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Abstract: By incorporating the higher order concept, the piece-
wise linear recursive convolution (PLRC) method and Crank-
Nicolson Douglas-Gunn (CNDG) algorithm, the unconditionally
stable complex frequency shifted nearly perfectly matched layer
(CFS-NPML) is proposed to terminate the left-handed material
(LHM) domain. The proposed scheme takes advantages of CFS-
NPML formulation, the higher order concept PLRC method and
the unconditionally stable CNDG algorithm in terms of absorb-
ing performance, computational efficiency, calculation accuracy
and convenient implementation. A numerical example is carried
out to demonstrate the effectiveness and efficiency of the pro-
posed scheme. The results indicate that the proposed scheme
can not only have considerable absorbing performance but also
maintain the unconditional stability of the algorithm with the en-
largement of time steps.
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1. Introduction

The left-handed material (LHM) has excited public’s in-
terest due to its unique characteristic on simultaneously
negative permittivity and permeability in a certain frequ-
ency band [1,2]. However, the LHM cannot be obtained
directly from nature. Thus, LHM simulation is regarded
as the most important way to entirely research its behavi-
ors in a series of situations [3]. As one of the most power-
ful and efficient numerical simulation tools, the finite-dif-
ference time-domain (FDTD) algorithm, proposed by
Yee, has received considerable attention not only in solv-
ing the Maxwell’s equations but also in simulating prac-
tical electromagnetic problems, especially the wave pro-
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pagation in the dispersive LHMs [4,5]. It is known that
the conventional FDTD algorithm is a time explicit algo-
rithm. That means the time step and the mesh size are
limited by the Courant-Friedrichs-Lewy (CFL) condi-
tion [6]. If the CFL condition cannot be satisfied, the con-
ventional FDTD algorithm will be unstable. This charac-
teristic limits the application of the conventional FDTD
algorithm. Especially in the multi-scale problems and cal-
culation of fine structures, large amount of time steps
must be calculated resulting in much more expensive
simulation which becomes unacceptable in the practical
engineering. To enhance the computational efficiency and
shorten the CPU time, a series of unconditionally stable
algorithms are investigated. Among them, it has been
testified that the Crank-Nicolson (CN) scheme can receive
better efficiency and accuracy during the simulation
[7,8]. Although the original CN scheme is efficient in one-
dimensional case, large sparse matrices will be formed by
directly applying the original CN scheme to two-dimen-
sional cases. So far, the calculation method in solving the
sparse matrices shows quite low efficiency. To avoid the
calculation of such large sparse matrices, the approxi-
mate CN algorithms are proposed in two-dimensional
cases including the CN approximate-decoupling (AD)
and the CN Douglas-Gunn (DG) algorithms [7,8]. It has
been testified that the CNDG can obtain better accuracy
by introducing the disturbances terms at both sides of the
equations compared with the CNAD algorithm [9].

By applying the CNDG algorithm to open region prob-
lems, infinite rows of data must be calculated by compu-
ter in theory [6]. It is obvious that such procedure is un-
practical to realize. To simulate the infinite extension of
computational domain, the absorbing boundary condition
must be introduced during the simulation. The perfectly
matched layer (PML), proposed by Berenger, is regarded
as one of the most powerful absorbing boundary condi-
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tions [10]. The original PML is implemented by split-
field scheme resulting in the employment of six auxiliary
variables. To improve the computational efficiency and
simplify the implementation at corners and edges of the
PML regions, the stretched coordinate PML formulation
with four auxiliary variables is proposed [11]. However,
the updated equations must be changed according to dif-
ferent domains. Thus, the nearly PML (NPML) based on
stretched coordinate (SC) variable is introduced [12].
Both the SC-PML and the original NPML are inefficient
in reducing late-time reflections and attenuating evanes-
cent waves. To alleviate such problems, the complex fre-
quency-shifted (CFS) PML is carried out [13]. Through
the resultants, it can be founded that the reflection coeffi-
cient in the low-frequency is relatively low. The reason is
that the low-frequency propagation waves cannot be effi-
ciently absorbed. The high order PML formulation is in-
troduced to alleviate such question and enhance the absor-
bing performance during the whole simulation [14]. The
original higher order PML is implemented with six auxi-
liary variables, which affects the accuracy and efficiency
[15]. Recently, the improved PML algorithm with four
auxiliary variables is introduced based on different imple-
mentations [16,17].

So far, the higher order CNDG-PML is introduced
based on the auxiliary differential equations method [9].
By applying the proposed scheme to the LHMs, the imple-
mentation will become much more complex to be reali-
zed. In addition, the PML for LHMs are mainly based on
the conventional CFS-PML and the CNAD algorithms
[18—20]. The accuracy of the LHM algorithm still needs
to be improved.

Here, based on the higher order PML scheme, the
CNDG algorithm and the CFS-NPML formulation, the
unconditionally stable CNDG higher order CFS-NPML is
proposed, denoted as CNDG-HO-NPML, in the LHM
computational domain. The frequency-dependent LHM is
simulated by the PLRC method in terms of considerable
accuracy and efficiency. A numerical example is introduc-
ed to investigate the effectiveness and efficiency. The re-
sultants indicate that the proposed scheme takes advan-
tages of the higher order PML concept, the CNDG algo-
rithm and the CFS-NPML formulation in terms of consi-
derable efficiency, simplifies implementation and outcome
absorbing performance when the time step surpasses far
beyond the CFL condition compared with the previous
works.

2. Method and formulation

In the higher order NPML regions for LHMs in 2-D
transverse magnetic (TM) case, the Maxwell’s equations
can be given as the following forms:
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where &,(w) and p,(w) are the permittivity and permea-
bility of the frequency-dependent LHM, respectively
[19,20]. In the common LHMs, the permittivity and per-
meability are assumed to be identical. For the frequency-
dependent LHM, the constitutive relationship can be ex-
pressed by the Drude model as
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where w, is the plasma frequency and v is the damping
constant [21]. Within the higher order NPML regions, the
stretched coordinate variables with the CFS factor can be
given as
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where «,, > 1is real and 0, a,, (n = 1,2) are assumed to
be positive real. By employing the partial fraction me-
thod, S ' can be given as

1 jw+ay jw+ay

-1 _

n

®)

Ky jw+ by jo + by

. . 1

where the coefficients can be given as k, = —, a,, =
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— and b,, = a,, + —. By substituting (8) into (1)—(3),
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employing the relationship jw < d/9¢ and introducing the

auxiliary variables, the equations can be rewritten as the

following forms:
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where the auxiliary variables can be given as
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where 7 is the complement of 7, for example, when cal-
culating D., n = x while 7j=y. By employing the piece-
wise linear recursive convolution (PLRC) method to
(9)—(11) and employing the CN scheme, one obtains
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and the operator denotes the CN scheme, expressed as
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By substituting (19) and (20) into (14)—(16), one ob-

tains
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By introducing the operator D,, = as.as,p;,0,0,, (24)
can be given as
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According to the CNDG scheme, ps,ps, D, D, E!" and
P3:D3yDrD E? are added at both sides of (25), the equa-
tion can be given as
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Equation (26) can be updated by two sub-split proce-
dures as follows:
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It can be observed that E. component can be updated
by calculating two tri-diagonal matrices. Once E*' is cal-
culated, the other components can be updated explicitly.

3. Numerical validation and results
demonstration

To demonstrate the efficiency and performance of the
proposed implementation, a numerical example is carried
out in the 2-D FDTD computational domain. As shown in
Fig. 1, a ridge waveguide model which is composed of
partial filled LHM and vacuum is employed during the
simulation.

y
15 [|PML PEC PML

5 LHM
20 —
30 — 30
20 . 30 30 Receiver
15 PEC Vacuum

o 150 X

Fig.1 Sketch picture of LHM ridge waveguide structure

The computational domain has dimensions of 150Axx
110Ay. Inside the waveguide structure, the ridge can be
regarded as the combination of five rectangles with the
dimensions of 30Ax X 80Ay, 30Axx70Ay, 30Axx30Ay,
30Axx70Ay and 30Ax x 80Ay. The LHM is filled inside
the rectangle with the parameters of w, =3 x 10’ rad/s
and v =9 x 107 Hz. The rest part of the structure is filled
with vacuum. At the left of waveguide structure, a plane
Gaussian pulse source which has the maximum frequency
of 30 GHz is incident along the positive side of x-direc-
tion. The distance between the source and the left bound-
ary is 10 cells. At the right bottom corner of LHM, the re-
ceiver is employed to observe the propagation waveform
and evaluate the reflection of PML regions. At the top
and bottom of the structure, the perfectly E conductor
(PEC) is employed. At the right and left of the structure,
the computational domain is terminated by 8-cell-PML.

Inside the PML regions, the parameters are chosen to
obtain the best absorbing performance both in the time
domain and the frequency domain. For comparison, the
CNDG based CFS-PML (CNDG-PML) in [20], CNAD
based HO-PML (CNAD-HO-PML) in [19], conventional
FDTD based HO-PML (FDTD-HO-PML) in [17] and
conventional FDTD based CFS-PML (FDTD-PML) in
[22] are chosen for the further demonstration of effective-
ness and efficiency. The parameters of CNDG-HO-NPML,
CNAD-HO-PML and FDTD-HO-PML are chosen as &, =
1.2, my =2, ky =260, 0y = 1.801 ops @p = 0.6, m,, =
2, kp =1land o, =0.050,, o, Where o, o can be giv-
en as

o = St ] (29)
e 150mAX

For CNDG-PML and FDTD-PML, the parameters
can be chosen as a,=1.0, m,=3, x,=280and o, =
170 opt-

To demonstrate the effectiveness of the proposed algo-
rithms and make comparison between different PML al-
gorithms, cell per wavelength (CPW) is chosen as 200.
The mesh size can be chosen as Ax=Ay=A =50 um.
The time step can be calculated by AfPT° =0.12fs,

where Aff>TP is the maximum time step which satisfies
the CFL limit in the conventional FDTD algorithm. In the
unconditionally stable algorithms, the CFL number (CFLN)

is defined as

At
CFLN= —— (30)

FDTD *
At max

To evaluate the absorbing performance in the time do-
main, the relative reflection error is employed during the
implementation which can be defined as
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where E'(t) is the test solution which can be obtained
from the receiver point directly during the simulation and
E’ (?) is the reference solution which can be obtained by
enlarging the computational domain to 1 5S00Ax x 1 100Ay
with 128-cell-PML at the boundaries without changing
the relative position between the source and the receiver.
Thus, the reflection waves can be ignored in the refer-
ence solution.

Fig. 2 shows the relative reflection error versus time
during the simulation time of 1.2 ns with different CFLNs
obtained by different PML algorithms. The maximum rela-
tive reflection error (MRRE) is considered for the further
evaluation during the simulation.
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Fig. 2 Relative reflection error versus time during the simulation
time of 1.2 ns

The MRRE obtained by FDTD-PML, CNDG-, FDTD-
HO-, CNAD-HO-PMLs CFLN=1, CNDG-HO-NPML
CFLN=1, CNDG-, CNAD-HO-PMLs CFLN=10, CNDG-
HO-NPML CFLN=10 are —50 dB, —58 dB, —85 dB,
—78 dB, —82 dB, —41 dB, —75 dB and —80 dB, respect-
ively. It can be concluded that the proposed CNDG-HO-
NPML can receive better performance during the whole
simulation duration. Compared with FDTD-PML and
CNDG-PML, the proposed scheme can improve the ab-
sorbing performance during the whole simulation and re-
duce the MRRE of the PML algorithm. Compared with
CNAD-HO-PML, it can be observed that the MRRE can
be decreased as well indicating the effectiveness of the
proposed PML scheme. The reason is that the CNDG-
FDTD algorithm can decrease the numerical dispersion
resulting in the higher accuracy and better performance
compared with the CNAD-FDTD scheme. Meanwhile, it
can be observed that the absorbing performance of the
proposed scheme is inferior compared with the FDTD-
HO-PML. The consumption memory, MRRE, CPU time
and time reduction obtained by different PML algorithms
with different CFLNs are shown in Table 1.

Table 1 Time of different algorithms

Algorithm CFLN Memory/MB CPU time/s Reduction/%
FDTD-PML 1 2.8 32.7 —
CNDG-PML 1 3.7 64.6 -97.6
CNDG-PML 10 3.7 8.1 75.2

FDTD-HO-PML 1 44 82.9 -153.5

CNAD-HO-PML 1 6.9 101.2 —209.5

CNAD-HO-PML 10 6.9 12.4 62.1
CNDG-HO-NPML 1 7.1 109.4 —234.6
CNDG-HO-NPML 10 7.1 13.1 60.0

It can be concluded that the CNAD and the CNDG al-
gorithms consume much CPU time and memory compar-
edwiththeFDTD-PMLandthe FDTD-HO-PML. Thereason
is that tri-diagonal matrices must be solved at each time
step during the simulation process resulting in such phe-
nomenon. The CPU time can be significantly reduced by
employing larger CFLNs. When CFLN=10, the CPU time
decreases by 75.2%, 62.1% and 60.0% compared with
FDTD-PML, respectively. The proposed scheme and the
CNAD-HO-PML occupy the similar resources. Further-
more, the efficiency can be enhanced.

The absorbing performance can also be evaluated by
the reflection coefficient in the frequency domain, de-
fined as

FFT{E, (1) - E/ (1)}

R (f) =201g FFT{E" (1)}

(32)
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where FFT{} is the Fourier transform. Fig. 3 shows the
reflection coefficient versus frequency with different
PML algorithms and the normalized incident pulse spec-
trum of the source.
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Fig. 3 Reflection coefficient versus frequency

It can be observed that the reflection coefficient can be
decreased by employing the HO-PMLs during the whole
interesting frequency band. Meanwhile, the reflection
coefficient decreases significantly at the low-frequency
indicating that the low-frequency propagation waves can
be absorbed by employing the proposed scheme.

4. Conclusions

By incorporating the CNDG algorithm, the HO-PML
scheme and CFS-NPML formulation, the unconditionally
stable CNDG-HO-NPML is proposed for LHM simula-
tion. Numerical example is carried out to demonstrate the

effectiveness and efficiency. Through the resultants, it
can be concluded that the proposed scheme takes advant-
ages of HO-PML, CNDG-FDTD and CFS-NPML in terms
of considerable absorbing performance and favorable
computational efficiency when the time step surpasses far
beyond the CFL limit.
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