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Abstract: An airship  model  is  made-up  of  aerostatic,  aerody-
namic,  dynamic,  and  propulsive  forces  and  torques.  Besides
others,  the  computation  of  aerodynamic  forces  and  torques  is
difficult. Usually, wind tunnel experimentation and potential flow
theory are used for their calculations. However, the limitations of
these  methods  pose  difficulties  in  their  accurate  calculation.  In
this work, an online estimation scheme based on unscented Kal-
man filter  (UKF)  is  proposed for  their  calculation.  The proposed
method introduces six auxiliary states for  the complete aerody-
namic model. UKF uses an extended model and provides an es-
timate of a complete state vector along with auxiliary states. The
proposed method uses the minimum auxiliary state variables for
the  approximation  of  the  complete  aerodynamic  model  that
makes it computationally less intensive. UKF estimation perform-
ance is evaluated by developing a nonlinear simulation environ-
ment for University of Engineering and Technology, Taxila (UETT)
airship. Estimator performance is vali�dated by performing the er-
ror  analysis  based  on  estimation  error  and  2-  uncertainty
bound. For the same problem, the extended Kalman filter (EKF)
is also implemented and its results are compared with UKF. The
simulation  results  show  that  UKF  successfully  estimates  the
forces and torques due to the aerodynamic model with small es-
timation error and the comparative analysis with EKF shows that
UKF improves the estimation re�sults and also it is more suitable
for the under-consideration problem.

Keywords: airship, unscented  Kalman  filter  (UKF),  extend  Kal-
man filter  (EKF),  state  estimation,  aerodynamic  model  estima-
tion.
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1. Introduction
The  past  few  decades  have  seen  an  emergence  of  aerial
robots for many airborne missions. Due to the enormous
applications,  it  remains  a  hot  topic  of  technological  and
scientific research.  Although  heavier  than  air,  aerial  ro-
bots have enjoyed widespread utility. However, their limi-
ted duration of  flight  and low payload capacity constrai-

nts  restrain  their  use  in  many  applications.  For  exam-
ple,  agriculture  and  environmental  monitoring  require
aerial  robots to fly with slow speed at  low altitudes,  and
providing  a  platform  for  communication  relay  necessi-
tates  the  long-duration  stay  at  high  altitudes.  For  these
sorts of  applications,  the  airship  can  be  a  potential  can-
didate due to some of its unique properties. As it can re-
main  airborne  for  a  long  duration  with  the  minimum
power  consumption  because  lighter  than  air  nature
provides  it  an  aerostatic  lift  to  stay  aloft.  It  requires  the
minimum maintenance and operational cost [1]. It can fly
at high altitudes and a hybrid airship concept can provide
heavy cargo lifting capabilities. However, it is required to
develop  the  autonomous  guidance  and  flight  controller
for the airship to achieve specific application goals.

Lots of efforts have been made for the development of
an autonomous airship platform that can be used for dif-
ferent human-planned missions [2,3]. Regardless of nota-
ble progress made in this field, much needs to be explor-
ed so that the airship can be used as an aerial robot [4] es-
pecially in the area of autonomous control.  The success-
ful design  of  an  efficient  control  system necessitates  ac-
curate model  information.  In  the  literature,  many  contri-
butions can be found, which were directed to the develop-
ment  of  different  control  models  for  airship  autonomous
navigation. In [5,6], linearized equations of motion can be
found by using a small perturbation techniques. In [7],  a
method for identifying linearized longitudinal and lateral
models  from  flight  data  was  suggested  for  which  Lotte
airship was used as  an experimental  platform. The trust-
region  reflective  least  square  approach  in  [8]  and  radial
bases  function  neural  networks  (RBFNNs)  in  [9]  were
utilized for identifying linearized longitudinal and lateral
models from flight data of University of Engineering and
Technology,  Taxila  (UETT)  airship.  Linearized  models
were utilized for flight controller design in [10]. As these
models  are  linearized  in  equilibrium flight  conditions  so
their performance can be assured only around the equilib-
rium points.
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In  [11],  a  reduced  nonlinear  control  model  was  used
for positioning control of airships. The reduced nonlinear
models are  obtained  by  making  the  modelling  assump-
tion that effects of roll rate, pitch rate, and vertical velo-
city on airship planar motion are negligible. In [12,13], an
attitude  controller  and  a  yaw  controller  were  designed
based on  reduced  attitude  and  yaw  control  models  re-
spectively.  Performance  of  the  controller  using  reduced
nonlinear control  models  degrades  under  abrupt  disturb-
ances and  if  the  made  assumptions  are  violated.  An  air-
ship full nonlinear 6-DOF model was used for controller
design  in  [14,15].  Although  considering  the  complete
model for  controller  design  increases  the  controller  per-
formance  it  necessitates  the  model  accuracy.  In  the  case
of  an  airship,  its  complete  6-DOF  nonlinear  model  is
made  up  of  dynamic,  aerostatic,  aerodynamic,  and  pro-
pulsion forces  and  torques.  Besides  others,  the  calcula-
tion of aerodynamic forces has remained an issue [16]. In
the literature,  these are calculated by using famous wind
tunnel experiments and potential flow theory.

Wind tunnel  experiments  are  conducted in large tubes
where  scaled  physical  models  of  aerial  vehicles  are
mounted at a particular location in the tunnel. The tunnel
tries  to  mimic the actual  environment  that  an air  vehicle
may  experience  while  moving  through  the  air.  Air  is
blown on the  model  with  different  angles.  In  the  model,
force and pressure measuring sensors are placed at differ-
ent  locations.  Data  for  forces  and  torques  acting  on  an
aerial vehicle due to the incident air are collected for vari-
ous sideslips,  and angle of attacks. Later,  from this data,
drag, side, and lift force coefficients and rolling, pitching
and yaw torques coefficients are estimated. These experi-
ments played an important role in the dynamic analysis of
airships in those days when comprehensive aerodynamic
models for airships were not available.  Lots of these ex-
periments were performed between 1910 to 1976. In [17,
18], data of wind tunnel tests performed between 1910 to
1920 for different British airships could be found. In [18],
the data of wind tunnel tests that were performed for air-
ships up to 1976 were covered. Other than that, many re-
ports of  the  advisory  committee  for  aeronautics  estab-
lished by the USA and the Great Britain, cover the wind
tunnel  experiments.  These  experiments  are  still  impor-
tant for the dynamic analysis of modern airships like [19]
covers  the  data  for  YEZ-2A  airship,  Lotte  [20]  and  the
TCOM-250  aerostats  [21]  .  However,  it  is  difficult  to
conduct  these  experiments  because  they  are  expensive.
Hence in  the  literature,  apart  from  wind  tunnel  experi-
ments,  aerodynamic  models  based  on  the  potential  flow
theory are also proposed.

The  initial  work  on  the  aerodynamic  model  using  the
potential flow  theory  can  be  found  in  the  report  pub-

lished by Munk in 1924 [22]. In [23], Munk’s work was
improved  by  adding  the  crossflow  drag  effects.  In  [21,
24], hull  and fin interactions were considered in aerody-
namic model equations. Based on the work of [21], Mul-
ler  in  [25],  proposed  the  comprehensive  aerodynamic
model that could calculate the 3-DOF forces and 3-DOF
torques  affecting  the  airship  motion  due  to  aerodynamic
phenomena.  However,  the  model  was  deficient  because
of ignoring the damping effects due to airship pitch, roll,
and  yaw motions.  In  [26],  Muller ’s  work  was  improved
by suggesting  the  aerodynamic  model  equations  that  in-
corporate  the  damping  terms.  The  aerodynamic  models
suggested in [25,26] depend on airship geometrical para-
meters,  for  example,  airship  length,  surface  area,  and
volume, and also on few coefficients that depend on wind
tunnel  data.  Further,  they  made  an  assumption  that  the
airship  shape  does  not  change  during  the  course  of  a
flight. However, the airship envelope may experience un-
foreseen shape changes due to its  flexible nature.  There-
fore,  the  actual  aerodynamic  forces  may  differ  from  the
forces calculated by these models.

To  avoid  the  errors  of  analytical  calculation  methods
and  conducting  expensive  wind  tunnel  experiments,  in
this paper  an  efficient  and  cost-effective  method  for  es-
timating forces  and  torques  due  to  aerodynamics  is  pro-
posed by  using  the  uncented  Kalman  filter  (UKF).  Al-
though this  problem can be solved by using fuzzy logic,
nonlinear observers, neural networks, or adaptive control
methods as given in [14,15,27,28], UKF provides an additio-
nal advantage of estimating actual aerodynamic forces and
aerodynamic torques rather than complying with them.

UKF is a nonlinear version of the Kalman filter and it
has been utilized in many potential applications. Based on
the covariance of the current state estimate, the UKF es-
timation  method  chooses  several  sample  points  around
the  current  state  estimate.  Then  these  sample  points  are
propagated  through the  nonlinear  function  to  get  a  more
accurate estimate of mean and covariance. Unlike the ex-
tended Kalman filter (EKF), UKF avoids the computation
of the state Jacobian matrix.  Airship state and parameter
estimation  using  UKF  was  reported  in  [29−31].  In  [29],
UKF  was  designed  for  airship  states  and  aerodynamic
model parameters estimation. In [30,31], airship attitudes
and linear velocities were estimated by using UKF.

To apply the Kalman filter algorithm, it is necessary to
represent  the  system  in  state-space  form.  The  unknown
parameters  of  interest  like  disturbances,  system  parame-
ters, unknown forces, or torques are accommodated as an
additional  state variable.  As the number of states increa-
ses, filter computational complexity also increases. In [29],
UKF  was  designed  for  the  estimation  of  aerodynamic
model parameters. However, the given method is compu-
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tationally  intensive  because  it  introduces  more  than  50
augmentative  state  variables.  In  the  proposed  work,  for
reducing computational  complexity,  instead  of  estimat-
ing aerodynamic  model  parameters,  a  complete  aerody-
namic  model  is  estimated  by  introducing  only  six  new
state variables.

In the proposed estimation method, UKF estimates the
airship  complete  states  vector  along  with  aerodynamic
forces  and  torques.  It  assumes  that  the  airship  position
and attitude’s estimates are available. As of now off-the-
shelf  solutions  for  estimating  aerial  vehicle  attitude  and
position are available [32, 33], this assumption is not res-
trictive.  The  method  also  assumes  that  the  aerodynamic
model  is  not  known.  As  airships  possesses  slow  dyna-
mics compared to conventional aerial vehicles, further as-
sumption  is  made  that  the  aerodynamic  forces  and
torques’  rate  of  change  is  zero.  The  proposed  contribu-
tion provides the online estimation scheme for an aerody-
namic model that  can be utilized for the development of
nonlinear  autonomous flight  controllers  for  an airship.  It
can be a cost-effective alternative to expensive wind tun-
nel experiments, and it avoids the error of analytical cal-
culation  methods.  For  the  validation  of  the  proposed
method, a nonlinear simulation environment for “UETT”
airship is developed based on the algorithm given in [26].
The airship is  provided with propeller  input,  rudder,  and
elevator deflections.

The rest of the paper is organized as follows: Section 2
explains the airship 6-DOF nonlinear model. In Section 3,
a  modified  nonlinear  model  is  presented  for  estimator
design,  the  airship  model  is  also  represented  in  a  nonli-
near  state-space  suitable  for  the  implementation  of  the
UKF algorithm and the UKF algorithm is given at the end
of this section. Section 4 covers the simulation results and
in Section 5 concluding remarks and future work are given.

2. Airship 6-DOF nonlinear model

obxbybzb

OiXiYiZi

An  airship  has  few  components:  envelope,  gondola,
airbags,  thrusters,  aerodynamic  control  surfaces  rudders,
and  elevators.  Gondola  exists  beneath  the  envelop  and
thrusters are attached to both sides as shown in Fig. 1. In
“UETT” airship  case,  variable  thrusting  is  not  available
and because of a single motor for propellers tilting, limi-
ted  vector  thrusting  is  available.  Rudders  and  elevators
are mounted  in  plus  configuration  at  the  tail  of  the  air-
ship. The envelope is filled with low-density Helium gas.
Airbags exist inside the envelope to control its buoyancy.
Two reference  frames  are  used  for  assessing  its  naviga-
tion.  A  body  reference  frame  is  attached  to  the
center of volume (CV) of an airship. The second is an in-
ertial  frame ,  which  is  located  at  any  reference
point on earth as shown in Fig. 1. 
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Fig. 1    Coordinate system of an airship
 

ζ = [x,y,z]T

ς = [ϕ,θ,ψ]T

ϕ θ ψ
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ω = [p,q,r]T

p
q r

ξ =
[
ζT,ςT]T

υ = [νT,ωT]T

Propulsion  and  aerodynamic  control  forces  act  on  an
airship in the body frame and produce body axes accelera-
tions. Then the transformation matrix is utilized to trans-
form  them  into  the  inertial  frame,  for  assessing  airship
navigation  with  respect  to  the  inertial  frame.  Let

 be the airship position with respect to the in-
ertial frame and its attitude are represented by 
where  is  the  roll  angle,  is  the pitch  angle  and  is
the yaw  angle.  is  a  vector  of  linear  veloci-
ties  with  respect  to  the airship  body  frame  where  is
the forward velocity,  is  the sway velocity  and  is  the
vertical velocity.  is a vector of angular velo-
cities with respect to the body frame, where  represents
the roll  rate,  is  the pitch  rate  and  is  the yaw  rate.

,  are the compact representation
of inertial  frame and body frame linear  and angular  mo-
tion variables.

The equations  of  motion  for  the  airship  are  the  modi-
fied form of  equations for  an underwater  vehicle,  whose
basic formulation can be found in [27].  The vector  form
of the airship model can be represented by

υ̇ = M−1(Fd +FAd +FAs+FP) (1)

υ̇ ∈ R6×1

M ∈ R6×6

Fd ∈ R6×1

FAd ∈ R6×1 FAs ∈ R6×1

Fp ∈ R6×1

R

where  is  the  vector  containing  body  axes  li-
near  and  angular  accelerations.  is  a  mass  ma-
trix,  is a  dynamic  force  vector  which  is  com-
posed  of  centripetal  and  Coriolis  forces  and  moments,

 is  an  aerodynamic  force  vector,  is
an  aerostatic  force  vector  which  is  composed  of  gravity
and  buoyancy  forces,  and  is  the  propulsion
force vector which is composed of forces and torques act-
ing  on  the  airship  due  to  propellers.  Here,  represents
the set of real numbers.

The airship mass matrix is given in

M =



mx 0 0 0 m6 0
0 my 0 m5 0 m8

0 0 mz 0 m7 0
0 m1 0 Jx 0 −Jxz

m2 0 m3 0 Jy 0
0 m4 0 −Jxz 0 Jz


. (2)

The elements of the mass matrix are defined [34] as
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

mx = m−Xu̇

my = m−Yv̇

mz = m− zẇ

m6 = maz−Xq̇

m5 = −maz−Y ṗ

m8 = max−Yṙ

m7 = −max− zq̇

m1 = −maz−Lv̇

m2 = maz−Mu̇

m3 = −max−Mẇ

m4 = max−Nv̇

Xu̇ Yv̇ Zẇ Xq̇ Y ṗ Yṙ Zq̇

Lv̇ Mu̇ Mẇ Nv̇ ax

az)

where , , , , ,  and  are the virtual  mass
terms, , ,  and  are the virtual inertia terms, ( ,

 is the  location  of  the  center  of  gravity  (CG) with  re-
spect  to  the  CV,  and m  is  the  total  mass  of  the  airship.
The  airship  mass  matrix  contains  the  added  mass  terms.
As the mass of displaced air is approximately equal to the
actual airship mass so in airship cases added mass effects
cannot be  ignored  and  they  are  incorporated  in  the  air-
ship mass matrix as a virtual mass and inertia terms.

Using the defined position, attitude, and velocities varia-
bles, the vector form of the airship kinematic model will be

ξ̇ = R (ς)υ (3)

where

R (ς) =
[ R1 (ς) 03×3

03×3 R2 (ς)

]
. (4)

03×3 ∈ R3×3

R1 (ς)

R2 (ς)

R1 (ς) R2 (ς)

s(·) t(·) se(·) c(·)

 is  a  zero  matrix  that  has  all  elements  with
zero  value.  represents  the  rotation  matrix  that
transforms  the  body  axes  linear  velocities  to  the  inertial
reference frame position derivative and  transforms
the body axes angular velocities to the inertial frame atti-
tude rates.  The expressions of  and  matrices
are  given  in  (5)  and  (6)  with  a  simplification  of  sin(·),
tan(·),  sec(·),  and  cos(·)  as , ,  and   respecti-
vely.

R1 (ς) =
[ cψcθ cψsθsϕ− sψcϕ cψsθcϕ+ sψsϕ

sψcθ sθsϕsψ+ cψcϕ sψcϕsθ − cψsϕ−sθ cθsψ cθcψ

]
(5)

R2 (ς) =

 1 sϕtθ cϕtθ
0 cϕ −sϕ
0 sϕseθ cϕseθ

 (6)

f = Fd +FAd +FAs+FP

The airship nonlinear model can be compactly represen-
ted by assuming that the body axes forces and torques act-
ing  on  the  airship  are  given  by ,
where

f = [ fu fv fw τl τm τn ]T. (7)

Then  the  airship  model  representation  in  the  form  of
nonlinear state-space compatible for estimator design can
be represented by the following equation:

[
ξ̇
υ̇

]
=

[ R (ς) 06×6

06×6 M−1

] [ υ
f

]
(8)

f
where the  elements  of  body  axes  force  and  torques  vec-
tor  will be

fu = −mzwq+myrv+m
[
ax

(
q2+ r2

)
−azrp

]
+

1
2
ρV2

0 S
[
CX1cos2αcos2βCX2

(
sin(2α) sin

α

2
+

sin (2β) sin
β

2

)
+CX3

]
− (W −B) sin θ+

(Tds+Tdp)cos µ, (9)

fv = −mxur+mz pw+m
[−ax pq−azrq

]
+

1
2
ρV2

0 S
[
CY1 sin(2β)cos

β

2
+CY2 sin(2β)+

CY3sin |β|sin β+CY4 (δRT +δRB)
]
+

(W −B)cos θsin ϕ, (10)

fw = −myvp+mxqu+m
[
−axrp+az

(
q2+ p2

)]
+

1
2
ρV2

0 S
[
Cz1 cos

α

2
sin(2α)+Cz2 sin(2α)+

Cz3sin αsin |α|+Cz4 (δEL +δER)
]
+

(W −B)cos θcos ϕ− (
Tds+Tdp

)
sin µ, (11)

τl = −
(
Jz− Jy

)
rq+ Jxz pq+maz (ur− pw)+

1
2
ρV2

0 LS
[
CL1 (δEL−δER+δRB−δRT )+CL2sin βsin |β|+

1
2
ρS (CL3r |r|+CL4 p |p|)

]
+azWcos θsin ϕ+(

Tdp−Tds
)
sin µdy+

(
Tds+Tdp

)
(dzcos µ−dxsin µ) ,

(12)

τm = − (Jx− Jz) pr+ Jxz

(
r2− p2

)
+m

[
ax (vp−qu)−

az (wq− rv)
]
+

1
2
ρV2

0 LS
[
CM1 sin(2α)cos

α

2
+

CM2sin(2α)+CM3sin |α|sin α+CM4(δEL +δER)+
1
2
ρS (CM5q |q|)

]
− (azW −bzB)sin θ−

(axW −bxB)cos θcos ϕ, (13)

τn = −
(
Jy− Jx

)
qp− Jxzqr+m

[−ax (ur− pw)
]
+

1
2
ρV2

0 LS
[
CN1 sin(2β)cos

β

2
+CN2 sin(2β)+

CN3sin |β|sin β+CN4 (δRT +δRB)+
1
2
ρS (CN5r |r|)

]
+

axWcos θsin ϕ+ (Tdp−Tds)cos µdy, (14)

α β

V0 ρ

where  represents  the  angle  of  attack,  represents  the
side  slip  angle,  represents  the  velocity  of  airship, 
represents  the  air  density, S  represents  the  airship  total
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L
d

surface area, W represents the weight of airship, B repre-
sents the buoyancy force,  represents the airship length,

 represents the airship diameter,

m̄ =
B
g
,

Īy =
m̄(L2+d2)

20
.

Drag force coefficients:

CX1 = −
[
CDh0Sh+CD f 0S f +CDg0Sg

]
,

CX2 = (K2−K1)ηK I1Sh.

Side force coefficients:
CY1 =CX2,

CY2 = −
1
2

(
∂CL

∂α

)
f

S fη f ,

CY3 = −
[
CDch J1S h+CDc f S f +CDcgS g

]
,

CY4 = −
1
2

(
∂CL

∂δ

)
f

S fη f .

Lift force coefficients:

Cz1 =Cy1Cz2 =Cy2Cz3 = −
[
CDch J1S h+CDc f S f

]
.

Rolling torque coefficients:

CL1 =

(
∂CL

∂δ

)
f

S fη f l f 3,

CL2 = −CDcgS glgz.

Pitching torque coefficients:

CM1 = − (K1−K2)ηK I3S hLCM2 = −
1
2

(
∂CL

∂α

)
f

S fη f l f 1,

CM3 = −
[
CDch J2S hL+CDc f S f l f 2

]
,

CM4 = −
1
2

(
∂CL

∂δ

)
f

S fη f l f 1.

Yawing torque coefficients:
CN j = −CM j,

where

I1 = π
b2

V2/3

(
1− f 2

)
,

I3 = π
b2

3LV2/3

(
a1−2a2 f 3−3a1 f 2

)
− xcv

L
I1,

J1 =
b

2V2/3

(
a1

π
2
+a2

√
1− f 2 f +2a2sin−1 ( f )

)
,

J2 = J1
a1− xcv

L
+

2b
3LV2/3

(a2
2−a2

1−a2
2

(
1− f 2

)3/2
,

f =
lh−a1

a2
,

xcv = a1+
3
8

(a2−a1) .

K1 K2 K’ CDh0 CD f 0 CDg0

CDch CDc f CDcg (
∂CL

∂α

)
f(

∂CL

∂δ

)
f

S h S f S g

l f 1 l f 2 l f 3 lgx lgz lh

η f ηk

, ,  are the Lamb’s inertia ratio. , ,  are
the zero-incidents, , ,  are the crossflow drag

coefficients of hull, fins and gondola respectively. 

is  a  derivative  of  fin  lift-coefficient  with  respect  to  the

angle-of-attack  at  zero  incidence.  is  a  derivative

of  fin  lift-coefficient  with  respect  to  the  flap  deflection

angle. ,  and  are  the  hull, fin and gondola  refer-
ence  areas. , , , ,  and   are  the  geometrical
parameters of hull.  is the fin efficiency factor.  is the
hull efficiency factor.

xcv

The origin of the body frame is located at the airship’s
CV. For the double-ellipsoid geometry, the CV is located
on the x-axis at the point .

3. UKF  design  for  airship  aerodynamic
forces and torques estimation

UKF is a nonlinear estimator and it has been utilized for
many applications. The UKF algorithm does the so-called
unscented  transformation  to  capture  the  propagation  of
the  statistical  properties  of  state  estimates  through  the
system nonlinear function. The algorithm first generates a
set  of  state  values  called  sigma  points.  These  sigma
points  capture the mean and covariance of the state esti-
mates. It uses each of the sigma points as an input to the
state  transition  and  measurement  functions  to  get  a  new
set of transformed state points. The mean and covariance
of the transformed points are then used to obtain state es-
timates and state estimation error covariance.

Apart from the estimation of system states, the Kalman
filter algorithm and its variants are also used for estimat-
ing the  external  disturbances,  unknown  system paramet-
ers,  and  system  faults.  The  system  is  represented  in  the
state-space form  before  applying  the  Kalman  filter  al-
gorithm or  its  variants.  Additional  state  variables  are  in-
corporated in the actual system model for estimating sys-
tem  faults,  external  disturbances,  or  system  parameters.
And the Kalman filter algorithm is applied to the new ex-
tended system representation. In such a way, it estimates
the  original  system  states  as  well  as  the  augmentative
states.  However,  it  requires  the  modeling  information  of
the augmentative states. Therefore, it is better if the equa-
tions for the augmentative states are available, but if not,
two choices can be made as given in [35]. First, if the rate
of  change  of  new  state  variables  is  very  slow  then  they
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∣∣∣ ⩽ 3×10−3
∣∣∣ḞAx

∣∣∣ ⩽ 3×10−2

FAx FAy FAz

τAl τAm τAn

can be  assumed  zero.  Second,  if  they  vary  with  a  con-
stant  amount,  then  their  rates  of  change  can  be  assumed
constant.  Since  external  disturbances  to  the  system  is  a
low-frequency  phenomenon,  it  is  usually  modeled  with
augmentative  states  having  zero  rates  of  change.  This
method  was  utilized  in  [36]  for  estimating  disturbances
on  the  twin  rotor  aerodynamic  system  (TRAS)  using
EKF. In  their  work,  they  used  two  additional  state  vari-
ables,  one  for  estimating  disturbances  acting  on  TRAS
longitudinal  dynamics  and  the  other  one  on  its  la-
teral dynamics. In [29], the author utilized UKF and EKF
for the estimation of over 50 airship aerodynamic model
parameters. They augmented the system with 50 additio-
nal  state  variables  which  increased  their  computational
burden.  The  proposed  work  is  inspired  by  [29,36]  and
suggests  an  improved method that  is  based on an online
estimation scheme utilizing the UKF algorithm for estimat-
ing the airship aerodynamic model  in  the form of  forces
and torques. It incorporates only six additional state vari-
ables,  in  which  three  are  used  for  estimating  the  airship
drag,  side  and  lift  forces,  and  the  other  three  esti-
mate roll, pitch and yaw moments. The method makes an
assumption  that  the  airship  aerodynamic  model  is  not
available and also the rate of change of augmented states
is  zero  because  as  compared to  conventional  drones,  the
airship has  slow  dynamics  and  the  variation  of  aerody-
namic forces acting on it is slow while it cruises through
the  air.  For  example,  the  rate  of  change  of  drag  for-
ce  acting  on  “UETT ”  airship  and  “YEZ-2A ”  airship  is

 and  respectively. The pro-
posed UKF,  online  estimated,  aerodynamic  model  infor-
mation can be used to enhance the performance of model-
based  nonlinear  controllers  for  airship  automatic  flight.
Equation (15)  states  the  proposed  augmented  state  vari-
ables in which , ,  represent drag, side, and lift-
ing  aerodynamic  forces  and , ,  represent
rolling, pitching, and yaw aerodynamic torques.

XAd =
[

FAx FAy FAz τAl τAm τAn
]T (15)

The rate of the aerodynamic force vector is given in

ẊAd = 0. (16)

The above introduced variables are incorporated in the
airship  model  given  in  (1)  and  the  extended  model  that
can be used for UKF implementation is given by[

V̇b
ẊAd

]
=

[
M−1(Fd +XAd +FAs+FP)

06×1

]
. (17)

fe = Fd +XAd +FAs+FP fe =
[
feu fev few τel τem

τen]T fe

Let , 
, then the modified body axes force vector  can be

written down as

fe1 = −mzwq+myrv+m
[
ax

(
q2+ r2

)
−azrp

]
+FAx−

(W −B) sin θ+
(
Tds+Tdp

)
cos µ, (18)

fe2 = −mxur+mz pw+m
[−ax pq−azrq

]
+FAy+

(W −Bcos θsin ϕ), (19)

fe3 = −myvp+mxqu+m
[
−axrp+az

(
q2+ p2

)]
+FAz+

(W −B)cos θcos ϕ− (
Tds+Tdp

)
sin µ, (20)

fe4 = −
(
Jz− Jy

)
rq+ Jxz pq+maz (ur− pw)+τAl+

azWcos θsin ϕ+
(
Tdp−Tds

)
sin µdy+(

Tds+Tdp
)
(dzcos µ−dxsin µ) , (21)

fe5 = − (Jx− Jz) pr+ Jxz

(
r2− p2

)
+m[ax (vp−qu)−

az (wq− rv)]+τAm− (azW −bzB)sin θ−
(axW −bxB)cos θcos ϕ, (22)

fe6 = −
(
Jy− Jx

)
qp− Jxzqr+m

[−ax (ur− pw)
]
+

τAn+axWcos θsin ϕ+
(
Tdp−Tds

) · cos µdy. (23)

The  modified  nonlinear  state-space  form,  augmented
with  additional  state  variables,  in  the  compact  vector
form is given in ξ̇

υ̇

ẊAd

 =
 R (ς) 06×6

06×6

06×6

M−1

06×6


 υ

fe

06×1

 . (24)

The new extended airship state vector is given by

X = [ ζ ς ν ω XAd ]T. (25)

For estimator  design,  availability  of  position  and  atti-
tude  estimates  is  considered,  so  the  UKF  algorithm  uti-
lizes the measurement vector given in (26) for the calcu-
lation of estimation error. The estimation error is used for
the correction of estimated states.

Y = CX = [I6×6 06×12] X (26)

[I6×6 06×12] I6×6 Ywhere C= ,  is an identity matrix,  is the
measurement vector. Equation (24) represents the airship
modified  nonlinear  model  in  the  continuous  time  state-
space form for estimator design. Its compact vector form
is given by

Ẋ = f (X,u) . (27)

For the discrete-time implementation of the algorithm,
first-order  Euler  integration  is  performed  of  the  sys-
tem (27). Further, it is extended with the incorporation of
process  and  measurement  noise.  The  resulted  system  is
given by

Xk+1 = IXk +Ts f (Xk,uk)+wp, (28)
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Yk = CXk +wm, (29)

I Xk

k Ts

uk

wp wm

where  is  the identity matrix,  is  the airship discrete-
time state vector at  sampling instant ,  represents the
system sampling time,  represents the system input vec-
tor  and  in  the  airship  case  it  consists  of  propeller  input,
rudder,  and  elevator  deflections.  The  process  and  mea-
surement noises are incorporated as  and  vectors re-
spectively.  They  are  Gaussian  white  noise  vectors  with
zero mean.

Q
R

Pk

The UKF algorithm consists of two main steps: predic-
tion  and  correction.  In  the  prediction  step,  the  system
model is  used for the prediction of the system state vec-
tor for the next sampling time, and in the correction step,
the predicted states are corrected using Kalman gain and
estimation  error.  The  process  noise  covariance  matrix  is
represented  by  and  the  measurement  noise  covariance
matrix  is  represented  by .  They  are  diagonal  matrixes
and they are used as the tuning parameters. In the airship
state  estimation  case,  many  iterations  are  used  to  tune
them.  The  airship  state  error  covariance  matrix  is  given
by . The UKF algorithm at each sampling time is sum-
marized as follows.

(i) Prediction
χ j

k ki) Choose the sigma points  at time step .

χ̂(0)
k = X̂k (30)

χ̂ j
k = X̂k +∆X( j), j = 1, · · · ,2N (31)

∆X( j)
=

( √
N Pk

)
j
, j = 1, · · · ,N (32)

∆X(N+ j)
= −

( √
N Pk

)
j
, j = 1, · · · ,N (33)

ii) Use the nonlinear system modelling equation for the
calculation of predicted states for each sigma point.

X̂ j
k+1 = f (χ̂ j

k,uk) (34)

k+1
iii) Combine  the  predicted  states  to  obtain  the  pre-

dicted states at time .

X̂k+1 =

2N∑
j=0

W j
N X̂ j

k (35)

W j
N =

1
2N

, j = 1,2, · · · ,2N (36)

Qk

iv) Compute the covariance of the predicted state. Add
 to account for the additive process noise.

Pk+1 =

2N∑
j=0

W j
c

(
χ̂( j)

k−1− X̂k

)T(
χ̂( j)

k − X̂k

)T
+Qk (37)

W j
c =

1
2N

, j = 1,2, · · · ,2N (38)

(ii) Correction
N

k
i) Select sigma points for  number of states and have

 as sampling instant.

χ̂(0)
k = X̂k−1 (39)

χ̂ j
k = X̂k−1+∆X( j), j = 1, · · · ,2N (40)

∆X( j)
=

( √
N Pk−1

)
j
, j = 1, · · · ,N (41)

∆X(N+ j)
= −

( √
N Pk−1

)
j
, j = 1, · · · ,N (42)

ii) Use the nonlinear measurement function for the cal-
culation of predicted measurements.

Ŷ j
k = h(χ̂( j)

k−1,uk), i = 0,1, · · · ,2N (43)

k

iii)  In  this  step,  predicted  measurements  at  previous
time  instants  are  combined  and  predicted  measurements
for time instant  are obtained.

Ŷk =

2N∑
j=0

W j
NŶ j

k−1 (44)

Rk

iv) Estimate the covariance of predicted measurements,
where  accounts for additive measurement noise.

Py =

2N∑
j=0

W j
c

(
Ŷ( j)

k−1− Ŷk

)T(
Ŷ( j)

k−1− Ŷk

)T
+Rk (45)

X̂k Ŷkv) Estimate the cross-covariance between  and .

Pxy =
1

2N

2N∑
j=0

(
χ̂( j)

k−1− X̂k−1

) (
Ŷ( j)

k−1− Ŷk

)T
(46)

j = 1 X̂0
k−1−

X̂k−1 = 0
The  summation  starts  from  because  

.
vi)  Obtain  the  estimated  state  and  the  state  estimation

error covariance at time step k.

Kk = Pxy P−1
y , (47)

X̂k = X̂k−1+Kk(Yk − Ŷk), (48)

Pk = Pk−1−Kk PyKT
k , (49)

Kk kwhere  is the Kalman gain at sampling instant .
Pk−1 ∈ R18×18In  (41)  and  (42),  represents the  state  es-

timation error covariance matrix at the previous time step.
It is a symmetric positive definite matrix. Its initial value
is carefully selected because a large value can cause over-
shoot in the transient response and it may diverge the fil-
ter and a small value slows down the filter convergence.
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Q ∈ R18×18

K ∈ R18×1

In the current case, many iterations are performed to tune
it. In the correction and prediction steps, it is updated by
using Kalman filter gain and state covariance, and using a
previous  value  of  the  state  estimation  error  covariance
matrix as given in (37) and (49) of correction and predic-
tion  steps  respectively.  in  (37)  represents  the
process noise covariance matrix.  It  is  treated as  a  tuning
parameter  for  the  filter.  It  has  18  diagonal  entries  in
which  the  first  12  which  represent  the  position,  attitude,
linear  and  angular  velocities  have  modelling  equation
available  and  the  last  six  which  represent  aerodynamic
forces and  torques  have  no  modelling  equations.  There-
fore,  magnitudes  of  its  first  12  diagonal  entries  are  kept
small  and  the  last  six  entries  are  tuned  accordingly.

 in  (47)  is  Kalman  gain.  Cross-covariance  of
predicted states  is  used to  calculate  it.  Kalman gain  cor-
rects  the  predicted  states  according  to  the  measurement
error.

4. Simulation results
For the evaluation of UKF performance, a simulation en-
vironment is developed for the “UETT” experimental air-
ship  based  on  Matlab/Simulink.  The  “UETT ”  airship
project was started in 2013 at the University of Engineer-
ing and Technology, Taxila, Pakistan. The project aims to
develop an autonomous navigation control system for air-
ships  so  that  the  airship  can  be  utilized  for  monitoring
tasks. Equations (1)−(14) are implemented with the para-
meters  provided  in Table  1.  The  “UETT”  airship  is  fed
with  propeller  input,  elevator,  and  rudder  deflections  in
specific time intervals. Initially, it is assumed that the air-
ship is hovering at 100 m altitude under the neutral buo-
yancy condition.  Further,  it  is  assumed that  weather  and
temperature remain constant.

After 3 s, the thruster input is applied to the airship and
it starts moving with forward velocity as shown in Fig. 2 (a).
Thruster force  changes  airship  hover  condition  and  ini-
tially it executes oscillatory motion about y-axes that can
be observed from Fig. 2 (d) and Fig. 2 (e) where changes
can  be  observed  in  pitch  rate  and  vertical  velocity.  The
oscillatory motion exists because unlike conventional air-
planes,  an  airship  is  lighter  than  air  as  compared  to  its
large  volume,  and  also  its  thrusters  are  mounted  on  the
front side of the gondola slightly forward to CV and CG
points.  However,  the  oscillations  decay out  after  30 s  of
flight  when  the  airship  achieves  its  steady-state  forward
velocity. In  steady-state,  without  the  application  of  rud-
ders  and  elevators  inputs,  the  airship  moves  forward  in
body axes x-direction having slightly nose up configura-
tion. During this motion, the airship experiences aerody-
namic “drag force” as shown in Fig. 3 (a). From the plots,

it  can  be  observed  that  as  the  airship  velocity  increases,
the  drag  force  also  increases  and  when  an  airship
achieves  its  steady-state  velocity,  then  the  drag  force
takes a constant value of −4 N.
 
 

Table 1    Parameters of the airship under consideration

Parameter Symbol Value

Length L/m 9

Diameter D/m 2.2

Volume of hull V/m3 25

Mass m/kg 24.073

Moment of inertia about x-axis Ix/kg·m2 2.842

Moment of inertia about y-axis Iy/kg·m2 26.769

Moment of inertia about z-axis Iz /kg·m2 26.769

Product of inertia Ixz /kg·m2 0.001 166

Maximum radius b/m 1.1

x-distance from nose to CV a1/m 3.9

x-distance from CV to tail a2/m 5.1
Distance of CV from airship

nose on x-axis
xcv/m 4.34

Length of the hull up to the leading
edge of the fins lh/m 6.43

x-distance from origin to aerodynamic
center of fins

lf1/m 2.41

z-distance from origin to aerodynamic
center of fins

lf3/m 1.04

x-distance from origin to geometric
center of fins

lf2/m 2.62

Fin reference area Sf /m
2 9

Gondola reference area Sg /m
2 1
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Fig. 2    Airship states estimation
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Fig. 3      Airship  aerodynamic  forces  and  aerodynamic  torques  es-
timation
 

Before the pitch rate settles down to zero, the elevator
input is applied after 20 s of flight. Elevator deflection in-
troduces longitudinal  motion.  Airship  longitudinal  mo-
tion can be observed by changes that occur in vertical ve-
locity and pitch rate as shown in Fig. 2 (e) and Fig. 2 (d).
From Fig.  2  (e) it  can  be  seen  that  the  elevator  input
changes  the  vertical  velocity  from  its  initial  value  to
0.4  m/s  and  after  40  s  when  the  input  is  removed,  it
slowly goes down to zero. The vertical motion of the air-
ship  is  actually  a  consequence  of  lifting  aerodynamic
force  and  aerodynamic  pitching  moment  as  shown  in
Fig.  3  (e) and  Fig.  3  (d). From  the  plots,  it  can  be  ob-
served  that  the  elevator  input  produces  aerodynamic  lift
force and pitching moment. They gain the value of −10 N
and −60  N·m  respectively;  however,  the  removal  of  in-
put causes their values to become zero.

After  60  s  of  flight,  the  rudder  input  is  applied  and  it
changes sway velocity, roll rate, and yaw rate as shown in
Fig. 2. Fig. 2 (c) shows that the application of rudder de-
flection causes sway velocity to gain −0.3 m/s of velocity
and  becomes  zero  after  the  removal  of  input.  From
Fig. 2 (f) change of yaw rate can be observed and the in-
put  also  causes  roll  rate  to  change its  value  as  shown in
Fig.  2  (b).  This  is  because  air  vehicles  tilt  with  some
angle  while  turning  due  to  rolling  aerodynamic  torques
that act because of rudder deflection. And on the removal
of rudder deflection the airship again takes its initial atti-
tude.  The  aerodynamic  side  force  and  yaw  moment  can
be seen in Fig. 3 (c) and Fig. 3 (f) that acts on the airship
during its turning. Airship tilt is due to the rolling aerody-
namic moment as shown in Fig. 3 (b).

σ

σ

Airship  states  and  aerodynamic  forces  and  torques
plots given in Fig. 2 and Fig. 3 also show the UKF estima-
tions. Airship body axes linear and angular velocities can
be  seen  in Fig.  2.  UKF  estimated  airship  aerodyna-
mic forces and aerodynamic torques are shown in Fig. 3.
From the plots, one can conclude that the estimation per-
formance  of  UKF  for  airship  actual  states  and  for  auxi-
liary  states  is  good.  But  how  much  good  that  perfor-
mance is? It is quantified by doing some sort of error ana-
lysis.  In order  to get  the confidence on estimator  perfor-
mance, estimation  error,  error  covariance,  and  mean  er-
ror  are  calculated.  Also,  the  2-  uncertainty  bounds
(UBs)  of  error  variance  are  calculated  for  UKF  esti-
mated  states.  The  estimation  error  should  be  of  small
magnitude, it should have zero mean and it should be un-
correlated except at  zero lag. Additionally,  for 2-  UBs,
the statistical 68–95–99.7 rule says that 95% of the data
should lie within two standard deviations about the mean
value. The mean error is calculated by using the formula gi-
ven as

Me =
1
N

i=t∑
i=0

(True value(i)−Estimated value(i )) (50)

Me Mewhere  is  the  mean  estimation  error  value.  for  all
estimated states are calculated and given in Table 2. From
the table data, it can be observed that the estimation error
follows the specified judgment criteria.

 
 

Table 2    Mean estimation error of EKF and UKF for state estimation

State
Mean estimation error

EKF UKF

u 0.013 6 0.012 8

v −2.278 0×10−5 −2.521 0×10−5

w 0.001 7 0.001 4

P 0.003 6 0.003 5

q 0.004 5 0.004 1

r 6.707 0×10−5 6.208 0×10−5

FAx
−0.112 3 −0.034

FAy 0.009 2 −0.004 0
FAz −0.005 5 0.002 2
τAl −0.002 0 0.001 2
τAm −0.250 1 −0.064 5
τAn 0.013 0 0.015 3

 

The following formula  is  used  for  finding  the  percen-
tage of data exceeding the uncertainty bounds:

DFB =
∣∣∣∣ei−

√
Pi

∣∣∣∣ , (51)
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Exceed =
number of nonzero elements in DFB

total number of elements in ei vector
×100%,

(52)

DFB

ei

ith Pi

ith

where  is  the  vector  containing  the  distance  of  error
exceeding the UBs,  is the vector containing the estima-
tion error of the  state and  is the vector comprising
of  error  covariance  of  the  state at  each  sampling  in-
stant.  For  the  present  case,  the  above-mentioned  error
analysis  is  performed  for  each  state  as  shown  in Fig.  4
and Fig. 5.
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Using  (51)  and  (52),  percentages  of  errors  exceeding
the  prescribed  bounds  are  calculated  and  in  the  case  of
UKF ’s  estimation, Fig.  4 shows  that  for  estimating  the

forward  velocity,  vertical  velocity,  and  pitch  rate,  about
3%, 5%, and 4% of the error are exceeding the specified
bounds but for other states, 100% of error stays within the
UBs. In Fig. 5, for estimating side force, lift force, pitch-
ing  moment,  and  yaw  moment,  1.64%,  3.28%,  4.97%,
and  5% of  estimation  error  are  exceeding  the  bounds.
These  observations  show  that  for  actual  and  augmenta-
tive states, the UKF estimator fulfills the minimum error
criteria.

σ

For  comparative  study,  EKF  is  also  implemented  for
the same problem and its results are compared with UKF.
From the results,  it  can be seen that for linear and angu-
lar velocities estimation, both filter’s performances are the
same  but  for  aerodynamic  forces  and  aerodynamic  tor-
ques, estimation error for EKF is more than that for UKF
which can be seen from Table 2. It shows that UKF per-
forms  better  than  EKF.  From  2-  UBs  perspective,  for
estimating  side  force,  lift  force,  pitching  moment,  and
yawing moment using EKF, about 9.8%, 8.4%, 5.4%, and
8.5% respectively,  of  the  estimation  error  are  exceeding
the  prescribed  bounds  and  it  slightly  violates  the  mini-
mum error  criteria.  From this  analysis,  we  can  conclude
that for the present case, UKF performs superior to EKF.

In  order  to  check  the  computational  overhead  of  both
algorithms, few test  scenarios are used in which running
times  for  each  algorithm  is  recorded.  The  simulation  is
performed  on  core  i5  having  2.3  GHz  speed  on  Matlab
2019a  software.  According  to  the  observations,  on  ave-
rage the EKF algorithm takes 130.78 m per estimate and
the  UKF  algorithm  takes  586.27  m  per  estimate.  The
computational intensiveness of the UKF algorithm is ob-
vious because it has to handle all sigma points and it per-
forms  15  Runge-Kutta  integrations  to  propagate  the
sigma points. If Julier and Uhlmann’s method is used for
reducing the number of sigma points [37], it will require
eight Runge-Kutta  integrations,  however,  the  EKF  al-
gorithm needs only one integration to complete the com-
putation. In the airship case,  12 are the actual  state vari-
ables  and  six  are  the  augmented  ones,  so  a  total  of  18
states require the computation of a large Jacobian matrix
[38].  If  the  numerical  computation  method  for  calculat-
ing  the  Jacobean  matrix  is  used,  then  EKF  will  require
more computational time. Also, the analytical calculation
of  the  Jacobian  matrix  is  cumbersome  but  reduces  the
computational  overhead.  However,  in  the  case  of  UKF,
the computation of the Jacobian matrix is not required.

From  the  above  discussion,  we  can  conclude  that  for
airship  states,  aerodynamic  forces,  and  aerodynamic
torques estimation, UKF algorithm performance is better
than EKF but with the cost of computational overburden.
As  the  airship  is  a  slow-moving  platform  and  has  slow
dynamics  owing  to  its  large  size,  in  our  case  we  can
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prefer  UKF over  EKF estimation as  the  former  provides
more accuracy.

5. Conclusions

u,v,w p,q,r
FAx,FAy,FAz

τAl, τAm, τAn

σ

In  this  paper,  airship  body  axes  state  that  consists  of  its
linear velocities ( ), angular velocities ( ), aero-
dynamic  forces  ( ),  and  aerodynamic  torques
( )  are  successfully  estimated  using  UKF.  The
estimator assumes that airship position and attitude estima-
tions are available. Estimator performance is validated in
a nonlinear open-loop simulation environment developed
for  “UETT ”  airship,  where  the  airship  is  provided  with
thruster, rudder, and elevator inputs. For estimator design,
the  airship  nonlinear  6-DOF  model  is  modified  and  six
auxiliary  state  variables  are  introduced.  In  the  modified
model,  it  is  assumed  that  expressions  for  the  aerodyna-
mic  model  are  not  available  and  newly  introduced  state
variables capture their effect. Based on this new formula-
tion,  UKF is designed.  In order to get  the confidence on
estimates,  estimation  error  and  2-  uncertainty  bounds
are  calculated  which  shows  that  the  estimator  performs
reasonably well. EKF is also implemented under the same
scenario  and  its  results  are  compared  with  UKF.  The
comparison  shows  that  UKF  slightly  outperforms  the
EKF. These  estimates  can  be  utilized  for  the  develop-
ment of the nonlinear autonomous flight controller for an
airship.  Although  the  robust  controller  deals  with  model
uncertainties,  however,  their  performance  can  be  increa-
sed if that information is provided to them online. In the
future work,  a  nonlinear  flight  controller  will  be  de-
signed for airship autonomous navigation and the control-
ler will be provided with UKF estimated states and model
information.
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