Journal of Systems Engineering and Electronics
Vol. 32, No. 1, February 2021, pp.163 - 177

Reactive scheduling of multiple EOSs under cloud
uncertainties: model and algorithms

WANG Jianjiang', HU Xuejun®", and HE Chuan’

1. College of Systems Engineering, National University of Defense Technology, Changsha 410073, China;
2. Business School, Hunan University, Changsha 410082, China;
3. Beijing Institute of Tracking and Telecommunications Technology, Beijing 100094, China

Abstract: Most earth observation satellites (EOSs) are low-orbit
satellites equipped with optical sensors that cannot see through
clouds. Hence, cloud coverage, high dynamics, and cloud un-
certainties are important issues in the scheduling of EOSs. The
proactive-reactive scheduling framework has been proven to be
effective and efficient for the uncertain scheduling problem and
has been extensively employed. Numerous studies have been
conducted on methods for the proactive scheduling of EOSs, in-
cluding expectation, chance-constrained, and robust optimiza-
tion models and the relevant solution algorithms. This study fo-
cuses on the reactive scheduling of EOSs under cloud uncertain-
ties. First, using an example, we describe the reactive schedul-
ing problem in detail, clarifying its significance and key issues.
Considering the two key objectives of observation profits and
scheduling stability, we construct a multi-objective optimization
mathematical model. Then, we obtain the possible disruptions of
EOS scheduling during execution under cloud uncertainties,
adopting an event-driven policy for the reactive scheduling. For
the different disruptions, different reactive scheduling algorithms
are designed. Finally, numerous simulation experiments are con-
ducted to verify the feasibility and effectiveness of the proposed
reactive scheduling algorithms. The experimental results show
that the reactive scheduling algorithms can both improve obser-
vation profits and reduce system perturbations.

Keywords: earth observationsatellite (EOS), uncertainty of clouds,
reactive scheduling, multi-objective optimization, event-driven,
heuristic.

DOI: 10.23919/JSEE.2021.000015

1. Introduction

Earth observation satellites (EOSs) are platforms equipped

Manuscript received March 18, 2020.

*Corresponding author.

This work was supported by the National Natural Science Foundation
of China (71801218; 71701067; 72071075), the Research Project of Na-
tional University of Defense Technology (ZK18-03-16), and the Natu-
ral Science Foundation of Hunan Province, China (2020JJ4672;
20191J50039).

with sensors that orbit the earth to take photographs of
areas of interest [1,2]. EOS scheduling is aimed at alloca-
ting users’ observation requests, e.g., for battlefield re-

connaissance, disaster surveillance, urban planning, crop
monitoring, to satellites. Although EOSs have increased
considerably in quantity, they are still very scarcely com-
pared to the explosively increasing number of applica-

tions. Hence, EOS scheduling is significant for obtaining
high observation effectiveness and efficiency.

Several studies focusing on EOS scheduling have been
conducted. With respect to the problem formulation, ma-
jor research efforts have concentrated on mathematical
programming [1,3—5], constraint satisfaction formulati-
ons [6,7], knapsack formulations [8], and graph-based
formulations [9—11]. Furthermore, a considerable num-
ber of solution approaches for EOS scheduling have been
proposed. They can be classified into three categories.
First, exact solution algorithms contain branch-and-bound
[12], dynamic programming [4,13,14], and branch-and-
price algorithms [15]. Second, the vast majority of solu-
tion algorithms are metaheuristics, such as tabu search
[1,11,16,17], evolution [9,18—20], ant colony [21,22],
local search-based [23—26], and simulated annealing algo-
rithms [27—-29]. Finally, there are studies on heuristic al-
gorithms for EOS scheduling, including constructive algo-
rithms based on priority rules [30—35] and Lagrange re-
laxation heuristics [5].

All the aforementioned studies focused on the schedul-
ing of EOSs in a deterministic environment without con-
sidering the impact of clouds. However, most EOSs are
equipped with optical sensors that cannot see through
clouds, which considerably affect and block the observa-
tions [27]. According to the statistics, approximately 80%
of the observations from the optical SPOT satellites are
useless because of the presence of clouds [36]. Hence,

164 Journal of Systems Engineering and Electronics Vol. 32, No. 1, February 2021

cloud coverage is an essential issue for EOS scheduling
and cannot be neglected. Lin et al. [37] formulated the
presence of clouds as a set of covered time windows and
obtained the blocked parts of the time windows. In sequ-
ence, the tasks were forbidden to be observed in the blo-
cked parts. However, their studies are infeasible in prac-
tice because the presence of clouds cannot be precisely
forecasted [38].

The unpredictability of clouds creates difficulties and
challenges for EOS scheduling. Hence, this issue is gain-
ing more research attention. In general, there are two ap-
proaches for dealing with uncertainties in an EOS sche-
duling environment: proactive and reactive scheduling.
Proactive scheduling produces a protected baseline sche-
dule (initial schedule) by exploiting cloud forecast in-
formation. In proactive scheduling, each task is enabled
to be completed successfully at a high probability. Liao
and Tang [39] formulated the presence of clouds for each
observation window as a stochastic event. Furthermore,
they established a model with the objective of maximiz-
ing the weighted sum of the observation profits and the
expected number of executed tasks. Valicka et al. [40]
first suggested a new deterministic mixed-integer program-
ming (MIP) model for the scheduling of multiple EOSs.
Furthermore, considering the failure of observations due
to the presence of clouds, they extended the deterministic
MIP model to two- and three-stage stochastic MIP mo-
dels. Wang et al. also considered the presence of clouds
as stochastic events and established expectation, chance-
constrained, and robust optimization models in [2], [41]
and [42], respectively. To solve the different models, a
branch-and-price algorithm, a branch-and-cut algorithm,
and some heuristics are suggested, respectively.

Despite the protection included in the baseline sche-
dule, disturbances resulting from the uncertainties of
clouds may also result in deviations from the baseline
schedule. Therefore, reactive scheduling procedures are
required to repair the deviated or failed schedule during
the execution to stabilize the schedule and to obtain higher
scheduling profits. Beaumet et al. [36] investigated the
reactive scheduling of a Pleiades satellite that is equipped
with a cloud detection instrument, and the reactive deci-
sions are made on board based on cloud detection results.

Although reactive scheduling methodologies have been
studied extensively in production planning [43—45], rele-
vant studies in EOS scheduling are still very limited. Re-
garding the reactive scheduling of satellites, the major
challenge is the tight bound of the solution time. For in-
stance, with respect to the Pleiades satellite, the cloud de-
tection equipment points to the ground 30° with regard to
a geocentric pointing. Also, we can only repair and modi-

fy the observation plan after obtaining the cloud covering
information from the detection equipment. Because EOSs
orbit the earth at a high speed, the available time for on-
line decisions is limited.

In addition, EOSs occupy low-altitude orbits, and they
are not constantly within the visibility of a ground con-
trol station (in fact, they are only visible for approxima-
tely 10% of the time). Under such conditions, decisions
about the observations must be made on board. However,
due to the complexity of the space environment and vari-
ous electromagnetic interferences, the computing power
of onboard processors is limited. Therefore, considering
the time-efficiency requirements and the limitation of com-
puting power, it is crucial to design succinct and efficient
reactive scheduling strategies.

In this study, based on our previous studies on proac-
tive scheduling [2,41,42], the reactive scheduling approa-
ches for EOSs are examined in detail. Initially, from a
comprehensive analysis, we obtain two critical criteria for
reactive scheduling: the observation profits and schedul-
ing stability. Then, a multi-objective optimization model
is constructed. Afterwards, the possible perturbations du-
ring the execution of a baseline schedule are analyzed,
and an event-driven reactive scheduling mechanism is
suggested. Subsequently, with respect to different per-
turbations, efficient reactive scheduling algorithms based
on task retraction and task swapping are developed. Fi-
nally, we conduct numerous simulation experiments to
verify the performance of the reactive scheduling algo-
rithm. Experimental results show that reactive schedul-
ing can both improve scheduling efficiency and reduce
interruptions.

The remainder of this paper is organized as follows. In
the next section, we describe the reactive scheduling pro-
blem with a multi-objective mathematical model and ana-
lyze the possible disruptions. Section 3 proposes a novel
reactive scheduling algorithm dealing with different dis-
ruptions. In Section 4, the numerical computational re-
sults of our approaches are presented. Section 5 offers
conclusions and directions for future research.

2. Reactive EOS scheduling problem

EOS scheduling implies allocating the limited observa-
tion resources to different observation tasks, thus produ-
cing an observation plan. The resulting observation plan
needs to satisfy the operational constraints and improve
resource utilization.

If satellites and observation tasks are regarded as ma-
chines and jobs, respectively, the EOS scheduling prob-
lem can be viewed as a multi-machine scheduling prob-
lem. However, compared to the traditional multi-ma-

WANG lJianjiang et al.: Reactive scheduling of multiple EOSs under cloud uncertainties: model and algorithms 165

chine scheduling environment, there are several new
characteristics for the scheduling of EOSs:

(1) Time window constraints: EOSs can observe tar-
gets when those targets are within the coverage area of
the satellites, which means that the targets need to be visi-
ble to the satellites. Hence, there are time window constrai-
nts for EOS observation scheduling.

(1) Setup time constraints: After observing a target, a
satellite requires a sequence of transformation operations,
such as sensor shutdown, slewing, attitude stability, and
startup, to observe the next target. Hence, the setup time
between two consecutive tasks should be sufficient.

(iii)) Memory and energy constraints: Satellite observa-
tion consumes onboard memory and electric energy;
slewing also consumes electric energy. Hence, the
scheduling of EOS observations needs to satisfy the limit-
ations of memory and energy.

(iv) Oversubscribed characteristic: Normally, for the

traditional multi-machine scheduling problem, all the jobs
are required to be scheduled, and the objective is to mini-
mize the makespan or production cost. However, for the
scheduling of EOSs, due to the limitations of resources
and complexities of constraints, not all the observation
tasks can be accomplished. Hence, we can only schedule
a subset of observations, with the objective of maximiz-
ing observation profits.

With respect to the scheduling problem under uncer-
tainties, both proactive and reactive algorithms are requir-
ed in practice. Therefore, a proactive-reactive scheduling
framework is proposed in this study, which is shown in
Fig. 1. For the proactive scheduling, we conduct some
comprehensive studies, including expectation, chance
constrained, and robust optimization models, and utilize
the relevant solution algorithms [2,41,42]. In this study,
we focus on the reactive scheduling methods for the
scheduling of EOSs under cloud uncertainties.

Y

Preprocessing

Modeling of Solution of
»>| proactive proactive
scheduling scheduling

Implemen- Disturbance} | Modeling of

Solution of
reactive
scheduling

reactive
scheduling

tation of
schedule

Proactive scheduling

3 Reactive scheduling

Fig.1 Proactive-reactive scheduling framework

For the reactive scheduling of EOSs, the objectives
should consist of maximizing the observation profits and
minimizing the deviation/distance from the original
schedule regarding the allocation of various tasks. It is
well known that if a baseline schedule has been produced,
users will implement their working plans accordingly. If
the initial schedule has to be largely adjusted or resche-
duled, it will have a fatal impact on the decisions of users
and may affect the subsequent observations in an undesir-
able manner. Therefore, it is preferred that the reactive
schedule minimally deviates from the baseline schedule.
To further illustrate the relation between improving the
expected profits (the scheduling performance) and main-

taining the scheduling stability, an EOS scheduling ins-
tance is analyzed in the following.

2.1 Ilustrative example

There are three tasks and three orbits in this problem in-
stance. Table 1 outlines the following settings: profits of
tasks, availabilities for observations, time windows, and
probabilities of successful observations. The symbol “—”
denotes that the orbit is not available for observing the
task. Furthermore, for this description, the setup times be-
tween different tasks are assumed to be 0, and the memo-
ry and energy capacity for each orbit is set to +oo; thus,
we do not consider the memory and energy constraints.

Table 1 Simulated EOS scheduling instance

Orbit number

Task number Profit 1

2 3

Time window Probability Time window Probability Time window Probability
1 9 [10,16] 0.96 [20,24] 0.88 [30,34] 0.64
2 6 — — [22,26] 0.92 [24,18] 0.84
3 3 [24,30] 0.72 — — [18,22] 0.78

166 Journal of Systems Engineering and Electronics Vol. 32, No. 1, February 2021

For this example, the expectation model developed in
our previous work [42] is used to construct a baseline
schedule (see Fig. 2), in which the expected profit of the
accomplished observation tasks is 16.5. During the exe-
cution process, the cloud detector perceives that task 1
will fail to be observed because of the presence of clouds.
If we do not consider the reactive scheduling process, the
profit from the derived schedule after this disruption will
be reduced to 7.86, as shown in Fig. 3.

Task 1
A g .
10 16 Orbit 1
Task 2
] R
226 Orbit 2
Task 3
o R
18 22 Orbit 3
Fig. 2 Baseline schedule
Task 1
AN .
10 16 Orbit 1
Task 2
] _
22 26 Orbit 2
Task 3
18 22 Orbit 3

Fig.3 New schedule after disruption (without reactive scheduling)

If we decide to employ a reactive scheduling proce-
dure that seeks to maximize the expected profit disregard-
ing the scheduling stability, we will obtain a repaired
schedule, as shown in Fig. 4, with the expected profit be-
ing 15.3. In this case, both tasks 1 and 2 have been adjus-
ted in comparison to the baseline schedule, resulting in a
reactive schedule with poor stability.

Task 1
T 1
10 Orbit 1
Task 1 Task 2
|
20 22 24 N26 Or?)it 2
Task 3 Task 2
] .
18 22 24 28 Orbit 3

Fig. 4 Repaired schedule disregarding scheduling stability

Furthermore, an improved schedule can be created if
we consider both the scheduling performance (with the
value of the expected profit being 13.62) and the sche-
dule stability, as shown in Fig. 5. In this case, only task 1
is adjusted, which means that the repaired schedule is
more stable than the schedule shown in Fig. 4.

Task 1
[1

10 16 o
Task 2 Orbit 1

2 ‘3]6 >
Task 322\ Task 1 Orbit 2

paae 3}3 3F >
B2 Orbit 3

Fig. 5 Repaired schedule considering the scheduling stability

From the aforementioned example, we can conclude:
(i) reactive scheduling can be effective against disturb-
ances resulting from clouds and can improve the schedul-
ing performance; (ii) it is often contradictory to enhance
both the scheduling performance and the scheduling sta-
bility when the disrupted schedule is repaired, which in-
evitably results in a trade-off between these two key ob-
jectives.

2.2 Multi-objective reactive scheduling model

Reactive scheduling means timely repairing the baseline
schedule according to cloud disruptions, guaranteeing the
feasibility and successful implementation of the schedule.

If S ; represents the final schedule, the scheduling prob-
lem can be formulated as S, ={S,,T,0,A0,Cons,Obj}.
In detail, the six elements of the tuple are described as
follows:

S,: Proactive baseline schedule constructed using the
expectation model [42], chance constrained program-
ming (CCP) model [2], and the robust optimization mo-
del [41].

T: Set of tasks, T ={1,2,---,n}. T contains scheduled,
unscheduled, and two dummy tasks {s,7}. Furthermore,
i and j are indices of tasks in T, and each task i is associa-
ted with a profit w;.

O: Set of orbits, O ={1,2,---,m}. Each orbit k€ O is
associated with a memory capacity M,, energy capacity
E,, memory consumption for each unit of observation
time my,, and energy consumption for each unit of obser-
vation time e;.

AO: Set of available opportunities of observations,
AO ={ao,,, -
where ao; denotes the available opportunity for task i on
orbit k (i € T,k € O). Because we formulate the orbits of
satellites as resources, there is at most one observation
opportunity for each task in each orbit. A given available
opportunity aoy € AO is represented by aoy = {[wsy,
wey], 0y}, where [wsy, wey] is the time window of obser-
vation, and 6; is the slewing angle. Let b; = 1 denote that
task i can be observed on orbit k; thus, there are time
windows for task i on orbit k, otherwise b, = 0. In addi-
tion, the decision variables of our problem are xf.‘j €{0,1}
(i,j € T U{s,t},k € 0), where x{; = 1 if both tasks i, j are

©5, A0y 1, A012, *° 5 AOp2, A0 4 * saon,m}

WANG lJianjiang et al.: Reactive scheduling of multiple EOSs under cloud uncertainties: model and algorithms 167

scheduled on orbit k, and task i is the immediate prede-
cessor of task j; otherwise xffj =0.

Cons: Set of constraints that includes flow balance,
availability, setup time, memory capacity, and energy ca-
pacity constraints.

(1) Flow balance constraints: The number of prede-
cessors of each task should be equal to the number of its

SUCCESSOrs.
Z x; =

JjeTU{n
J#Ei

Z X, VieT;ke0 (1)
jeTuls)

J#FI

(i) Awvailability constraints: Each task can only be
scheduled to the orbits that are available for observing it.

Z X, <by, VieT;keO)
jEjT;Jim
(iii) Setup time constraints: There should be a suffi-
cient amount of setup time between consecutive tasks to
facilitate the startup, shutdown, slewing, and stabilization
operations of EOSs.

xf.‘j(wsjk —wey — stg) >0, Vi,jeT;keO 3)

where st{; denotes the setup time between task i and task j
onorbitk, i,jeT,keO.

(iv) Memory capacity constraints: The memory con-
sumption of the scheduled tasks cannot exceed the me-
mory capacity for each orbit.

Z Z X (wey —wsiom < My, Yke O (4)
i€l jerup
J#EI
(v) Energy capacity constraints: The energy consump-
tion of the task sequence must be less than or equal to the
energy capacity for each orbit.

Z Z ij(W@ik_Wka)ek"'

€T jeTUuft
Jj#i

D> disei<Ei, VkeO (5)

where sef; denotes the energy consumption for slewing
between task i and task j on orbit &, i, j€ T,k € O.

Obj: Scheduling objectives. In this study, we first con-
sider maximizing the observation profits of the schedul-
ed tasks under the operational constraints. Furthermore,
to stabilize the schedule, we should minimize the perturba-
tion while scheduling, i.e., minimizing the schedule dis-
tance, D(S,,S /), between the reactive and baseline sche-
dules. In general, there are two types of disruptions dur-
ing the implementation of an EOS schedule under cloud
uncertainties.

(1) A task fails to be observed due to a blockage of
clouds, and it cannot be repaired, implying that this task
is absent in the final schedule;

(i1) The failed task can be repaired with a variance in
the observation resource or observation time.

Therefore, the distance between the reactive and the
baseline schedules can be defined as follows:

2
D(S,.S,) = Z Z o disturb (i) (©6)

el j=1

where o;(j = 1,2) denotes the influence of the degree of
disruption j (o, >> 0,), and disturb,(i) represents the dis-
ruption count for task i in the entire scheduling.

Mathematically, the reactive scheduling problem is for-
mulated as follows:

maxZ Z Zwl—xfj,

i€l jeT keO
J#i

minD(S,,S ;).
It is subject to constraints (i) — (V).

2.3 Reactive scheduling mechanism and
disruption analysis

Reactive scheduling needs to address two key issues:
(i) when to react to disruptions, namely, the specific sche-
dule-driven policies, and (ii) the method(s) used to repair
the existing schedule. This section mainly focuses on the
first issue, and the suggested reactive scheduling algori-
thms are discussed in the next section.

In general, the driven strategies of reactive schedul-
ing can be divided into three categories: periodic driven,
event driven, and hybrid driven [46].

(i) Periodic driven: For this policy, a certain time period
T is defined between any two rescheduling decision
points. Once a reactive schedule is generated at some
time ¢, no more rescheduling actions will be conducted
until the next decision point #++7 regardless of the pos-
sible disturbances. The merits of the periodic policy in-
clude simplicity and reliability. However, it cannot timely
deal with disruptive events occurring between reschedul-
ing points, which may result in delayed or infeasible
plans in some cases.

(i1) Event driven: Under the event-driven policy, reac-
tive scheduling is triggered in response to an unexpected
event. This policy is normally able to cope well with dis-
ruptive events, whereas some reactions might be redun-
dantly induced, particularly when there are several uncer-
tain factors.

(iii) Hybrid driven: This policy is a combination of the
aforementioned two approaches and relies on a periodic

168 Journal of Systems Engineering and Electronics Vol. 32, No. 1, February 2021

rescheduling at regular time period 7', however, a res-
cheduling procedure can also be invoked if a fatal disrup-
tion is discovered.

Considering the characteristics of the EOS scheduling
problem under uncertainties of clouds, this study adopts
an event-driven policy to achieve a preferable schedule
performance and to enforce the responsiveness capability
to disturbances. In one of our previous studies, to ensure
the successful completion of more tasks under cloud uncer-
tainties, i.e., to make the schedule more robust, we con-
sider scheduling a single task to multiple resources (or-
bits) [41]. As a consequence, there are two sets of sche-
duled tasks in an EOS schedule, one set of single-dis-
patch tasks and one set of multi-dispatch tasks. Based on
this analysis, disruptive events that may trigger reactive
scheduling can be classified into the following three ca-
tegories:

(1) Failure of a single-dispatch task: If the observation
of a single-dispatch task fails, we should retract this task
from the schedule, generating two consequences. The
first is that the retracted task cannot be executed because
there is no other copy of the single-dispatch task in the
schedule. The second is that the originally assigned time-
window resource of the retracted task will be unoccupied
and wasted. Hence, in reactive scheduling, we need to not
only reschedule the retracted task as far as possible but
also schedule other tasks to the unoccupied time window
to improve resource utilization and observation profit.

(i) Failure of a multi-dispatch task: If the observation
of a multi-dispatch task fails, we do not need to resche-
dule the failed task, because there are other copies and
observation opportunities for the task in the schedule.
However, we need to reassign other tasks to the unoccu-
pied time window.

(iii) Success of a multi-dispatch task: If a copy of a
multi-dispatch task is successfully executed, which im-
plies that this multi-dispatch task has been finished, the
remaining copies of this task in the schedule become use-
less and should be released; other unscheduled tasks will
be rescheduled to the released time windows of the co-
pies.

3. Reactive scheduling algorithms

Regarding the second issue, how to react to unexpected
events, the literature provides two dominating approa-
ches: complete rescheduling and schedule repair. Com-
plete rescheduling creates a new schedule by treating all
the uninitiated tasks as new tasks subjected to the opera-
tional constraints. While complete rescheduling can be
efficient in achieving optimal solutions concerning tradi-

tional scheduling objectives, it normally results in a lack
of continuity and relatively high instability costs, as
shown in Subsection 2.1. Schedule repair refers to some lo-
cal adjustments in the current schedule to recover the exe-
cution process. As the schedule repair method can increa-
se the expected profits as well as preserve the stability of
the system, it is highly preferred in practice. Hence, it is
also used in this study. In the following section, specific
reactive scheduling algorithms for the various disruptive
events discussed in the previous section are proposed.

3.1 Failure of a single-dispatch task

As previously mentioned, when the observation of a
single-dispatch task fails, we retract this task from the
schedule and release the occupied time windows. Sub-
sequently, other unscheduled tasks are reassigned to the
released time windows to improve the observation effi-
ciency. Finally, we try to schedule the retracted task to
other time windows. Consequently, the reactive schedul-
ing policy in this case is described in Algorithm 1.

Algorithm 1 Reactive scheduling algorithm (failure
of a single-dispatch task)

Step 1 Retract the failed task i from the current
schedule CurSol, and release the time window resource
[wsy, we;] of orbit k.

Step 2 Select tasks from the set of unscheduled tasks
UnScheTaskSet, and then try to schedule them to the time
window [ws;, we;]. See details in Algorithm 2.

Step 3 Try to reassign the retracted task i to the
other orbits. See details in Algorithm 3.

Before describing the details of Algorithm 2 and Algo-
rithm 3, we first propose some definitions, as follows.

Definition 1 Priority rule

The priority p; of task i is defined as follows:

wi[1- l_[1= pabil
keO

Y

keO

Definition 2 Conflicting task set

A conflicting task set, Confy, is defined as a set of
conflicting tasks that are scheduled on orbit k and violate
setup time constraints with task i.

Algorithm 2 Reschedule the unscheduled tasks in
UnScheTaskSet

Step 1 Obtain the set of unscheduled tasks that are
available to be scheduled to time window [ws;, we;], de-
noted as SubUnScheTaskSet.

Step 2 If SubUnScheTaskSet = ¢, which indicates
that no unscheduled task can be scheduled to [ws;, wey],
the algorithm ends; otherwise, go to Step 3.

WANG lJianjiang et al.: Reactive scheduling of multiple EOSs under cloud uncertainties: model and algorithms 169

Step 3 Check whether there exists a task i that can be
directly scheduled to [ws;,we;] without extra task retrac-
tion or task swapping. If there is such a task i, schedule it
to [wsy,wey], delete it from the unscheduled task set
UnScheTaskSet, and the algorithm ends; otherwise, go to
Step 4.

Step 4 Select an unscheduled task i from SubUnSche-
TaskSet based on a priority rule (see details in Definition 1),
and then obtain all the conflicting tasks with task i on or-
bit k, constituting a conflicting task set Conf (see de-
tails in Definition 2). If Conf; # ¢, go to Step 5; other-
wise, choose the next task in SubUnScheTaskSet, and re-
peat Step 4.

Step 5 Check whether all the tasks in the set Conf
are multi-dispatch tasks; if yes, retract all the tasks in
Confy from the current schedule CurSol. Subsequently,
schedule task i to [wsy,wey], delete it from the unsche-
duled task set UnScheTaskSet, and the algorithm ends.
Otherwise, go back to Step 4 and select the next task in
SubUnScheTaskSet. 1f all the tasks in SubUnScheTask-
Set have been visited, go to Step 6.

Step 6 Revisit each task i in SubUnScheTaskSet. If
Confy # ¢, go to Step 7; otherwise, select the next task
from SubUnScheTaskSet, and repeat Step 6.

Step 7 Check whether all the tasks in Conf; have
been scheduled to other orbits. If all the single-dispatch
tasks can be rescheduled, retract all the multi-dispatch
tasks in Conf; from the current schedule CurSol. Then,
reschedule the single-dispatch tasks in Conf;, reschedule
task i to time window [wsy,we;], delete task i from
SubUnScheTaskSet, and the algorithm ends. Otherwise,
select the next task in SubUnScheTaskSet, and go back to
Step 6. If all the tasks in SubUnScheTaskSet have been
visited, which means no task can be scheduled to
[wsy, wey], the algorithm ends.

Algorithm 3 Reschedule the retracted task i

Step 1 Obtain the other observation opportunities
Oppor; of the failed task i.

Step 2 If Oppor; = ¢, which implies that task i can-
not be rescheduled, the algorithm ends; otherwise, go to
Step 3.

Step 3 In Oppor;, check whether there exists a time

window [ws;,wey] in which task i can be directly re-
scheduled without extra task retraction or task swapping.
If there is such a time window, schedule task ito
[wsy, wey], and the algorithm ends; otherwise, go to Step 4.

Step 4 Select a time window [wsy, we;] from the set
Oppor; in the ascending time order and obtain the con-
flicting task set Conf; of task i on orbit k. If Conf; # ¢,
go to Step 5; otherwise, choose the next time window,
and repeat Step 4.

Step 5 Check whether all the tasks in the set Conf

are multi-dispatch tasks; if yes, retract all the tasks in
Conf from the current schedule CurSol. Subsequently,
schedule task i to [wsy,wey], delete it from the unsche-
duled task set UnScheTaskSet, and the algorithm ends.
Otherwise, go back to Step 4 and select the next time
window in Oppor;. If all the time windows in Oppor;
have been visited, go to Step 6.

Step 6 Revisit each time window [wsy,we;] in
Oppor;. If Confy # ¢, go to Step 7; otherwise, select the
next time window from Oppor;, and repeat Step 6.

Step 7 Check whether all the tasks in Conf; have
been scheduled to other orbits. If all the single-dispatch
tasks can be rescheduled, retract all the multi-dispatch
tasks in Conf; from the current schedule CurSol. Then,
reschedule the single-dispatch tasks in Conf;, reschedule
task i to time window [wsy,we;], and the algorithm ends.
Otherwise, select the next time window in Oppor;, and
go back to Step 6. If all the time windows in Oppor; have
been visited, which means task i cannot be rescheduled,
the algorithm ends.

Theorem 1 Worst-case time complexity of Algori-
thm 1 is O(n*m +n*m?), in which n is the number of tasks
and m is the number of orbits.

Proof First, the release of time windows of the failed
task ¢ will consume O(1) time, because a single-dispatch
task will be only allocated once. (See Step 1 of Algori-
thm 1.)

In addition, the worst-case time complexity of the
second step (Algorithm 2) is O(n’m). In detail, the time
complexities of Steps 1-3 are O(n), O(1) and O(n), res-
pectively. Afterwards, there are at most n loops in Step 4,
and the time complexity of each loop is O(n). Hence, the
time complexity of Step 4 is O(n?). Step 5 with time com-
plexity being O(n) will be called for each loop of Step 4.
Hence, the total time complexity of Step 4 and Step 5 is
O@n?). For Step 6 and Step 7, in each loop of Step 6, it is
possible that Step 7 is invoked, and the time complexities
are O(n) and O(n’m), respectively. Therefore, the total
time complexity of Step 6 and Step 7 is O(n’m). In con-
clusion, the total time complexity of Algorithm 2 is
On+1+n+n*+n*m) = 0m’m).

Similarly, with respect to Algorithm 3, the time com-
plexity is O(n*m?). The time complexities of Steps 1-3
are O(m), O(1) and O(m), respectively. For Step 4 and
Step 5, the time complexity is O(nm?). In addition, the
time complexity of Step 6 and Step 7 is O(n*m?). In a
word, the worst-case time complexity of Algorithm 3 is
on*m?).

Finally, the total worst-case time complexity of Algo-
rithm 1 is O(1 + ’m + n*m?)= O’ m + n*m?). |

170 Journal of Systems Engineering and Electronics Vol. 32, No. 1, February 2021

3.2 Failure of a multi-dispatch task

As mentioned above, when the observation of a multi-dis-
patch task fails, we do not need to reschedule the failed
task because there are other copies and observation op-
portunities for this task. However, we need to reassign
other unscheduled tasks to the released time window, to
obtain more observation profits and improve resource
utilization. In addition, we need to update the status of the
remaining copies because the following copy may beco-
me a single-dispatch task due to the failure. Hence, the
reactive scheduling policy in this case is described in Algo-
rithm 4.

Algorithm 4 Reactive scheduling algorithm (failure
of a multi-dispatch task)

Step 1 Retract the failed task i from the current
schedule CurSol, release the time window resource [wsy,
we;] on orbit k.

Step 2 Select tasks from the set of unscheduled tasks
UnScheTaskSet, and then try to schedule them to the time
window [wsy, we;]. See details in Algorithm 2.

Step 3 Update the status of the remaining copies of
task i.

Theorem 2 The worst-case time complexity of Algo-
rithm 4 is O (n*m), in which n is the number of tasks and
m is the number of orbits.

Proof As shown in the proof of Theorem 1, the time
complexity of the first step that releases the time window
resource on orbit k is O(1), and the time complexity of
Algorithm 2 is O(n*m). Moreover, the time complexity of
Step 3 is at most O(m) because there are at most O(m)
copies of a multi-dispatch task. Hence, the total time
complexity of Algorithm 4 is O(1+n’m+m)=0([n’'m).

0O

3.3 Success of a multi-dispatch task

If a copy of a multi-dispatch task is successfully exe-
cuted, we retract the other copies of this task, releasing
the relevant time windows. Furthermore, we should re-
schedule the other unscheduled tasks to the released time
windows, improving the observation efficiency. In detail,
the reactive scheduling policy in this case is described in

Algorithm 5.

Algorithm 5 Reactive scheduling algorithm (suc-
cess of a multi-dispatch task)

For each other copy of the successful task i:

Step 1 Retract the copy from the current schedule
CurSol, and release the relevant time window [wsy, we;].

Step 2 Select tasks from the set of unscheduled tasks
UnScheTaskSet, and then try to schedule them to the time
window [ws;, we;]. See details in Algorithm 2.

Theorem 3 The worst-case time complexity of Algo-
rithm 5 is O(n’m?), in which n is the number of tasks,
and m is the number of orbits.

Proof First, the time complexity of Step 1 is O(1),
and the time complexity of Step 2 is O(n’m) as shown in
the proof of Theorem 1. Additionally, Step 1 and Step 2
will be called at most m times because the maximum
number of copies of a multi-dispatch task is m. Hence,
the total time complexity of Algorithm 5 is O(m-(1+
n3m)):O(n3m2). O

4. Computational results and analyses

In this section, we provide the results of an extensive si-
mulation study to show the capability of the proposed re-
active scheduling approaches under the uncertainties of
clouds.

4.1 Experimental layout

In our simulation, the tasks are randomly generated in the
following area: latitude 0°— 60° and longitude 0°— 150°.
Without loss in generality, the profits of tasks are inte-
gers, uniformly distributed over [1,10]. We consider three
different satellites with the parameters outlined in Table 2.
and the orbit models are obtained from the Satellite Tool
Kit (STK). In addition, the memory and energy capacit-
ies for each orbit are randomly generated in the intervals
[200, 240] and [240, 320], respectively. Considering the
uncertainties of clouds, for each observation window, the
probability of no blockage of clouds, i.e., the observation
is successful, is uniformly distributed in [0.5, 1]. In addi-
tion, with respect to the definitions of disruption, the in-
fluence degrees of the two categories of disruptions are
defined as 6y =4 and 0, = 1.

Table 2 Parameters of satellites

Satellite Slewing velocity Startup time Shutdown time Stability time Memory/time Energy/time Energy/(°)
CBERS-2 2 5 8 3 2 1.5 1.5
IKONOS-2 2.5 8 5 6 4 2.5 4
SPOT-5 3 10 10 9 3 3.5 1

WANG lJianjiang et al.: Reactive scheduling of multiple EOSs under cloud uncertainties: model and algorithms 171

In this study, all algorithms are coded in C++ and run
on a personal laptop computer equipped with an Intel (R)
Core (TM) 15-2430M 2.40 GHz (2 processors) and 4 GB
RAM.

4.2 Performance evaluation of the reactive
scheduling algorithms

In this section, to evaluate the performance of the propo-
sed reactive scheduling algorithms, a number of problem
instances are randomly created. In detail, the numbers of
tasks are set to 20, 40, 60, 80, 100, and 120. In addition,
the scheduling horizons are first set to 12 h and 24 h,
which correspond to 21 and 42 orbits, respectively. For
each parameter setting, ten problem instances are random-
ly created. In our previous studies, the baseline schedules
are produced by an expectation model [42], a chance-con-
strained model [2], and a robust optimization model [41].
Notably, the performance of the reactive scheduling algo-
rithms depends on the disruptions of the cloud uncertain-
ties, related to concrete scenarios. Hence, to avoid the
performance impact of the different scenarios, we create a
large sample of 1 000 scenarios for each problem ins-
tance. First, we analyze the performance of the reactive
scheduling algorithms when the baseline schedules are
produced with the expectation model. The experimental
results are shown in Fig. 6.

450
S 300
a
= L
g |
© 100 |

0
20 40 60 80 100 120
Task number
(a) Observation profits: 21 orbits

600

500 Lo
S 400 |
o
=1
8300 f . e
<
Z
2 200 - -
i)
o

100 ﬁ)

0 -

20 40 60 80 100 120
Task number
(b) Observation profits: 42 orbits

450

400

300 [

Perturbation

250 |

200 +] ’
0

20 40 60 80 100 120
Task number
(c) Perturbation: 21 orbits

100

80 Lo

60 Lo

40 Lo

Perturbation

20 40 60 80 100 120
Task number
(d) Perturbation: 42 orbits
[: Proactive-reactive scheduling;
[J: Reactive scheduling.
Fig. 6
model

Performance analysis of reactive scheduling: expectation

As shown in Fig. 6(a) and Fig. 6(b), the observation
profits increase with the increase of the task number. Fur-
thermore, the performance of the proactive-reactive sche-
duling algorithm is superior to that of the pure proactive
scheduling algorithm, regardless of the minimum, avera-
ge, or maximum values. This is because when the obser-
vation fails due to the presence of clouds, the pure proac-
tive scheduling has no reaction, decreasing the observa-
tion profits. However, the proactive-reactive scheduling
reassigns the failed task to other observation windows,
stabilizing the scheduling profits.

Furthermore, as illustrated in Fig. 6(c) and Fig. 6(d),
the perturbation increases with the increase of the task
number. This can be attributed to the fact that the num-
ber of failed tasks increase due to cloud blockage. Al-
though the reactive scheduling is considered, the resche-
dule also results in variances in observation resource or
time. Moreover, from the comparisons, we discover that
the reactive scheduling algorithm can reduce the system
perturbation. The reason is that the first type of disrup-
tion is caused without reactive scheduling, but the reac-
tive scheduling can transform the first type to the second
type of disruption. Clearly, the perturbation measurement

172 Journal of Systems Engineering and Electronics Vol. 32, No. 1, February 2021

for the first type is much larger than that of the second
type.

Fig. 7 depicts the performance of the reactive schedul-
ing algorithm when the chance-constrained model is
adopted for the proactive scheduling. Similar to Fig. 6,
Fig. 7(a) and Fig. 7(b) show that the observation profits
increase with the increase of the task number and the re-
active scheduling can improve the observation profits.
Fig. 7(c) shows that the perturbation first increases with
the increase of the task number for 21 orbits; however,
it decreases from 60 to 80 tasks, and then continues to in-
crease further. In addition, for 42 orbits, the perturbation
also starts increasing and then decreases from 100 to
120 tasks, as shown in Fig. 7(d).

350

60 80

40

Observation profit
o] [\e]
(= i
(=) (=)

100 120

0
20
Task number

(a) Observation profits: 21 orbits

500

400 fooo T

300 fesismmnissims s

200 ko = -

Observation profit

100

20 40 60 80 100 120
Task number

(b) Observation profits: 42 orbits

120

100 frressmmremmnarmse

80

60 |-

Perturbation

40t

20 | I ’
0
20 40 60 80 100 120

Task number
(c) Perturbation: 21 orbits

120

100

80 |

60

Perturbation

40 koo Jo

0 L

20 40 60 80 100 120
Task number

(d) Perturbation: 42 orbits

[: Proactive-reactive scheduling;
—: Reactive scheduling.

Fig. 7 Performance analysis of reactive scheduling: chance-con-
strained model

Fig. 8 describes the performance of the reactive sche-
duling algorithm when the robust optimization model is
adopted for the proactive scheduling. Similar to the
former experimental results, the reactive scheduling can
improve the observation profits. In addition, as shown in
Fig. 8(c) and Fig. 8(d), the perturbation increases with the
increase of the task number, and the reactive scheduling
can decrease the perturbation.

450

400 -
~ 350}
=
2 300}
a
_E 250 -
s |emmmsaromn
% 200
2 150¢
© 100t

0 -
20 40 60 80 100 120
Task number
(a) Observation profits: 21orbits

600

500 +
=
2 400 -
a
g
= 300
<
5
2 200
o

U

0 -
20 40 60 80 100 120

Task number
(b) Observation profits: 42 orbits

WANG lJianjiang et al.: Reactive scheduling of multiple EOSs under cloud uncertainties: model and algorithms 173

120

100 |

80 |mammaoassmmmass i

60

Perturbation

40}

20 -

20 40 60 80 100 120
Task number

(c) Perturbation: 21 orbits

100

80 -

FA1) PRI <) NI o -

40t

Perturbation

20 +

Ll m

20 40 60 80 100 120
Task number

(d) Perturbation: 42 orbits
@ : Proactive-reactive scheduling;
—1: Reactive scheduling.

Fig. 8 Performance analysis of reactive scheduling: robust optim-
ization model

4.3 Performance comparisons of the modeling
methods for the proactive scheduling

In this section, we analyze the scheduling performance of
different modeling methods for the proactive scheduling,
such as the expectation, chance-constrained, and robust
optimization models, with or without the reactive sche-
duling. The parameter setting is identical to that in Sub-
section 4.2, and a sample of 1 000 scenarios is also crea-
ted for each problem instance.

In Fig. 9, we analyze the scheduling performance of
different models for proactive scheduling without reac-
tive scheduling. It is shown in Fig. 9(a) and Fig. 9(b) that
the observation profits increase with the increase in the
task number for the expectation and robust optimization
models, which has been explained in the previous section.
With regard to the robust optimization model, the obser-
vation profits also initially increase; however, they re-
main unchanged or decrease with further increase in the
task number. In addition, for fewer tasks (20—80), the ob-
servation profits of the robust optimization model are lar-
ger than those of the expectation model. On the contrary,
the observation profits of the expectation model are lar-

ger than those of the robust optimization model for a
greater number of tasks (100—120). Particularly, the ob-
servation profits of the chance-constrained model are al-
ways minimal.

As shown in Fig. 9(c) and Fig. 9(d), for the expecta-
tion and robust optimization models, the perturbation as-
cends with the increase of the task number. However,
with respect to the chance-constrained model, the pertur-
bation initially ascends, then descends, and finally contin-
ues to ascend. Moreover, for 21 orbits, the perturbation of
the expectation model is larger than that of the robust op-
timization model for fewer tasks. This is because we do
not consider the robustness in the expectation mo-
del, and the baseline schedule lacks an anti-interference
capacity. Therefore, the observation of numerous tasks
fails due to the presence of clouds, which increases the
perturbation. However, for more tasks, the perturbation of
the expectation model is smaller than that of the robust
optimization model. In addition, for 42 orbits, the per-
turbation of the robust optimization model is always mi-
nimal, whereas the perturbation of the chance-constrain-
ed model is always maximal.

Furthermore, with reactive scheduling, we also compare
the scheduling performance of the different proactive
scheduling models, as shown in Fig. 10. Fig. 10(a) and
Fig. 10(b) show that the observation profits of the robust
optimization model are larger than those of the expecta-
tion model for fewer tasks. This can be attributed to the
fact that the robust optimization considers the scheduling
robustness, which increases the ratio of task completion
and enables more tasks to be completed. However, for
more tasks, the observation profits of the robust optimiza-
tion model are fewer because the multi-dispatch of the ro-
bust model increases the system load, which decreases
the solution optimality. Although observations may fail
due to the presence of clouds for the expectation model,
the reactive scheduling can repair the schedule and reas-
sign the failed observations. In addition, the observation
profits of the chance-constrained model are always the
smallest.

As shown in Fig. 10(c), when the number of tasks is
small, the perturbation of the chance-constrained model is
the largest, and the perturbation of the robust optimiza-
tion model is the smallest. The reason is that the robust
optimization model has a strong anti-jamming capacity.
However, for more tasks, the perturbation of the robust
optimization model becomes the largest. In addition, for
42 orbits, the perturbation of the robust optimization
model is the smallest, whereas the perturbation of the
chance-constrained model is the largest.

174

Fig. 9

450
400
350

wn O
oS O

Observation profit
A9,
S

= NN W
wn o [=3
oS o o (=)

600

N
(=
S

N
=)
S

Observation profit
W
S S
S 3

—_
(=
O

(=]

120

Perturbation

—
B [} o0 (=)
S & 5 3

393
(=]

120

Perturbation
N A o ® o
S 5 & & 3

(=]

Journal of Systems Engineering and Electronics Vol. 32, No. 1, February 2021

|

120

!

100

«l

40

60 80

Task number
(a) Observation profits: 21 orbits

mil

i M

Task number

(b) Observation profits: 42 orbits
100 120
Task number
(c) Perturbation: 21 orbits
120
Task number
(d) Perturbation: 42 orbits
: Expectation model;
[1: Chance-constrained model;

60 80 100
I : Robust optimization model.

Performance analysis of modeling methods for proactive
scheduling (without reactive scheduling)

450
400
350
300
250
200

—_
W
(=]

Observation profit

100
50

600

500

400

300

200

Observation profit

100

120

il

| } {1

40 60 80
Task number

(a) Observation profits: 21 orbits

|

| Jzyl |

40 60 80 100
Task number
(b) Observation profits: 42 orbits

100

80

60

Perturbation

40

20

90

ey m

40 60 80
Task number

(c) Perturbation: 21 orbits

80
70
60
50
40
30
20
10

Perturbation

S

Fig. 10 Performance analysis of modeling methods for proactive

100
Task number
(d) Perturbation: 42 orbits

: Expectation model;
: Chance-constrained model;
I : Robust optimization model.

scheduling (with reactive scheduling)

i)

WANG lJianjiang et al.: Reactive scheduling of multiple EOSs under cloud uncertainties: model and algorithms

4.4 Performance evaluation on large-scale
problem instances

In this section, to further verify the effectiveness of the
reactive scheduling algorithms, we test the algorithm per-
formance on large-scale problem instances. Specifically,
the numbers of tasks are 200, 300 and 400; the numbers
of orbits are still 21 and 42. Similar to the previous experi-
ments, for each parameter setting, ten problem instances
are randomly created. Therefore, we have 60 instances in

175

total. In addition, the sample size is also set to 1 000 for
each problem. Due to the limitation in computer memory,
large-scale problems could not be solved by one of the
proactive scheduling algorithms [2]. Therefore, in this
section, the baseline schedules could only be produced by
expectation [42] and robust optimization models [41].

First, we verify the performance of the reactive sche-
duling algorithms when the baseline schedules are produ-
ced by the expectation model. The experimental results
are shown in Table 3.

Table 3 Performance analysis on large-scale problem instances: expectation model

Proactive-reactive scheduling

Proactive scheduling

Performance Number of orbits Number of tasks
Min Ave Max Min Ave Max
200 377.6 455.612 5171 3143 405.348 485.2
21 300 323.5 398.354 460.7 272.6 360.194 435.6
400 363.0 444.708 512.6 298.5 397.551 485.5
Profit 200 679.5 762.801 828.9 540.7 650.689 751.4
42 300 752.1 871.550 948.8 623.0 742.234 850.1
400 748.8 840.233 914.8 5724 705.377 826.6
200 18.0 50.182 89.4 29.6 70.267 116.0
21 300 10.6 39.285 72.7 18.0 52.642 92.4
Perturbation 400 12.8 42.686 79.0 20.8 57.980 100.0
200 38.7 77.059 120.7 68.8 127.369 188.0
42 300 40.6 78.457 125.0 76.5 129.736 188.5
400 27.8 63.480 105.0 56.0 110.822 171.2

Similar to the prior experimental results, the observa-
tion profits of the proactive-reactive scheduling algori-
thm are larger than those of the pure proactive schedul-
ing algorithm, regardless of the minimum, average, or
maximum values. Additionally, the reactive scheduling
algorithm can also reduce the system perturbation because

the reactive scheduling can reduce the number of tasks
that fail to be observed (the first type of disruption).

In the following, we also test the effectiveness of the
reactive scheduling algorithms when the baseline schedu-
les are produced by the robust model. The experimental
results are shown in Table 4.

Table 4 Performance analysis on large-scale problem instances: robust model

Proactive-reactive scheduling

Proactive scheduling

Performance Number of orbits Number of tasks i v Max i Ave Mo
200 5335 606.181 667.5 482.8 569.111 644.6

21 300 774.5 873.819 955.9 701.8 814.472 912.1
400 959.6 1078.932 1170.3 873.1 998.408 1107.2

Profit 200 684.0 750.485 801.1 595.1 683.998 759.9
42 300 1 000.0 1308.346 1375.5 1000.0 1223.268 1319.1
400 1000.0 1583.450 1662.8 1000.0 1456.914 1576.8

200 27.6 65.874 110.6 384 85.930 1384

21 300 50.0 101.452 160.3 74.8 134.396 203.2

Perturbation 400 69.8 125.030 190.6 102.4 168.062 2432
200 23.0 57.938 97.7 46.0 94.130 147.6

42 300 51.4 94.974 149.9 80.5 142.220 208.5

400 78.0 131.198 194.0 130.4 205.098 2832

176

From the experimental results in Table 4, we can ob-
tain a similar conclusion that the reactive scheduling al-
gorithms in this study can both improve the observation
profits and reduce the system perturbations under cloud
uncertainties.

5. Conclusions

On the basis of the previous studies on proactive schedul-
ing, we investigate the reactive scheduling problem to
further hedge against disruptions due to cloud uncertain-
ties. Initially, we describe the reactive scheduling prob-
lem and highlight the significance of the reactive schedul-
ing through a simulated instance. Considering two object-
ives, the observation profits and the scheduling stability,
a multi-objective optimization mathematical model is con-
structed. Thus, we propose an event-driven reactive
scheduling mechanism and obtain the possible disruptions
from cloud uncertainties during the execution of the
baseline schedule. With regard to different disruptions,
different reactive scheduling algorithms are suggested.
Finally, a considerable number of simulation experiments
are conducted to verify the effectiveness and feasibility of
the reactive scheduling algorithms. The experimental re-
sults show that reactive scheduling can improve observa-
tion profits and also reduce the perturbation, satisfying
users’ requirements.

In the future, the scheduling problem of agile EOSs un-
der uncertainties will be considered. Different from non-
agile satellites, the scheduling of agile satellites is more
flexible due to long time windows for observation. Hence,
we need not only allocate the tasks to the orbits, but also
decide the start and finish time, which makes the prob-
lem more complicated. In addition, we will design more
sophisticated algorithms for the reactive scheduling prob-
lem to further improve the scheduling performance.

References

[1] BIANCHESSI N, CORDEAU J F, DESROSIERS J, et al. A
heuristic for the multisatellite, multi-orbit and multi-user
management of earth observation satellites. European Jour-
nal of Operational Research, 2007, 177(2): 750-762.

[2] WANG JJ, DEMEULEMEESTER E, QIU D S. A pure pro-
active scheduling algorithm for multiple earth observation
satellites under uncertainties of clouds. Computers & Opera-
tions Research, 2016, 74: 1-13.

[3] HABET D, VASQUEZ M, VIMONT Y. Bounding the op-
timum for the problem of scheduling the photographs of an
agile earth observing satellite. Computational Optimization
and Applications, 2010, 47(2): 307-333.

[4] GABREL V. Strengthened 0-1 linear formulation for the
daily satellite mission planning. Journal of Combinatorial
Optimization, 2006, 11(3): 341-346.

[S] MARINELLI F, SALVATORE N, ROSSI F, et al. A Lag-
range heuristic for satellite range scheduling with resource
constraints. Computers & Operations Research, 2011, 38(11):
1572-1583.

[6] KUCUK M, YILDIZ S T. A constraint programming app-

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

[21]

(22]

(23]

Journal of Systems Engineering and Electronics Vol. 32, No. 1, February 2021

roach for agile earth observation satellite scheduling problem.
Proc. of the 9th International Conference on Recent Advan-
ces in Space Technologies, 2019: 613-617.

QAMAR A, SALAH E E, BADRAN K M, et al. Mission
planning and scheduling for earth observation space system.
International Journal of System of Systems Engineering,
2020, 10(1): 24-38.

WOLFE J, STEPHEN S E. Three scheduling algorithms ap-
plied to the earth observing systems domain. Management
Science, 2000, 46(1): 148-168.

BARKAOUI M, BERGER J. A new hybrid genetic algo-
rithm for the collection scheduling problem for a satellite
constellation. Journal of the Operational Research Society,
2020, 71(9): 1390-1410.

SARKHEYLI A, VAGHEI B G, BAGHERI A. New tabu
search heuristic in scheduling earth observation satellites.
Proc. of the 2nd International Conference on Software Tech-
nology and Engineering, 2010. DOI: 10.1109/ICSTE.2010.560
8821.

ZUFFEREY N, AMSTUTZ P, GIACCARI P. Graph colour-
ing approaches for a satellite range scheduling problem.
Journal of Scheduling, 2008, 11(4): 263-277.

CHU X G, CHEN Y N, TAN Y J. An anytime branch and
bound algorithm for agile earth observation satellite onboard
scheduling. Advances in Space Research, 2017, 60(9):
2077-2090.

GABREL V, VANDERPOOTEN D. Enumeration and inter-
active selection of efficient paths in a multiple criteria graph
for scheduling an earth observing satellite. European Journal
of Operational Research, 2002, 139(3): 533-542.

PENG G, SONG G. XING L, et al. An exact algorithm for
agile earth observation satellite scheduling with time-depend-
ent profits. Computers & Operations Research, 2020, 120:
104946.

HU X H, ZHU W M, AN B, et al. A branch and price al-
gorithm for EOS constellation imaging and downloading in-
tegrated scheduling problem. Computers & Operations Re-
search, 2019, 104: 74-89.

ZHU W M, HU X X, XIA W, et al. A three-phase solution
method for the scheduling problem of using earth observa-
tion satellites to observe polygon requests. Computers & In-
dustrial Engineering, 2019, 130: 97-107.

ZHAO Y B, DU B, LI S. Agile satellite mission planning via
task clustering and double-layer tabu algorithm. Computer
Modeling in Engineering & Sciences, 2020, 122(1): 235—
257.

SALMAN A A, AHMAD I, OMRAN M G. A metaheuristic
algorithm to solve satellite broadcast scheduling problem. In-
formation Sciences, 2015, 322: 72-91.

LIZ L, LI X J. A multi-objective binary-encoding differen-
tial evolution algorithm for proactive scheduling of agile
earth observation satellites. Advances in Space Research,
2019, 63(10): 3258-3269.

WU K, ZHANG D X, CHEN Z H, et al. Multi-type multi-ob-
jective imaging scheduling method based on improved
NSGA-III for satellite formation system. Advances in Space
Research, 2019, 63(8): 2551-2565.

WU G H, LIU J, MA M H, et al. A two phase scheduling
method with the consideration of task clustering for earth ob-
serving satellites. Computers & Operations Research, 2013,
40(7): 1884—1894.

ZHANG Z J, HU F N, ZHANG N. Ant colony algorithm for
satellite control resource scheduling problem. Applied Intelli-
gence, 2018, 48(10): 1-11.

TANGPATTANAKUL P, JOZEFOWIEZ N, LOPEZ P. A
multi-objective local search heuristic for scheduling earth ob-

WANG lJianjiang et al.: Reactive scheduling of multiple EOSs under cloud uncertainties: model and algorithms

[24]

[25]

[26]

(27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

servations taken by an agile satellite. European Journal of
Operational Research, 2015, 245(2): 542-554.

LIU X L, LAPORTE G, CHEN Y W, et al. An adaptive large
neighborhood search metaheuristic for agile satellite schedul-
ing with time-dependent transition time. Computers & Opera-
tions Research, 2017, 86: 41-53.

HE L, LIU X L, LAPORTE G, et al. An improved adaptive
large neighborhood search algorithm for multiple agile satel-
lites scheduling. Computers & Operations Research, 2018,
100: 12-25.

PENG G S, DEWIL R, VERBEECK C, et al. Agile earth ob-
servation satellite scheduling: an orienteering problem with
time-dependent profits and travel times. Computers & Opera-
tions Research, 2019, 111: 84-98.

GLOBUS A, CRAWFORD J, LOHN J, et al. A comparison
of techniques for scheduling fleets of earth-observing. Jour-
nal of the Operational Research Society, 2003, 56(8): 962—
968.

ZHU W, HU X, XIA W, et al. A two-phase genetic anneal-
ing method for integrated earth observation satellite schedul-
ing problems. Soft Computing, 2019, 23(1): 181-196.

WU G H, WANG H L, PEDRYCZ W, et al. Satellite obser-
vation scheduling with a novel adaptive simulated annealing
algorithm and a dynamic task clustering strategy. Computers
& Industrial Engineering, 2017, 113: 576-588.

WANG J, ZHU X, QIU D, et al. Dynamic scheduling for
emergency tasks on distributed imaging satellites with task
merging. IEEE Trans. on Parallel and Distributed Systems,
2014, 25(9): 2275-2285.

WANG J J, ZHU X M, YANG L T, et al. Towards dynamic
real-time scheduling for multiple earth observation satellites.
Journal of Computer and System Sciences, 2015, 81(1):
110-124.

XIE P, WANG H, CHEN Y N, et al. A heuristic algorithm
based on temporal conflict network for agile Earth observing
satellite scheduling problem. IEEE Access, 2019, 7: 61024—
61033.

HE Y M, CHEN Y W, LU J M, et al. Scheduling multiple
agile earth observation satellites with an edge computing
framework and a constructive heuristic algorithm. Journal of
Systems Architecture, 2019, 95: 55-66.

KARAPETYAN D, MINIC S M, MALLADI K T, et al
Satellite downlink scheduling problem: a case study. Omega,
2015, 53: 115-123.

SUN H Q, XIA W, HU X X, et al. Earth observation satellite
scheduling for emergency tasks. Journal of Systems Engi-
neering and Electronics, 2019, 30(5): 931-945.

BEAUMET G, VERFAILLIE G, CHARMEAU M C. Feasi-
bility of autonomous decision making on board an agile earth-
observing satellite. Computation Intelligence, 2011, 27(1):
123-139.

LINWC,LIAODY, LIU CY, et al. Daily imaging schedul-
ing of an Earth observation satellite. IEEE Trans. on Systems
Man and Cybernetics Part A—Systems and Humans, 2005,
35(2): 213-223.

LEMAITRE M, VERFAILLIE G, JOUHAUD F, et al. How
to manage the new generation of agile earth observation
satellites. Proc. of the International Symposium on Artificial
Intelligence, Robotics and Automation in Space, 2000. DOI:
10.1002/ppsc.201300352.

LIAO D Y, TANG Y. Imaging order scheduling of an earth
observation satellite. IEEE Trans. on Systems Man and Cy-
bernetics Part C—Applications and Reviews, 2007, 37(5):
794-802.

VALICKA C G, GARCIA D, STAID A, et al. Mixed-in-
teger programming models for optimal constellation schedul-

[41]

[42]

[43]

(44]

[45]

[46]

177

ing given cloud cover uncertainty. European Journal of Ope-
rational Research, 2019, 275(2): 431-445.

WANG J J, DEMEULEMEESTER E, HU X J, et al. Exact
and heuristic scheduling algorithms for multiple earth obser-
vation satellites under uncertainties of clouds. IEEE Systems
Journal, 2019, 13(3): 3556-3567.

WANG J J, DEMEULEMEESTER E, HU X J, et al. Expect-
ation and SAA models and algorithms for scheduling of mul-
tiple Earth observation satellites under the impact of clouds.
IEEE Systems Journal, 2020, 14(4): 5451-5462.

SAMIMI A, NIKZAD M. Complete active-reactive power
resource scheduling of smart distribution system with high
penetration of distributed energy resources. Journal of Mo-
dern Power Systems & Clean Energy, 2017, 5(6): 863—875.
HU X J, WANG J J, LENG K J. The interaction between
critical chain sequencing, buffer sizing, and reactive actions
in a CC/BM framework. Asia Pacific Journal of Operational
Research, 2019, 36(3): 1950010.

PAPROCKA I, KEMPA W M. Searching for a method of ba-
sic schedules generation which influences over the perform-
ance of predictive and reactive schedules. Proc. of the 37th
International Conference on Information Systems Architec-
ture and Technology, 2017: 233-242.

VIERIA G E, HERRMANN J W, LIN E. Rescheduling manu-
facturing systems: a framework of strategies, policies and
methods. Journal of Scheduling, 2003, 6(1): 39-62.

Biographies

|

WANG Jianjiang was born in 1986. He received
his B.S. and Ph.D. degrees in military operations
research from National University of Defense
Technology, Changsha, China, in 2009 and 2015,
respectively. He is currently a lecturer with Na-
tional University of Defense Technology, Chang-
sha, China. His research interests are combina-
| tional optimization, satellite scheduling, and pro-

ject scheduling.
E-mail: jianjiangwang@nudt.edu.cn

HU Xuejun was born in 1989. She received her
B.S. and Ph.D. degrees in management science
and engineering from Huazhong University of
Science and Technology, Changsha, China, in
2011 and 2016, respectively. She is currently an
associate professor in the Business School, Hunan
University, Changsha, China. Her research in-

terests are satellite scheduling, project scheduling,

and project control.
E-mail: xuejun_hu@hnu.edu.cn

HE Chuan was born in 1985. He received his
B.S. and M.S. degrees in military operations re-
search from PLA Army Academy of Artillery and
Air Defense in 2007 and 2010, respectively. He
received his Ph.D. degree in military operations
research from National University of Defense
Technology, Changsha, China, in 2013. He is cur-
rently a research assistant in Beijing Institute of

Tracking and Telecommunications Technology. His research interests
are satellite application and algorithm design.
E-mail: chuanhe@nudt.edu.cn

