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Abstract: This study focuses on implementing consensus track-
ing using both open-loop and closed-loop D®-type iterative
learning control (ILC) schemes, for fractional-order multi-agent
systems (FOMASSs) with state-delays. The desired trajectory is
constructed by introducing a virtual leader, and the fixed com-
munication topology is considered and only a subset of follow-
ers can access the desired trajectory. For each control scheme,
one controller is designed for one agent individually. According
to the tracking error between the agent and the virtual leader,
and the tracking errors between the agent and neighboring
agents during the last iteration (for open-loop scheme) or the
current running (for closed-loop scheme), each controller con-
tinuously corrects the last control law by a combination of com-
munication weights in the topology to obtain the ideal control
law. Through the rigorous analysis, sufficient conditions for both
control schemes are established to ensure that all agents can
achieve the asymptotically consistent output along the iteration
axis within a finite-time interval. Sufficient numerical simulation
results demonstrate the effectiveness of the control schemes,
and provide some meaningful comparison results.
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1. Introduction

In recent decades, the distributed coordination control has
attracted a considerable interest in research of multi-agent
systems, which has broad applications in social, industrial
and national defense fields [1], such as unmanned air ve-
hicles formation control [2,3], distributed sensor network
[4], robot coordination control [5,6], attitude alignment of
clusters of satellite [7,8], traffic congestion control [9,10],
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and so on. In multi-agent systems, the consensus control
is an important problem to realize distributed coordina-
tion control. The so-called consensus problem means that
the states of all agents in multi-agent systems will eventu-
ally converge through communication and coordination
among the agents [11]. In the whole coordination process,
the design of the distributed control law has become a
crucial factor to achieve the global cooperative behavior.
Iterative learning control (ILC) has been one of the re-
search hotspots in the control engineering field since it
was proposed in 1984 [12]. In a word, it does not need
the accurate mathematical model of the controlled sys-
tem, but only uses the desired trajectory tracking error to
correct the unsatisfactory control signals through simple
iterative operation, so as to realize the tracking error to be
zero in finite-time. Until now, there have been some over-
view descriptions, which are related to the ILC research,
such as in [13,14]. On account of the simple structure,
small amount of calculation and prominent tracking effect,
the ILC algorithm can be used to accomplish the coordi-
nation tasks with the high precision requirement, which is
carried out for multi-agent systems. In the pioneering
work [15], ILC for multi-agent formation was proposed.
Its purpose is to generate a control signal sequence in off-
line state for multi-agent formation control. Inspired by
[15], an effective framework is proposed by ILC, which
is for solving the formation control problem of multiple
agents with unknown nonlinear dynamics. In [16], the
ILC method was used to consider the finite time output
consistency of multi-agent systems, and two types of dis-
tributed protocols were constructed from the perspective
of two-dimensional systems. Based on [16], Meng et al.
[17] gone further to achieve perfect tracking of a time-
varying reference trajectory in a finite time. The object-
ive of [18] was to hand the formation control problems
for multi-agent systems. The distributed ILC algorithm
was devised by using the nearest neighbor knowledge. In
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[19-21], adaptive ILC for consensus of multi-agent sys-
tems with non-linearity, unknown control direction and
estimation of the partial derivatives were proposed re-
spectively. In [22], a distributed mode-free adaptive ILC
strategy was proposed by linearizing the dynamic charac-
teristics of agents along the iterative axis, which realized
that all agents could track the given trajectory. For multi-
agent systems with networked heterogeneous characteris-
tics, each agent may have different dynamic characteristics-
and different uncertainties. In [23], the convergence of ite-
rative control was addressed, and the acceptable model
uncertainty of the convergence of the proposed iterative
control method was quantified. An ILC algorithm was
proposed in [24], so as to solve the leader-follower form-
ation tracking problem of a type of multi-agent system,
where the expected line-of-sight range and angle profile
can change iteratively, which indicates that in each itera-
tion, the agents can have different formations.

However, in the above-mentioned researches, all are
concerned with integer-order multi-agents. As is known
to all, the integer-order system is one kind of the fraction-
al-order system. In a sense, applying the fractional calcu-
lus theory to the model can depict and reflect the proper-
ties of objects more truly and precisely. The research re-
sults show that there are numerous unique advantages in
the fractional-order dynamic system. In recent years, the
consensus problems have been a research hotspot for
many scholars who are interested in fractional-order multi-
agent systems (FOMASs). Through a directed interaction
graph, Cao et al. [25] carried out research on distributed
coordination of networked fractional-order systems. The
sufficient conditions of the interaction graph and the frac-
tional order are given to enable the general model to
achieve coordination. With a view to offer a solution for
consensus problems of FOMASs, Liu et al. [26] adopted
the fast sliding-mode control algorithm, which was in the
light of the distributed coordination theory. The commu-
nication network with a directed spanning tree will achie-
ve an exponential finite-time consensus. For the sake of
perfect tracking of the lead state, Yu et al. [27] designed
and verified fractional-order observers for the fractional-
order followers where we cannot get the relative velocity
information. In [28], the fractional Lyapunov direct meth-
od was applied to research FOMASs which were the
common robust consensus tracking problem. These kinds
of uncertain FOMASSs exist a leader whose input is un-
known and bounded. Consider the consensus of FO-
MASSs by sampling data to control over the directed com-
munication topology, which needs to satisfy 0 <a < 1.
The necessary and sufficient conditions were established
in [29]. A two-degree-of-freedom consensus scheme was
investigated for FOMASs with time delay in [30]. In [31],

a distributed solution with adaptive neural networks for a
network was presented to realize consensus control. The
single-integrator fractional-order systems belong to a
class of system with nonlinear and uncertain dynamics. In
[32], fractional-order singular multi-agent systems were
discussed, because of the admissible leader-following
consensus problem. Fractional-order singular linear syste-
ms with 0 < a < 2 are the basis on which the dynamics of
every agent and leader are modeled. Bai et al. [33] de-
signed a control algorithm which was based on the slid-
ing mode estimator to hand the consensus problem for the
fractional-order double-integrator multi-agent systems.
Under a directed network topology, Gong [34] studied
fractional-order leaderless and leader-following consensus
algorithms with non-linear dynamics, using Mittag-Leff-
ler stability and the fractional Lyapunov direct method. In
view of present references, it can be seen that although
there are many achievements, almost none uses the frac-
tional-order ILC to solve the consensus problems of FO-
MASs, which is exactly the work to be studied in this pa-
per.

In addition, for a specific control system, time-delay
often appears not only in the state, but also in the control
input or the measurement [35]. At the same time, time-
delay is the fundamental reason that affects the stability
and accuracy of the control system [36,37]. Strictly, the
time-delay is a phenomenon that occurs in every control
system, and the difference is only varying in size. There-
fore, it is of great significance to do researches on the
consensus control of FOMASs with time-delay. In this
paper, based on the excellent performance of the ILC
methodology and motivated by the search for new FOILC
algorithms and their applications to fractional-order multi-
agent physical systems with only system state-delays,
both open-loop and closed-loop D -type ILC laws are
proposed. By means of the graph theory, norm theory and
fractional calculus, we prove the convergence of the pro-
posed control schemes theoretically, and give the sufficient
conditions for convergence. Finally, the effectiveness of
the proposed control schemes is demonstrated by the nu-
merical simulation studies where we can get some mean-
ingful comparisons between the two different control
schemes.

The rest of this article is organized as follows. Some
basic definitions of A-norm, fractional calculus and graph
theory are presented in Section 2. In Section 3, open-loop
and closed-loop fractional-order D”-type ILC schemes are
proposed, which are designed for fractional-order linear
multi-agent systems with state-delays. Moreover, the nu-
merical simulation studies are conducted in Section 4 to
validate the effectiveness of our proposed control sche-
mes. Finally, this article is summarized in Section 5.
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2. Preliminaries

For the following discussions, this section presents some
mathematical definitions and lemmas.

2.1 A-norm

We use ||| to define vector Euclidian norm and its indu-
ced matrix norm.

Definition 1 Suppose f(-) € C[0,T] is a continuous
vector function, that is f(¢£) = [f;(2), 2(0), -+, [(D]', a
its A-norm is defined as ||f(-)|[, = sup e“’(maxlf(t)l),
A>0[12]. o<t

2.2 Fractional calculus [38,39]

Definition 2 Define the a order fractional integral of
f@®on[1,T] as

1 t
DS = fos | =0 fode

where @ >0, f(¢) is an integrable function, I'(:) is a
Gamma function, i.e., I'(a) = jo e'r*dr.
Definition 3 The Caputo fractional derivatives with

order a can be described as
al+1

s ([a]-a+1)
Df(t)_ D, [dﬂam

S( )]
where « is a real positive constant, [@] means rounding «,
and €D means the Caputo fractional operator. To simpli-
fy the description, we use f(f) to represent the Caputo
derivative of f(r). The fractional-order differentiation has
the following properties:

(1) D*(Af () +pg () = AD" f (1) + uD" g().

(i) If f(r) € C[0,00), then D' *Df(r)= fV(r) (0<

d

a < 1), where fO(r) = d—tf(t).

Definition 4 We use the Mittag-Leffler function with
o and £ as

d k

E, 4(2) = Z e th) , a,f>0; z€ C™.

If B =1, Definition 4 with only one parameter can be
expressed as
k

= z
E )= —— a>0,zeC™.
@ ;F(kaJrl) “zBz

Lemma 1 For the continuous function g(x(),t), the
Volterra nonlinear integral equation which is equivalent
to the solution of the initial value problem

{ D*x(t) = g(x(1),1), O<a<1
x(fo) = X0

is

1 t
X() =%+ s j (t—7)"" g(x(7),7)dr.

2.3 Graph theory

Consider N agents in the multi-agent systems with a di-
rected graph G = {V,E, M}, where V={v;}Jand ECV XV
mean the set of vertices and edges, and M means the ad-
jacency matrix. If (i, j) € E is defined as a direct edge
between the ith agent to the jth agent, it means that the jth
agent can receive information from the ith agent. Define
the set of the neighbors of the ith agent as N;={jeV:
(j,i) € E}, where M(G) = (a;;)nxy means the adjacency
matrix of Ewith q;;>0. If (j,i)e Eand i# j, then
a;; =1, otherwise a,;; = 0. In this paper, the communica-
tion topology graph has no self-loop phenomenon, i.e.,
a;,; =0[1,11].

Denote D(G) = diag{d;,i=1,---,N} as the in-degree
N

matrix, where d; =Z aij, and we define L(G) = D(G)—

=1

M(G) as the Laplajcian matrix of G. For convenience,
L(G), D(G) and M(G) are abbreviated as L, Dand M,
respectively.

2.4 Kronecker product

Denote ® as the Kronecker product, considering A, B, C
and D with appropriate dimensions, the following proper-
ties can be satisfied [40]:

(i) kK(A®B) = A®kB;

(i) (A+B)®C=AQC+BQC,

(i) (A®B)(C®D)=AC®BD;

(iv) [lA® Bl = ||A]l- || BIl.

3. Problem description

State-delay often appears in many systems which may
cause instability and imprecision. Considering that a frac-
tional-order linear multi-agent system consists of N
agents with a virtual leader, which indexes by 1,2,---,N
and it has the characteristics of repetitive operation in a
finite time ¢ € [0,7]. The dynamics of the jth agent with
state-delay at the ith iteration can be described as

{ D”x,;j(l‘) = Axi,j(t_hj) + Bui,j(t)
yi; (1) = Cx; (1)

where u; ;(1) e R, y; () e R"and x;;(r) € R” are input,
output and state, respectively, @ € (0,1), #; means the

Jjth agent’s state-delay, and h; < T. We take h = ma)ls{h 1,
</< 7

when t € [-h,0], x;;(t)=0. In (1), the exact values of
coefficient matrices A and B do not need to be known.

The leader’s trajectory y,(#) is defined on a finite-time
interval [0, 7], which is generated by the leader and it can
be described as follows:

(M



200 Journal of Systems Engineering and Electronics Vol. 32, No. 1, February 2021

{ D"xd(t) = Axd(t) + Bud(t) (2)

Ya() = Cx,(1)

where u,(f) means the unique desired control input.

In fact, owing to communication limitations, we assume
the leader’s trajectory can be accessible by a subset of the
followers. Based on the graph theory, the communication
graph is G = {V,E, M}. If we label the leader by vertex 0,
then the complete information flow among all the agents
can be characterized as G = {{0} UV, E, M}, where E and
M are the new edge set and adjacency matrix, respect-
ively. Thus, the purpose is to design distributed ILC
schemes, which makes each individual agent in the net-
work be able to track the leader’s trajectory under the
graph G.

We define & ;(f) as the distributed information mea-
sured or received by the jth agent at the ith iteration, and
it can be described as

£ = auu®) =y, 0)+ 5,040 -y, 1) ()
keN;
where s; = 1 means the jth agent can receive the desired
trajectory, i.e., (0, ) € E, otherwise s;=0. The tracking
error is €,,(1) = ya(t) = y,(0).

3.1 Open-loop D*-type iterative learning control

For the systems (1) with state-delays, we first construct
an open-loop De-type ILC updating law as follows:

Ui (1) =u; (1) +FDl§i.j((Y)(t)~ “4)

Equation (3) can be rewritten with the tracking errors
as

£ =) aule (-en)+sie ). (5)

keN;

Thus, the column stack vectors in the ith iteration are
defined as

EN) =10 €D, END'T,
x(1) =[x, ()", x0T,
e(n) = e (D)€', e,
and
(1) = [y ()" uin (), ui ('
Consequently, (5) can be written as
&) =((L+S)®1,)e(r) (6)

where L means the Laplacian matrix of graph G, and
S = diag{s;,j=1,---,N}.
According to (6), the updating law (4) can be rewritten as

Ui (1) = () + (L +S)®Ip) e, (0). @)

To facilitate the subsequent controller design and con-
vergence analysis, the following three assumptions are
imposed.

Assumption 1 CB is of full column rank.

Remark 1 Assumption 1 is a necessary condition
to design a suitable learning gain such that ILC D"-type
updating law satisfies the contraction-mapping criterion.

Assumption 2 The initial state of each agent in (1) is
equal to the expected initial over the interval [0,T], that
is, for all j, there is x;;(0) = x,(0).

Remark 2 Assumption 2 is the standard condition
for ILC. If Assumption 2 is not established, the tracking
performance will be degraded or control mechanisms will
be required to achieve optimal tracking.

Assumption 3 Considering the virtual leader being
the root, the graph G is a directed spanning tree.

Remark 3 Assumption 3 is a necessary requirement
for a leader-follower consensus tracking problem, which
means that the leader is reachable for all followers. Other-
wise, the isolated agents cannot track the leader’s trajectory
because there is no information to correct their control in-
puts.

Theorem 1 Consider the FOMASs (1) with state-
delays and under a directed graph G, suppose Assump-
tions 1—3 are satisfied. The controller described by (7) is
applied for (1) with learning gain I'p,, satisfying
p1=[-HQI', CB| <1 for all te[0,T], where H =
L+, then lim|le;(#)|l, = 0. That is, for the achievable de-
sired trajectlgrofes yq(), the system outputs y,(f) converge
uniformly to the desired trajectories y,(¢) in ¢ € [0,7T] as
i— oo, ie., limy(t) = y,(1),t € [0,T].

Proof Define

{ 0x; (1) = x,(t) — x; (1)

Su; j(1) =u,(t)—u; (1) ®

Denote 6x;(¢) and 6u;(t) as the column stack vectors of
ox; ;(¢) and ou; (1), respectively.
Obviously, if t € [-h,0] (h > 0), we have

8xi(1) =0. ©)
According to (1), (2) and (8), we get
e (1 =y O~y 1) =
CxP (1) —x7 (1) = Cox{ (). (10)
Equation (10) can be rewritten as
e (t) = (Iy®C)ox'\"(t) =
Iy O)YT, @ A)dx;(t—h)+

Iy O)I, ® B)du,(t) =
Iy®CA)Sx;(t—h)+(IyQCB)ou(?). (11)

By means of Lemma 1, the dynamics of the multi-
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agent systems (1) becomes
, 0)+
50 =5(0)+ 7
f(: (t= 5" ((Iy @ A)x,(s — h) + (Iy ® B)u,(5))ds =

x,(0) 4 —— f (t— )" (Iy® A)xi(s — hds+

F( ) Jo
@ [[ -9 dyeBu(s)ds. (12)

Then, from (8) and Assumption 2, we can obtain

1
(@)

fot (t=95)"""((Iy® A)ox,(s — h) + (Iy ® B)ou,(s))ds =

6x,(t) = 1N®xd —-X; =

1 ‘
mfo(t_S)“*1(1N®A)5xi(s—h)ds+

T
(@) fo (=)™ (Iy®B)ou(s)ds (13)

where 1, is a vector where all entries are 1.
Taking the norm on both sides of (13) yields

oxi (1)l < % [ =9ty Alllox,(s - wlds +

F( )f (1= )" Iy ® Blll6u(s)llds =

@ )f (t= )" lAllllox:(s = m)llds +

a-1
r Jo =9 B s, (14)
if t € [0, k], according (9), we can get
fo (t— )" Allll6x,(s — h)llds =
t—=h
f_h (=9 Allllox;(s)llds = 0, (15)
and if r € [h, T'], we can get
t
fo (t— 9"y ® Allll6x,(s — h)l|ds =
0
|, =97 iy @ Alllo,(s)lds+
1—h
fo (t— )"y @ Allllox;(s)llds <
t
fo (t— )"y @ Allllox,(s)llds =

Ji = Alox(s)ds. (16)

Therefore, for ¢ € [0, T], combining (15) and (16) yields

1 '
”617;([)” < m J;) (f— S)zY—l”IN®A””6xi(s)”ds+
1 1 o )
%L“—” "Iy @ Bllll6ui(s)l|ds =

1 ! a—1

T o =9 AN (s
1 ! a-1

@ |, =" I1BllIow;(s)lds. amn

Furthermore, taking the A-norm on both sides of (17)
yields

ll6x:(Dll2 <

t
f— a—1_-A(t-s) I ®A —As 5 ; d +
oo S j( )" I, @ Alle™6x(s)]lds

1 ! —1 —A(t-5) gl

——su t—8)"" eIy @ Blle™"||ou;(s)|lds <

o s [ =) 11 ® Blle ™ u,(s)I|
(1 @ Al Ol @ Bl )l

sup | (t—s5) e 0ds <
r(a') 0<r<ij

1 I@) _
I'(@) A

1 1
F”IN ® Allllox; (DIl + ;”IN ® Bl||lou: (1), =

1 1
2 1Allox: @l + ~IBlllow; D). (18)

Then, if we choose a large enough value of 1 to make
A" -11Al >0, (19)

from (18) and (19), we can get

Bl

62Dl <
F - All

(62 (D). (20)

Substituting (12) and (13) into the updating law (7), we
obtain

Suiyi () = Sui(t) — (HR I p))e, (1) =
oui(t)—(HRI'p))Iy@C)(Iy® A)oxi(t — h)—
(HRI'pn))Iy®C)(Iy®B)ou,(1) =
(I-(HIp)Iy®C)Iy® B))ou(t)—-
(HRI'p))Iy®@C)Iy®A)ox(t—h) =
(I-H®TI', CB)ou,(t)—(HRI', CA)ox,(t—h). (21)

Then, taking the A-norm on both sides of (21), we have

Stz ], < (1 - HO Lo CBY|+ Bl (22)
where
IHST CAl
_IHLnCAlL b, 2
F="0 Al 23)

Select A large enough to make
H-HQI'p CB||+B<p<]1. 24)
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Because p, = || - H®I',CB)|| < 1, according to (22),
we have

16w, (0)]12 < pllouD)|l, < p'llow; ()|l (25)
Therefore, when i — oo, we have

lim fsu;., ()], = 0. (26)

According to (20) and (26), we have

}ng‘}lléxi+1(t)llﬂ =0, (27)
it yields
llew 1 (DIl < ICIMlI6x 1 (Dl (28)

Therefore we can obtain
}ng.}llei+1(t)ll/a =0. (29)

Thus, we can obtain that the tracking errors of the
agents converge to zero as i — oo. O

3.2 Closed-loop D>-type iterative learning control

Now we construct a closed-loop De-type ILC updating
law for the FOMASSs (1) with state-delays as follows:

Wi (1) =u, (1) +rD2§i+l,j(m(t)~ (30)
Equation (30) can be rewritten as

&, () = Z (€1, j(1) — €11 k(1) + Spey (D). (1)

keN;

Similar to Theorem 1, (31) can be rewritten as
§in (@) =((L+S)®1,)e (7). (32)

By using (32), the updating law (30) can be rewritten
as

(1) = u(H) + (L +8)® I p)e;, (). (33)

Theorem 2 Consider the FOMASs (1) with state-
delays and under a directed graph G, suppose Assump-
tions 1-3 hold. The distributed closed-loop D°-type ILC
scheme (33) is applied for the system with gain I'p, satis-

1
I +H®IpCBJ|

H=L+S§S, then lim|le;(7)||, = 0. Namely, for the achiev-

fying p, = <1 for all t€[0,T], where

able desired trajectories y,(f), the system outputs y,(t)
converge uniformly to the desired trajectories y,(f) in
te[0,T]asi— oo, ie., limy;(t) = y,(t),t € [0,T].

Proof The proof processes are similar to the proof in
Theorem 1.

Considering the updating law (7) replaced by the
closed-loop D”-type updating law (30), and substituting
(12) and (13) into the latter one, we can obtain

ou (1) = ou(t) - (H®F02)ei+1(a)(t) =
ou(t)—(HII'p))(Iy@C)Iy ® A)ox,.i (1 — h)—
(HRIp)(Iy®C)Iy® B)du,. (1) =
ou,(t)—-(HRI p,CA)5x;,,(t —h)—
(HI'1,CB)bu,, (1), (34)

and it can be rewritten as

(I+ H®FD2CB)6ui+1(t) =

ou,(t)—(HI'p,CA)ox, (t—h). 3%

Then, taking the A-norm of (35), and substituting (20)
into it yields
i+ HI nCBlll6u (Dlla <

|H®T ,CA||||B]|
— L lbu Ol (36)

(|62:(0) 11, +
‘ 27— Al

and it can be simplified as

1
681 (Dla < —low, (D)l (37
Po
where
|HQT ,,CA|l
po=II+H®I,CB||-———"—|B|.  (38)
A=Al
Select A large enough to make
H®I,CA||B
p0=||1+H®rmCB||——” p2CANIBI (39)
A=Al
B ! <1 ding to (37)
€cause = , according to ,
P2 = I+ HoT 0, CB| &
we have

1 1
llow; (Dl < —llow (Dl < — ll6w, (DI, (40)
Po Po

Therefore, similarly to Theorem 1, when i — co, we
can obtain
}LIB”C’M(I)”A =0. 41)

It shows that the tracking errors of the agents converge
to zero as i — oo. O

Remark 4 In the above two proofs, the constant A
can be chosen as an arbitrary large number. Because it is
just an analysis tool without using in the control process,
so it does not affect the control performance.

4. Simulation

In this section, as illustrated in Fig.1, we consider a net-
work of four agents and one virtual leader to expound the
effect of the proposed consensus schemes, the virtual
leader and the followers are labeled as 0, 1, 2, 3, 4, res-
pectively. The leader has directed edges (dashed arrows)
to agent 1 and agent 3. We adopt 0—1 weighting.

For Fig.1, the weighted adjacency matrix M and ma-
trix D can be obtained as
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00 10
M= 1 0 0O (42)
01 01
01 00
D = diag[1,1,2,1]. (43)
—~
~
Fig. 1 Communication topology among agents
Then, the Laplacian matrix can be obtained
1 0 -1 0
L=p-m=| 1 1 0 0 (44)
o -1 2 -1
0O -1 0 1
S = diag[1,0,1,0]. (45)

Consider the fractional-order dynamic model of the jth
agent as

04 2 0
Dx(f) = -t—h+[ ]-t
x,(0) [ . ]x_,( O e
Y0 =10 1.2]x;(t)
and the desired reference trajectory as
ya(t) = £ +sin(2nt), t € [0,1]. (47)

In the following examples, we set a=0.75 and desig-
nate the supremum norm as the norm of the tracking er-
rors. For all the agents, the initial control signals at the
first iteration, and the initial states for every iteration are
all set as 0, that is, u, ;(r) =0, x;;(0) =0, j=1,2,3,4.

4.1 Open-loop D*-type iterative learning control

Based on Theorem 1, we select the learning gain as
I'p, =0.25. Clearly, p, =|lI-H®I',CB||=0.8854 <1,
thus the convergence condition can be satisfied.

Figs. 2—4 show the trajectory tracking performances
employing the open-loop De-type FOILC, and the state-
delays are set as h = 0.05s, 2 =0.1s,h =0.2 s, respect-
ively. As it can be seen from Fig. 2(a), Fig. 3(a) and
Fig. 4(a), when the state-delay becomes bigger, the track-
ing curves show some oscillation characteristics more and
more severely at the beginning of the iterations. However,
as the number of iterations increases, all the actual tra-
jectories fit the desired trajectory very well for all the
agents. By 150 iterations, the maximum tracking errors of
the four agents with state-delay of 4 = 0.2 s are 0.002 3,
0.002 4, 0.002 3, 0.002 4, respectively. Moreover, it can

be seen that compared with agent 2 and agent 4, both
agent 1 and agent 3 which can get information from the
leader directly, can converge to the desired trajectory
more quickly.
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The results show that, although in the initial several ite-
rations, the errors will become bigger (they will become
bigger with the increase of state-delays) firstly, they all
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the desired trajectory over the whole time interval in the
presence of state-delays, verifying the effectiveness of the
proposed open-loop control scheme.
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In fact, if we select the learning gain I'p, very small,
the system will also exhibit the oscillation characteristics,
and what is worse is that the convergence speed will be-
come much slower. Therefore, it is not a good choice if
we just use the open-loop D”-type iterative learning con-
trol scheme for the consensus tracking of the FOMASSs
with state-delays.

4.2 Closed-loop D°-type iterative learning control

Based on Theorem 2, we select the learning gain as I'p, =

1
1.165. Clearly, py= ————— =02146 < 1, th
A P I HeT,CB > TS

the convergence condition can be satisfied.

Fig. 5, Fig. 6 and Fig. 7 show the trajectory tracking
performances employing the closed-loop De°-type itera-
tive learning control scheme, and the state-delays are also
setash =0.05s,h =0.1s,h=0.2s, respectively. As it
can be seen from Fig. 5(a), Fig. 6(a) and Fig. 7(a), when
the state-delay becomes bigger, the tracking curves will
not show the oscillation characteristics which appear in
the open-loop D°-type iterative learning control scheme.
From Fig. 5(d), Fig. 6(d) and Fig. 7(d), it can be obser-
ved that the closed-loop De-type iterative learning contr-
ol scheme can make the agents track the desired trajec-
tory monotonously over the whole time interval in the
presence of state-delays. By only 50 iterations, the maxi-
mum tracking errors of the four agents with state-delay of
h=0.2 s are 0.000 9, 0.001 3, 0.001 1, 0.001 5, respect-
ively, yet already less than that of the open-loop scheme
by 150 iterations. Therefore, the proposed closed-loop
scheme can obtain much better tracking performance and
robustness in the presence of state-delays, verifying the
effectiveness of the proposed closed-loop control scheme.
Moreover, just like the results exhibited in the open-loop
control scheme, it can also be seen that both agent 1 and
agent 3 can converge to the desired trajectory more
quickly than agent 2 and agent 4.

In fact, as it can be seen from Theorem 2, we can se-
lect the learning gain I'p, large enough, so that the sys-
tem will converge more quickly and still with no oscilla-
tions, which has been verified by detailed simulation but
not presented here due to limited space. Therefore, the
closed-loop D*-type ILC scheme performance is superior
to the open-loop one in the speed of convergence and ro-
bustness for the consensus tracking of the FOMASs with
state-delays.

Remark 5 Actually, many real physical systems exhi-
bit fractional-order dynamic characteristics, but the inte-
ger-order calculus theory which is always used is just a
special case of the fractional-order calculus theory and it
can only describe the actual fractional-order system appro-
ximately. However, the fractional calculus theory can de-

pict and reflect the properties of objects more truly and
precisely, and with fractional-order controller, the system
can obtain a better performance. Therefore, it is of great
significance for the results we get in this paper.
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Remark 6 In fact, the open-loop and the closed-loop
De-type iterative learning control are feedforward and
feedback control techniques, respectively. Compared with
the former one, the closed-loop De-type iterative learning

Output value

Output value

Output value

Output value
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control can use the real-time feedback information so as
to stabilize the control system, and it can also choose a
large enough learning gain which can make the conver-
gence more quick.
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Remark 7 We can combine the open-loop and closed-
loop De-type iterative learning control together to achieve
open-closed-loop De-type iterative learning control, which
can utilize both the previous and current operation infor-
mation of the FOMASs simultaneously, so that its per-
formance will be better than that of the simple single
open-loop or closed-loop iterative learning control.

5. Conclusions

This paper consider the problem of consensus tracking
for fractional-order linear multi-agent systems. These sys-
tems have the same characteristics of state delays and un-
der a repeatable operation environment. Both open-loop
and closed-loop D’-type iterative learning control schemes
are proposed to perform the consensus tracking.

The convergence to the desired trajectory is strictly
analyzed, and sufficient conditions are obtained. Theore-
tical analysis and numerical simulation show that even if
only a subset of the followers can get information from
the leader, either of the agents can track the desired tra-
jectory over the entire time interval with state-delays, us-
ing both two control algorithms. By comparison, it is
found that the closed-loop scheme has a better perform-
ance in terms of convergence speed and robustness in the
case of state-delays. Furthermore, we can be able to do
research on the open-loop and closed-loop PD-type itera-
tive learning control schemes for the fractional-order li-
near or the nonlinear multi-agent systems with state-
delays or the control-delays. We further verify the effect-
iveness of the algorithm through experimental verification.
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