found that there exists a matrix
B* € R™" which satisfies (BB*—1,)E =0. 0 is an appro-
priate dimension matrix.

Lemma2 IfP, 0, and R are all known matrices, then
P R 0 ;
<
. (3)
is equivalent to
P+RO'R" <0. 4)

According to Assumption 1, the state error and adjacent
cooperative error with a time delay are defined respect-
ively as follows:

ni(1) = x:(1) — x0(?),
et —mT(0) = Y ay(x,(t — m;T(0) - X))+
JEN;
ai(xo(t — myT(1)) — x,(1)) =
D gyt = my(0) = m,(0) - (g (0)+
JEN;
Xo(1) — xo(t — my7(1))),

where j=1,2,---,N (j # i) is the notation of the follow-
ing vehicles, my, is the number of hops on the path from
the leader to the ith following vehicle, m; is the number
of hops on the path from the jth following vehicle to the

ith following vehicle, 7(¢) is the time-delay. m; has rele-
vance with mg; and my;,i=1,2,---N, j=1,2,--- N, j#1.
The fault-tolerant controller of n; is designed as follows:
u;=u;— B Ew1) Q)

where @;(¢) is the fault estimation.
Let @;(t) = @;(t) — w;() be the fault estimation error,
and the linear feedback control law u;, is designed as
u; = cKe; (6)

where K € R™ is the gain matrix and ¢ is the coupling
parameter.

Select K = BTP, and P is a positive definite symme-
tric matrix which satisfies the Riccati equation:

A"P+PA-PBB'P+0=0 7

where Q is a positive definite symmetric matrix as well.
Then, the dynamic equation about 7; without a time
delay is
i],‘ = A']‘ + Bu,‘ + Ew,(t) =
An,+cBK ) (n;(6) = (1) - cBKn,(1)-
JEN;
BB'E&®,(t) + Ew(t) =
An.+cBK Z m;(t) = (1)) — cBKn(1) + Edo (1)~ (8)
JeN;
wherei=1,2,---,N.

By means of the introduction of n= [}, -, 1yl
e=[elel, el ], w=[w! ol - ,w]]",and the Laplacian
matrix L of graph G, we can obtain

0= Uy®An-cy®B)LOL,)Iy® K-

cIy®B)Ay®L,) Iy K)n+ Iy E)(t) =
[Iy® A—cH®BKIn+ (Iy® E)d(1), O]
ée=(Iy®A-cH®BK)e— (H® E)(1), (10)

where ® means the kronecker product, and Iy denotes the
N-dimensional unit matrix.

Thus, the state error dynamic equation and adjacent co-
operative error dynamic equation of the error system with
a time delay are
(1) = Uy @A) - (cH® BK)1(t —mt(1)) + (Iy ®E)€()§t1)),

ée=Iy®A)e—(cHOBK)e(t—mt(t))—(HRE)(t), (12)
where

n(t—mt(t) =

(1 (1 =y 7 (D)), 1, (1 = myT (D)), -+, Myt — myT(2))),
e(t—mt(t)) =

(el (t—mT(1)), ey(t—my1(1), -+, en(t—my7(1))).
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In the following theorem, we use the Lyapunov stabi-
lity theory to conduct the stability analysis of the system.

Theorem 1 Consider a leader-following MVCA sys-
tem that is networked, if systems (1) and (2) satisfy As-
sumptions 1—4, and control law (5) is chosen. Then, all
signals in the MVCA system with a stochastic single-hop
time-varying delay 7(z) satisfying 0 < max(m ) T(t) < h,
j=0,1,2,--,N, i=1,2, 9
bounded for a fixed topology G with a nonnegative

,N are ultimately uniformly

weight, and the tracking error is limited as

lim||8]| < . (13)

Considering that there exists matrices Q, C and a para-
meter ¢ which satisfies

1
P L (14)
izg}{{N(qigi)
m
S — 15
Q> 5 (15)
i=1,2,-,N
CR+R'C+aC -CS CM hR'D
—CS 0 0  —hST
<0, (16)
cM 0 0 IM'D

hDR -hDS hDM  -D

where ¢(-) means the minimum singular value of the
matrix, C > 0, the symmetric matrix D >0, R=Iy®A,
S=H®BK,M =1,®E, and a is areal number satisfying

V=2n"Ch+ "Dy -h [,

O<acx<

an

:'I>—‘

g: is the ith eigenvalue of G, y > 0, and ¢;, G, 7, have
been defined in Lemma 1, n, = (TA)c(PE), o, >0,
o(-) means the maximum singular value of the matrix,
and the adaptive rate of &,(?) is

é)i(t) =T ,lt(d;+ag)E" Pe;,— o ,&,(1)] (18)

where I",; > 0.
Proof Let n(t) = n(t—mz(z)), € = " e"]", then,
0 =Uy®A)n()—(cHRBK)n(t) + (Iy® E)(1).

Let R=Iy®A, S=cHQBK, M =1y®E, then n(t) =
Rn(t) — Sn(t) + Méa(1).
Consider the following Lyapunov-Krosovskii function:

V:gT(t)[ ¢ 0 ]a(t)+ZN:d).T(t)r‘?&),-(t)+
0 TP e

hf,i,,<s—t+h)§(s)“)) g]sT(sms:vlwz (19)

where

=q' OCnw +h [ (s=t+Di" D ()ds,  (20)

N
V,=e"(T®Pe+ Z oI (O @i(0). @21

i=1

Then, the derivation of this function along the direction
of the error system is

7' (s)Dij(s)ds +e" [T (PA + A"P)le — ce"[G® PBB" Ple(t—mt(t))—

2¢"(TH® PE)o(1) +2 Z OT (O (&1 — ai(t)) = 20" ()CIRY(D) — Sn(t) + Méddx(1)]+

R[Ry() - Sn(t) + ﬁa(t)]TD[Rq(t) —Sn(t)+ MaxX0)] - h [, () Dij(s)ds+
T[T®(PA + ATP)le - ce'[G® PBB Ple(1—mt(t)) - 2" (T(D + A, —A) ® PE)i(1)+

e
N

Z O én-2 Z OT O (1) = 20" (OCRy(1) - 27" (HCSn(t) + 27" (HCMéx D)+
i=1

RIR() - Sn(t) + Mw(t)]TD[Rn(t) Sn(r)+ Mo0)] - h [, 7" (s) Dij(s)ds+
¢"[T®(PA + A"P)le - ce"[G® PBB" Ple(t—mt(1)) — 2" (T(D + A, — A) ® PE)i(H)+

Z &N O Tl 7(d; +ao)E" Pe, — o, oo.(t)] - 2 Z &' (O @,(t) = 1" ()[CR + R"Cln(t)-

2" (H)CSn(t) + 20" () CM(1) + P [Ry(r) - Sn(t) + M (1) D[Rn(r) - Sn(t) + Mé(0)] -
K’ i (s)Di)(s)ds +€"[T® (PA + AT P)le — ce"[G® PBB" Ple(t—mt(1))+2€"(TA ® PE)i (1)~

N N
23 GO () -20, Y &I Ob(0) =V, +V,

i=1
where

i=1
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V. = 1" (1)[CR + R*Cln(t) - 250" (£)CSn(t) + 217" () C M (1) +
12 [Ri(t) - Sn(t) + M&(®)]" D[Rn() - Sn(t) + Max0)] - h [, i (5) Di(s)ds,
V, =e"[T®(PA + A"P)le — ce"[G® PBB" Ple(-—mt(1)+

2¢"(TA® PE)o (1) -2 Z oI (1) -2, Z RO
i=1

i=1
Then,
Vl +aV1 = E1 +E2
where

E, = ah fh (s— 1+ Wi" () Diy(r)ds—
h Lh (s—1+ i’ (O Di(t)ds =
fh [ah(s -+ h) — k" () Diy(H)ds,

E, =" ()[CR + R*Cn(t) - 20" (£)CSn(r)+
2" (CMa(t) + A [Ry(t) — Sn(f)+
Ma®1"DIRy(1) - Sn(t) + Ma(1)] +an" (1) Cn().

1
If a is satisfied with 0 < a < w obviously, E; <0.

Rewrite E, as follows:

CR+R'C+aC

[ -CS CM n
E,=| n -CS 0 0 n |+
o cM 0 0 o
n 1| hR™D n
n -hS'D |D”'[ hDR -hDS hDM ]| n
© 1| mM'D )
(22)
Define
CR+R'C+aC -CS CM
P= -CS 0 0o |
cM 0 0
hR™D
R=| —nS"D |, Q=D,
hM'D

and if the positive definite symmetric matrix C satisfying:

CR+R'C+aC -CS CM hR'D
—CS 0 0 -iS'D |_
M 0 0 sM'D |
hDR _hDS hDM  -D

<0, (23)

according to Lemma 2, (23) can be further converted to

CR+R'C+aC -CS CM
P+RO'R" = -CS 0 0 |+
cM 0 0
hR™D
—-hS™D |D7'[ hDR -hDS hDM 1<0,
hM™D

and obviously, E, <0.

Because E, <0 and E, <0, V, +aV, <0.

Let the function V, +aV,=E(?), then E(7) <0, and the
solution of the first-order non-homogeneous constant-
coefficient differential equation is expressed by

Vi) = V,(0)e™ + L e E(r)dr. (24)

Because the second item of (24) is non-positive, one
has

V(@) < Vi(0)e™. 25)

From (25), it is concluded that V,(¢) exponentially con-
verges to zero.
Next, we analyze V, as follows:

V, =" [T®(PA +A"P)le — ce"[G® PBB" Ple(t-mt(t))+

N N
2¢"(TA® PE)i(t)-2 Z oI O (1) -2, Z OO
i=1 i=1
(26)
Derived from Lemma 1, the matrix G can be found to
be a positive definite symmetric matrix, so we know that
there must be a unit orthogonal matrix J satisfying that
J°GJ = diag(g;), where g; > 0 and denotes the ith eigen-
value of G. Let £ = [¢1, 48, ,O8Y, e = (J® L)L, it has
N
Vo= > 1{[(PA+A"P){~
i=1

N

> gl (PBBP)(1-mr(n)+

i=1

N
26" (TA® PE)X(1)—2 ) & ()]} (1)~

i=1

20, )" &N O(0), 27)

i=1
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Let [E@I” = max([|&F @), I e=mr@piD|’, then,

D& OGO <IEDI, Y & O&=mr(0) < €I ,and
i=1 i=1

then,
V,=e"[T®(PA+A"P)le—ce'[G® PBB" Ple(t—mt(1))+
2¢"(TA ® PE)é(f)—

2 DO o -20, Y. &l 0ay(0 =
i=1 i=1

N

D Tl (PA+ATP)G - ) caid! (PBBTP) (1-mr(n)+

i=1 i=1

2¢"(TA ® PE)é(1)—

N N
23 GO () -20, Y &N <
i=1 i=1

N
> €T (PA+ AP cqig,PBE' P+

i=1

N
2¢"(TA® PE)é(t) -2 Z o (O, (1)-

i=1

N
20, ) @ (D).
a, ;a) , (28)

According to Assumption 3, we can obtain ||w(?)|| >
—Wip, |l = —wou.
Substituting (7) and (14) into (28) yields

Va< —i:{gi}?N(Tf)Q(Q)II-fII2 +2n [lellll@ll +

21@I (@I, Yy + Towin) =20, |l@I <

— min (T)(@)llell + 21y llell @] +

210N (G way + Tpwin) =20, oI (29)

where I',, = diag(l",;).
Let

z=[llell. 1®I1", f = 10,20 (I, won) + i),

W= izlig,l-{l,N Tlg(Q) —Th
) za—w

where W is a symmetric matrix and W > 0 derived from
(15), and

Vy <—aW)lizll* + 1Al Izll.- (30)
Define
R = min[o(T)o(P),T,;1, R=max[c(T)a(P),I",;],
and the following formula can be derived from (21) and

(30),
V,<—aV+BVV (31)

where @ = o(W)/R and B =||f|l/ /R.
The following inequality can be derived from (31),

VVa(t) < V5 (0)e ' + g(l e, 32)

thus, lim vV, (r) < E If e meets the following two formu-
1—00 a
las:
. IR llell
lim|lel < / < e
= a(W) R o(T)a(P) a(H)

the upper bound of the following error can be obtained:

_ IfIIR
"7 2 W) R sz P
Synthesizing the results of V, and V, yields
V(i)y=Vi(@®)+ V(1) <V,(0)e ™+

(Wi + £ (1)),

and then,

2
limV() < ﬁ_2
1—00 (0%
Thus, all signals of the closed-loop system are ultima-
tely uniformly bounded [27], and the state error meets the

following limitation:

IfIR
o(H)o(W) R o(D)o(P)

lim || <
t—oo

O

Remark 1 Because the matrix E is unknown, the

matrix P+RQ™'R" in the proof may not be a square ma-

trix. If it is not a square matrix, the appropriate dimen-

sion matrix 0 can be added to matrices P and R, such that
P+RQ'R" is a square matrix.

3.2 Fault-tolerant cooperative control with multi-hop
time delay under switching topology

During the combat process of the MVCA system, due to
various factors, the communication topologies between
the vehicles will change to some extent. It has been estab-
lished that the interaction topology among the nodes of
the multi-vehicle system is dynamic, i.e., a time-varying
topology that is due to the impacts of some flight applica-
tion scenario factors of MVCA systems; thus, the DFT
control with switching interaction topologies grows in
importance, and it is very significant to conduct the re-
search on the leader-following MVCA system.

Next, we will provide some definitions and knowledge
about the switching interaction topology based on the
graph theory.
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Definition 1 Let «(¢):[0,00) > h={l, 2, ---, N} be
a switching signal, where N denotes the total number of
topologies that possibly appear. The interaction topolo-
gy remains unchanged among two adjacent switching
moments. Let the interaction topology with a subscript &
as the directed graph G, = {v, &;,A.}. The interaction topo-
logy of the vehicle switches a limited number of moments
during the full flight process of the MVCA system.

Assuming that the vehicles stay unchanged for existing
switching topologies, and the symbol v in switching topo-
logies has the same meaning in a fixed topology. Here,
the ith following wvehicle is denoted as n;, and
&, = {(n;,n;,) € vxv} is the graph edge in the interaction
topology at moment k, and (n;,n;;) € &€ shows the fact
that n,, can get the information of 7.

Let the adjacent set of n;;be Ny ={jl(nynjy) €&l
Ar =laij ] € RV is set to be the adjacent matrix. Set
a;, =0, and if (n;,n;,) € €, a;;; = 1; otherwise, a;;;, =0.
Let L, =[/;] € RM"denotes the Laplacian matrix and
define in-degree matrix as D, = diag(d;;)yxy of graph G;.

If i=j, ljx=dy; otherwise, [y =—aix, dix= Z ;e

Thus, L, = D; —A,. The adjacent matrix of the lézl\ger at
moment k is Ay = diag(a,), and if n;; can receive the
leader information, then a;,, = 1; otherwise, a;; = 0.

The assumptions and lemmas below are necessary for
further analysis.

Assumption 5 The differential equation of state for
the leader with switching topologies has the same form
when it is under a fixed topology.

Assumption 6 All the interaction topologies existing
among the following vehicles are directed graphs, and
each of them has a spanning tree, moreover, a following
vehicle with root node status can receive the leader
vehicle state information. Thus, all of the following
vehicles can get the information of the following vehicle
with root node status.

Lemma 3 If the directed graph G, has a spanning
tree, and the symbol L, denotes the Laplacian matrix of
G, the following vehicle with root node status can obtain
the leader vehicle information, Ay means the adjacent
matrix of the leader vehicle, and A; = [a;;x] € RV rep-
resents the adjacent matrix of the following vehicles.
Then, define

H, =L, +Ay,
1=[1,1,---,1]" e R",
4 = 910 Qo - qual " = H'1,
T, = diag(7;,) = diag(1/qix), i=1, 2, -+, N,
G, =TH,+HT,

where T, > 0and H, >0, i.e., both of the two matrices

are positive definite.

Assumption 7 The actuator fault satisfies the inequa-
lity [|wsi(®)|| < wims | @ik (®)]| < Wi, Where i=1,2, -,
N,r=1,2,-,q, way >0, wpy >0.

Now, we analyze the differential equations of state for
the systems below:

Xy = Ax; + Bu; + Ew;(t) (33)

where w;(t) = [wi (1), Wi i(1), -+, Wi ()] € R? is the ac-
tuator fault signal.

According to Assumption 1 and Assumption 5, the ad-
jacent cooperative error with a time delay is defined as

e (t—myT(t) = Z (% (= myT() — x,(1)+

o (o — Moy 7(6)) — x:(1)) =
Dyt = () = m(0) - (p(0)+
JENix

Xo(1) = x0(t — mo; 7(1)))

where j=1,2,---,N(j #1i) is the notation of the follow-
ing vehicles, my;; is the number of hops on the path from
the leader to the ith following vehicle, m;;; is the number
of hops on the path from the jth following vehicle to the
ith following vehicle, and 7(¢) is the time delay. Moreover,
m,, exhibits the relevance to my;; and mjy, i=1,2,---N,
and j=1,2,---,N, j#i.

The fault-tolerant controller of n; is designed as

Wiy = Uy — B Ew; (1) (34)

where @, (?) is the fault estimation.

Let @;4(¢) = @, (t) — w;,(?) be the fault estimation error,
and the linear feedback control law u; ; is designed as

u = i Kieix (35)

where ¢, is the coupling parameter, and K; € R™" is the
gain matrix.

Let K, = B"P,, where P, and Q, are both positive defi-
nite symmetric matrices which satisfy the Riccati equa-
tion as follows:

ATPk+PkA —PkBBTPk+Qk = 0 (36)

Then, the dynamic equation about 7; without a time
delay is
i =An,+Bu,, + Ew,(t) =
An,+cBK, Y (0 -m,(0)-

JEN
aBK (1) — BB E®,;(1) + Ew(t) =
An, +¢BK, Z (n;() — i) — e, BK,1i(1) + E@,; (1)
JENik

(37)
wherei=1,2,---,N.
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By means of the introduction of n=[plp, -, nv],

e, = [e{ka e;k’ e 9e£,k]T, wk(t) = [w{k, w;[,k’ e ’w;,k]T and
the Laplacian matrix L, of graph G,, we can obtain

n=Uy®A)mn—cIy®B)L&1,)Iy®K)n-

c(In@B)Ao, QL,)INy@Kn+ Iy ®E)w (1) =

Iy®A—ci(Ly+Ao) @ BK I+ (Iy @ E)éo (1) =
[Iy®A—-cH, @ BK,In+ (Iy® E)w,(2), (38)

é,=Iy®A-cH,®BK)e,—(H, @ E)a (1), (39)

where H, = L, +Ay,.
Thus, the state error dynamic equation and adjacent co-
operative error dynamic equation of the error system with

a time delay are obtained respectively as follows:

(1) = Iy ® A1) — (e, H, ® BK)n(t — myt(1)+
Iy ® E)i (1), (40)

é,=Uy®Ae,—(c.H,®BK,)e(t—m7(t)) — (H, ®E)(Z)é?),

where

n(t = mr(0)= (i, (£ = my 7)), 15 (= Mo (D), -+, (F = M T(1))),

e(t—mT()= (€], (t =i, T(D), €3, (1= maiT(1)), -+ €y, (1 = My, T(D))).

Next, the following theorem is presented to analyze the
system stability on the basis of the Lyapunov stability
theory.

Theorem 2  Consider a leader-following MVCA
system that is networked with the control law (31), and
multi-vehicle systems (2) and (30) satisfy Assumption 2
and Assumptions 4—7; then, all signals in the MVCA sys-
tem with a stochastic single-hop time-varying delay
0 <max(m; () <h, j=0,1,2,---,N
and i=1,2,---,N are ldltimately uniformly bounded for
switching topologies G, with a nonnegative weight, and
the tracking error satisfies

7(1) satisfying

il < pev o0 @)

If there exists a coupling parameter ¢;, a matrix Q;
satisfying

1
O T s—— (43)
min (gi.8ix)
1
> —, 44
20> 5 s min (00 @9
=12, N
and a matrix C; > 0, such that
CkR + RTCk + aka —CkSk C/(M //ZRTD/(
-CS; 0 0 —hS; D, <0,
ccm 0 0 hM™D,
hD,R -hDS, hD:M -D;
(45)

where symmetric matrix D; >0, R=Iy® A, S, =H, ® BK,,

M =1,®E, g, is a real number satisfying

1
O<a<—, (46)
h
gix 18 the ith eigenvalue of Ek, v >0, these symbols ¢q;;,
Ek, T;x have been defined in Lemma 3, 1, = o(T:Ay)-

o(P.E), o, > 0, and the adaptive rate of @, ,(7) is
O (t) = Tois[Tia(dis + aio ) E" Presy — 0o k@i (D] (47)
where I, > 0.
Proof Let (1) = n(t —m7(1)), & = [1" {17, then,
N =Uy® A1) — (a:H, @ BK,)n, (1) + (Iy @ E),(1).
LetR=I,%A, S, =c,H,®BK,,and M = I,® E, then

(1) = R(t) = S (1) + My (1).
Consider the following Lyapunov-Krosovskii function:

N
v, = aZ(t)[ ¢ .95 ]sk(t) + Y OO L@+

i=1

hf,ﬁ,l(s—Hh)eZ(s)[ B 0 sl s)ds = Vie+ Vi
(48)

where

Vi =" (OCa0) +h jh (s—t+m)i"(s)Diip"(s)ds, (49)

N
Vay = e (T @ Pe + Z oL @40, (50)

i=1

Following the proof of the DFT design for the MVCA
under a fixed topology, the following formulas can be ob-
tained:
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Vie =" OIC:R+ R'Cn(0) - 20" (1) C, S m (1) +
20" (NCMw(t) + I*[Rn(1) — S () + Méo ()] D [Rny(r)—

Sun(0+ MOl =h | i @Dasds,  (s1)

VQ’k = eZ[Tk ®(PkA + ATPk)]ek_
CkeZ[Gk ® PkBBTPk]ek(t_ka(t))+
2" (T, A, ® P,E)idy (1)
N N
2 OLOT LoD =200, ) &L OGO, (52)
i=1

i=1

Similar to the process of the above proof under a fixed
topology, synthesizing the results of V,, and V,, yields

Vi) = Vi () + VZk(t)

Vlk(O)e“‘“+(«/V2k(0)e‘f’+—(1 e L (53)
thus,
2
lim V,(¢) < % (54)

k

Therefore, all signals of the closed-loop system are ul-
timately uniformly bounded [27] and the state error is ob-
tained by

lim ] <

£l R,
a(H)a(W) R (Toa(Py)

Thus, it can be obtained that the tracking error’s upper
bound iskirlnzaxN(yk) with switching topologies. O

(55)

4. Numerical example

Consider an MVCA system with four second-order integ-
rators, and the system contains a leader vehicle as well as
three following vehicles [28,29]. The system matrices in
(1), (2), and (33) are selected as follows:

A:[O 1]’
00

0, r<31
1.8+0.2¢, 31
9.9,1>40

ws(t) = <tr<40 .

Fig. 1 shows interaction topologies between the leader
vehicle and the following vehicles.

Lo vow oo

Communication Communication Communication
topology 1 topology 2 topology 3

Fig.1 Switching topologies

The stochastic single-hop time-varying delay is assumed

T

15 20 25 30 35 40 45 50
Fig. 2 Stochastic single-hop time-varying delay

L5

._
(=]

Time delay/s

0.

wn

Time/s

The interaction topology is chosen to switch from topo-
logy 1 to topology 2 at the moment ¢ = 10 s, then switch
from topology 2 to topology 3 atz = 30s.

The initial states of position and velocity for vehicles
on each coordinate axis are respectively presented in
Table 1.

Table 1 Initial state of each vehicle

Velocity Position Velocity Position Velocity Position

Index : | | 1 : 1

number of a onlg a on.g a on.g a On_g a oﬁg a orTg

; x-axis/  x-axis/  y-axis/  y-axis/ z-axis/  z-axis/
vehicle

(m/s) km (m/s) km (m/s) km

0 190 10 290 20 390 40

1 192 9.8 288 19.9 392 40.2
2 191 9.98 287 20.01 388 39.88
3 191 10.2 291 20.1 391 39.98

By solving (7) and (36), it can be obtained that
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1 0.0645 0.0229 0.0247 0.0960 0.0491 0.0106 ]
0.076 6  0.0063 0.0866 0.0326 0.0303 0.0299
}’ C, =418 0.0538 0.0862 0.0807 0.0374 0.0637 0.0060 ’

0.0303 0.0457 0.0993 0.0963 0.0293 0.0197
0.0395 0.0884 0.0378 0.0015 0.0202 0.0725

L 0.0554 0.0568 0.0175 0.0092 0.0109 0.0731

_[ 1.8 098
"l 098 18

r 0.0053 00001 00008 -0.0002 0.0017 0.0003
0.0001 0.0050 -0.0012 -0.0007 0.0003  0.0007
0.0008 -0.0012 0.0065 0.0014 0.0006 0.0006

-0.0002 -0.0007 0.0014 0.0049 -0.0004 -0.0005
0.0017 0.0003 0.0006 —0.0004 0.0071 0.0001
L 0.0003 0.0007 -=0.0006 -0.0005 0.0001 0.0048

Using the same method, the other matrices can be obtained as follows:

K, =[098 181, D=

r 0.0162 0.0480 0.0521 0.0460 0.0233 0.0309 ]
0.0129 0.0327 0.0194 0.0482 0.0239 0.0053

[ 35 045 ]’ C, = 0.0447 0.0226 0.0325 0.0347 0.0463 0.0434
045 142 0.0352 0.0560 0.0358 0.0172 0.0535 0.0017
0.0510 0.0358 0.0504 0.0256 0.0279 0.0479

L 0.0112 0.0134 0.0240 0.0295 0.0244 0.0555

h =

0.0403 -0.0076 -0.0132 -0.0036 0.0014 0.0042
-0.0076 0.0409 -0.0055 0.0084 0.0034 -0.0040
-0.0132 -0.0055 0.0381 0.0052 0.0022 -0.003 1
-0.0036 0.0084 0.0052 0.0338 0.0104 -0.0042

0.0014 0.0034 0.0022 0.0104 0.0293 0.0020

L 0.0042 0.0040 -0.0031 -0.0042 0.0020 0.0445

K,=[045 1421, D,=

1 0.0086 0.0402 0.0057 0.0200 0.0093 0.0441 7
0.0196 0.0115 0.0051 0.0472 0.0224 0.0436
- [ 5.28 0.02 ]’ C, = 0.0019 0.0279 0.0090 0.0467 0.0315 0.0345
’ 0.02 0.46 0.0429 0.0231 0 0.0387 0.0310 0.0220

0.0034 0.0273 0.0265 0.0209 0.0595 0.0144

L 0.0357 0.0443 0.0193 0.0173 0.0112 0.0077

0.0190 0.0119 -0.0155 0.0016 0.0015 -0.0088 1
00119 0.0299 -0.0200 -0.0041 -0.0017 -0.009 1
-0.0155 -0.0200 0.0247 0.0035 0.0039 0.0134
0.0016 -0.0041 0.0035 0.0120 0.0018 0.0011
0.0015 -0.0017 0.0039 0.0018 0.0083 0.0015

L -0.0088 -0.0091 0.0134 0.0011 0.0015 0.0207

K;=[0.02 0461, D;=

The main parameters are selected as follows: ¢; =2.7,  Two1 =22 = L3 =81.025, I3y = Lo = sz = 84.59,
=12, e;=13, a,=001, a,=0.1, a;=02, o, = B =[1 1 ]andh=35
1.927, 0y =1.35, 07,3 =2.58, Ty =Luip=1015=85, The results of simulation are presented in Figs. 3—14.
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Velocity curves of four vehicles Velocity curves of four vehicles
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Fault signal 1 and estimated fault signal 1
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Fig. 13 Fault signal 1 and estimated fault signal 1

Figs. 3—5 show the velocity curves of the leader-fol-
lowing multi-vehicles along the x-axis, y-axis, and z-axis,
respectively. In Figs. 3—5, the red line depicts the velo-
city of the leader along the x-axis of the MVCRCS, while
the blue, green, and yellow lines represent the velocities
of following vehicles 1, 2 and 3, respectively, along the x-
axis of the MVCRCS. As can be seen from the three fi-
gures, despite the combined influence of the switched in-
teraction topology twice, i.e., at the moment ¢ = 10 s and
t=30s, respectively, the actuator fault at r=6s for

vehicle 2 and at t = 31 s for vehicle 3, and the stochastic
multi-hop time-varying delays exist in the communica-
tion topologies, and the velocities of the three vehicles fi-
nally tend towards the velocity of the leader. In the begin-
ning, the velocities of the following vehicles undergo sig-
nificant changes, and following vehicle 1 reaches its maxi-
mum velocity along the x-axis at r = 0.56 s, while follow-
ing vehicle 2 and vehicle 3 reach their minimum veloci-
ties at 1 =0.19 s and t=0.46s, respectively. It indicates
that all of the following vehicles still fly along their own
guidance laws at the beginning, while their flying para-
meters quickly tend towards the flying parameters of the
leader vehicles once the cooperative guidance control law
is added to the following vehicles. Finally, the coopera-
tive attack system achieves the consensus of the velocity.

Fig. 6 depicts the trajectories of the leader and follow-
ing ones, and it is obvious that the trajectories of the fol-
lowing ones finally track the trajectory of the leader. In
Fig. 6, one can also see that the trajectories of the leader
and following ones are ultimately parallel.

Figs. 7-9 are the speed tracking error curves between
the following ones 1, 2, 3 and the leader vehicle 0. It can
be seen from Figs. 7-9 that the speed tracking errors
between the three following ones and the leader all even-
tually reach zero, which shows that all speeds of the fol-
lowing vehicles eventually approach the speed of the
leader vehicle. In Figs. 7-9, the switching topology at 10 s
has a significant impact on the tracking errors of the three
following vehicles, especially for the following vehicle 1,
but the three following vehicles are not affected by the
above switching topologies and tend to be consistent. The
effects of the actuator faults of the following vehicle 1
and vehicle 3, and the stochastic multi-hop time-varying
delays existing in the communication topologies have al-
most disappeared, which highlights the effectiveness of
the designed control law.

Figs. 10—12 are the tracking error curves of the trajec-
tory distances of the three following vehicles and the
leader vehicle, respectively. One can see from Figs. 10—12
that although affected by the switching topologies, stocha-
stic multi-hop time-varying delays, and some actuator
faults of the following vehicles, the trajectory distances
between all the following vehicles and the leader vehicle
gradually decrease to a reasonable range. The trajectory
tracking errors in Figs. 10—12 do not finally converge to
an absolute zero value, which also reflects the existence
of the maximum tracking error in the above Theorem 2.

The results of the fault estimators are shown in Fig. 13
and Fig. 14, from which it can be seen that the designed
fault estimator presented in this paper can effectively
identify the system fault. These also explain the pheno-
menon that the effect of actuator failures in the speed
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curves, speed tracking error curves, and trajectory track-
ing error curves is almost zero, which highlights the eff-
ectiveness of the designed fault estimator.

12

o

§ J

=

50

% 10 "

3

S8

=

8

<

I

- 4

=4

<

o2

=

=

L ¥

Z L0 i

0 5 10 15 20 25 30 35 40 45 50
Time/s

——: Estimated fault signal 3; - : Fault signal 3.

Fig. 14 Fault signal 3 and estimated fault signal 3
5. Conclusions

For tackling the problem that the switching communica-
tion topologies and stochastic multi-hop time-varying
delays in the leader-following MVCA system, as well as
stochastic actuator faults of the following ones, have a
negative effect on the consensus performance or even
destabilize the cooperative attack system, firstly an esti-
mator for the following vehicle actuator fault is designed
to identify actuator faults under a fixed topology. Second-
ly, the CDFT control law and tracking error are derived
by the matrix theory, the graph theory and the Lyapunov
stability theory, based on the fact that stochastic multi-
hop time-varying delays in the cooperative attack system
and actuator faults exist simultaneously under the fixed
topology. By considering a practical application scenario
under switching topologies, the CDFT control law is also
derived by using a similar method in the same context un-
der the fixed topology, and the maximum tracking error
during the cooperative attack is provided and proven. The
numerical simulation verifies that the CDFT control law
is effective, and the related results in this paper provide a
design method of the DFT control law on the basis of the
simultaneous existence of stochastic multi-hop time-vary-
ing delays in the cooperative attack system and actuator
faults.
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