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Abstract: In the process of the terminal guidance of a kinetic kill
vehicle (KKV), it is very important to accurately estimate the line-
of-sight (LOS) rate via the measurements of a target seeker on-
board  the  KKV.  The  strong  impact  interference  caused  by  the
large  lateral  thrust  produced  by  the  thrusters  on  the  KKV  is  a
main factor that affects the measurements on the LOS angle. A
method to estimate the impact interference and the LOS rate to-
gether via a Kalman filter is proposed to improve the estimation
precision of  the  LOS  rate.  The  observability  of  the  system  de-
scribing the missile-target relative motion model and the impact
interference model  is  proved,  and  then  a  Kalman  filter  is  de-
signed. In the Kalman filter design, the continuous-discrete and
two-stage  filtering  techniques  are  used  because  the  system
model  is  time-variant  and  high-order.  Numerical  simulation  re-
sults  show that  by  estimating  the  impact  interference,  the  esti-
mation precision of  the  LOS rate  is  increased,  and so the  miss
distance of  the KKV under the strong impact  interference is  re-
duced. The proposed continuous-discrete two-stage Kalman fil-
ter  shows  higher  estimation  precision  and  lower  computational
cost than the naive discrete augmented state Kalman filter.
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system,  observability,  continuous-discrete  Kalman  filter,  two-
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1. Introduction
To  intercept  a  target  precisely,  during  the  terminal  gui-
dance  phase  of  a  kinetic  kill  vehicle  (KKV),  the  target-
missile  line-of-sight  (LOS)  rate  must  be  accurately  esti-
mated.  This  is  essential  to  any  terminal  guidance  law.
How to  precisely  estimate  the  value  of  LOS rate  from a
target seeker’s measurements is a very important topic. A
strapdown  seeker  is  commonly  applied  in  the  guidance
system of the KKV. It is mounted on the missile body ri-
gidly,  providing  some  advantages  [1],  such  as  compact

structure, low cost and so on. On the other hand, the LOS
angles  cannot  be  measured  directly.  The  output  of  the
seeker is the body LOS angle, which is coupled with the
body attitude  motion.  The  coupling  increases  the  diffi-
culty  in  LOS  rate  estimation,  making  it  a  key  issue  for
strapdown  guidance  applications.  In  such  a  strapdown
seeker system, the LOS angles are usually calculated out
by utilizing the missile body’s attitude information acqui-
red from the inertial measurement unit (IMU).

The estimation of LOS rate for strapdown seekers has
been  studied  in  recent  years.  Main  methods  are  additive
rate  compensation  [2]  and  variants  of  Kalman  filters  [3-
8]. In the additive rate compensation method, attitude in-
formation  from  the  IMU  is  introduced  into  the  tracking
loop to cancel out the influence of the body attitude.  Du
et  al.  [2]  introduced  an  integrated  compensation  method
that consists of the additive rate compensation method for
body disturbance, the cross-decoupling method for rolling
movement, and the angle-compensation method for track-
ing loop dynamic lag to calculate  the real  LOS rate  of  a
rolling interceptor. In the Kalman filter method, a model
including body attitude and real  LOS rate  is  established,
from which the LOS rate is estimated via nonlinear Kal-
man  filter  algorithms.  Waldmann  [3]  described  the  mo-
deling of  an  imaging  seeker  and  used  the  extended  Kal-
man filter (EKF) to estimate the LOS rate. Kranthi et al.
[4] gave  an  introduction  on  the  models  used  in  the  ter-
minal  guidance  phase  and  showed  the  fast  convergence
and robustness of EKF. Zhang et al. [5] and Sun et al. [6] esti-
mated the  inertial  LOS rate  using the  unscented Kalman
filter  (UKF)  method,  which  avoids  calculating  Jacobian
matrices in EKF. Wang et  al.  [7]  proposed an extraction
method based on the nonlinear tracking differentiator and
UKF.  Zhang  et  al.  [8] used  the  particle  filter  (PF)  al-
gorithm which suffers from the high computational load.
Wei  et  al.  [9]  used  fifth-degree  cubature  Kalman  filter
(CKF) with an augmented-dimensional model to increase
the  estimation  precision.  However,  in  these  articles  the
impact interference effects on the estimation of LOS rate

 
Manuscript received May 09, 2019.
*Corresponding author.
This work was supported by the National Natural Science Foundation

of China (61773142).
 

Journal of Systems Engineering and Electronics

Vol. 31, No. 6, December 2020, pp.1262 – 1273



have not been considered.
To  intercept  a  target  in  the  exo-atmosphere,  the  KKV

switches on  and  off  its  pulse  thrusters  to  output  the  de-
sired lateral  thrust.  In  practice,  the  pulse  thrusts  produce
large  impact  interference  effects  on  the  elastic  missile
body, resulting in a worse measurement environment for
the strapdown seeker. The IMU, which is mounted on the
missile  body,  also  suffers  from  the  interference.  The
flight  test  of  FTG06a occurred  in  December  2010 failed
because  of  excessive  vibration  in  the  IMU  [10]. There-
fore, the  impact  interference  seriously  influences  the  es-
timation of LOS rate. However, up to now, there has been
few researches about the estimation of LOS rate under the
impact interference effects.

A  fundamental  question  that  arises  when  filters  are
utilized to estimate the state of a system is how to choose
a  model  and  measurement  function  that  faithfully  cap-
tures the  system dynamics  and  guarantees  there  is  suffi-
cient  information  contained  in  the  measurement  to  ade-
quately  reconstruct  the  full  system  dynamics  [11]. Ob-
servability  is  an  important  property  of  a  system  which
measures this.  Lack  of  observability  means  that  no  in-
formation  can  be  obtained  through  the  observation.  The
filter estimate will not converge to a meaning solution or
even diverge [12]. However, the observability of the LOS
rate has not been discussed in the above references.

The Kalman filter  is  originally published as a  discrete
algorithm.  In  practice,  time  is  naturally  continuous  but
not discrete, and the discretization of state dynamics may
be intractable,  so  the  continuous-time  version  is  pub-
lished later, which is also known as the Kalman-Bucy fil-
ter.  In  engineering,  the  sensor  measurements  are  usually
obtained  at  discrete  time  instances.  For  these  reasons,  a
more  realistic  approach  than  discrete-time  filtering  and
continuous-time  filtering  is  continuous-discrete  filtering.
In  continuous-discrete  filtering  the  state  dynamics  are
modeled as continuous-time stochastic processes, and the
measurements  are  obtained  at  discrete  time  distances.  It
avoids  the  discretization  of  state  dynamics  and  fits  the
working condition of sensors.

Nonlinear variants of Kalman filters have also been ex-
tended  to  corresponding  continuous-discrete  versions.
Kulikov et  al.  [13]  proposed an accurate  continuous-dis-
crete  EKF  with  global  error  control.  This  algorithm  is
more flexible and robust.  Sarkka [14] considered the ap-
plication of UKF to continuous-discrete filtering problems.
Knudsen  et  al.  [15]  gave  a  novel  continuous-discrete
UKF  algorithm  simpler  than  before.  Kulikov  et  al.  [16]
advanced the idea of accurate Gaussian filtering and gave
a  square-root  implementation  of  continuous-discrete
UKF. Arasaratnam et al. [17] extended the standard CKF,
and Santos-Diaz et al. [18] extended the high-degree CKF

to  continuous-discrete  filtering.  Wang  et  al.  [19] intro-
duced a  stochastic  feedback  scheme  to  fix  the  unpre-
dicted approximation  error  issue  in  many  filtering  prob-
lems.  He  et  al.  [20]  proposed  the  covariance  feedback
framework  integrated  with  the  continuous-discrete  CKF
for  the  bearing-only tracking system.  Kulikov et  al.  [21]
presented a mixed-type algorithm, which unifies the fea-
tures  of  the  accurate  continuous-discrete  EKF and UKF.
Then, they gave a square-root version [22] to fix the nu-
merical issue. Wang et al. [23] extended the accurate idea
to  the  optimal  smoothing  problem.  However,  nonlinear
models and algorithms are complicated and computation-
ally expensive, and so they do not suit real-time applica-
tions such  as  the  guidance  process  of  KKV.  Lineariza-
tion models and algorithms are preferred in practice.

To estimate the error (or bias) in sensor measurements
in Kalman filtering, the intuitive method is to treat the er-
ror as part of the system state and then estimate the error
as  well  as  the  system  state.  This  leads  to  an  augmented
state Kalman filter (ASKF) whose implementation can be
computationally  intensive.  Friedland  [24]  proposed  to
employ a two-stage Kalman filter (TSKF) to decouple the
augmented  filter  into  two  parallel  reduced-order  filters.
While Friedland’s decomposition assumed a constant bi-
as, it is not equivalent to the augmented filter with a dy-
namical  or  random error.  Hsieh and Chen [25]  modified
the  decoupled  filters  to  fix  this  issue,  and  then  genera-
lized the two-stage decoupling technique for general line-
ar  filtering [26].  This  technique has also been applied in
nonlinear Kalman filters such as EKF [27] and UKF [28].
It  is  adopted  in  practical  applications  such as  fault  diag-
nosis [29,30] and sensor registration [31].

This paper is  thus motivated to fill  the blanks and ap-
ply  the  techniques  listed  above.  In  this  paper,  we  try  to
design a filter  to estimate the impact  interference effects
to improve the extraction accuracy of the LOS rate. In the
design of the filter, we apply continuous-discrete and two-
stage  filtering  techniques  for  the  special  structure  of  the
system  model.  The  contributions  of  this  paper  can  be
summarized as follows:

(i)  The  observability  of  the  impact  interference  is
proved rigorously.

(ii) A Kalman filter is designed to estimate the impact
interference effects instead of ignoring them. Through the
filter we can  compensate  the  influence  of  the  impact  in-
terference effect on the LOS rate.

(iii)  To  tackle  the  time-variant  and  high-order  system
model,  the  continuous-discrete  and  two-stage  filtering
techniques have been exploited in the design of the filter.

The remainder of this paper is organized as follows. In
Section 2, the dynamics of the impact interference of the
pulse  thruster  is  modeled  as  a  higher  order  linear  term
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and  is  integrated  with  the  target-missile  relative  motion
dynamics to formulate the augmented state system model.
Section 3 gives the proof of the observability of the sys-
tem. In Section 4, the effect of impact interference is in-
troduced into the Kalman filtering model, after which the
continuous-discrete and two-stage filtering techniques are
applied. In Section 5, numerical simulations show that by
the  method  of  estimating  the  impact  interference,  the
LOS rate can be more accurately estimated. By using the
filter proposed in this paper, the estimation precision can
be further improved without too much computational cost
increase.

2. Problem formulation

O
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Ox Ox
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Ox Oy Oz

During  the  terminal  guidance  phase,  it  is  convenient  to
choose  the  initial  LOS  frame  as  an  inertial  frame.  This
frame is defined as follows. When the terminal guidance
phase begins, we select the mass center of the missile as
the origin , the direction pointing to the target along the
LOS  as  the  axis ,  the  direction  which  is  upward  and
perpendicular to  in the plumb plane containing  as
the axis , and the direction forming a right-handed sys-
tem with  and  as the axis .

The  relative  motion  between  a  missile  and  a  target  in
the 2D plane is shown in Fig. 1.
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Fig.  1      Relative  motion  between missile  and target  in  two-dimen-
sional plane
 

The equation of the relative motion along and perpen-
dicular to the LOS is given by{ ṙ = Vt cos(q−φt)−Vm cos(q−φm)

rq̇ = −Vt sin(q−φt)+Vm sin(q−φm) (1)

q q̇ r
ṙ

Vm Vt

φm φt

where  is the LOS angle;  is the LOS rate;  is the rela-
tive range from the target to the missile;  is the relative
velocity, which is usually regarded as a constant in theore-
tical analysis;  and  are the missile’s velocity and the
target’s velocity, respectively;  and  are the missile’s
flight path  angle  and  the  target ’s  flight  path  angle,  re-
spectively.  By  differentiating  the  both  sides  of  (1)  with
respect to time, one can get

q̈ = −2ṙ
r

q̇− 1
r

am+
1
r

at (2)

am atwhere  and  are the missile’s acceleration and target’s
acceleration respectively.

x1 = q x2 = q̇
u1 = am−at

Choose the state variables as ,  and the con-
trol input as . The differential equation (2) can
be written into the following state space form: ẋ1 = x2

ẋ2 = −
2ṙ
r

x2−
1
r

u1
, (3)

or in the matrix form:
ẋ1 = A1(t)x1+B1u1 (4)

where

x1 =

[ x1

x2

]
, A1(t) =

 0 1

0 −2ṙ
r

 ,B1(t) =

 0

−1
r

 . (5)

In common  case,  the  decoupled  LOS  angle  measure-
ment is regarded as the input of the filter whose dynami-
cal model is (3), to get the estimate of the LOS rate which
is then utilized by the guidance law.

u2

e

However,  because  of  the  impact  interference  of  the
pulse thrusters, the seeker and the IMU will vibrate along
with  the  missile  body.  The attitude of  the  elastic  missile
can be approximated as the sum of the rigid body attitude
and  the  additive  attitude  error  produced  by  the  pulse
thrusters when only one direction is  considered.  The dy-
namic characteristic  of  the  elastic  missile  is  usually  ac-
quired from the structural mode analysis via the finite ele-
ment method (FEM) [32] or experiment or both. From the
structural  mode  analysis,  one  can  get  the  transfer  func-
tion from the force  generated by pulse thrusters to the ad-
ditive attitude , which is usually high-order, in the form of

e(s)
u2(s)

=
b0sm+b1sm−1+ · · ·+bm−1s+bm

sm+a1sm−1+ · · ·+am−1s+am
, m ⩾ 1 (6)

a1,a2, · · · ,am b0,b1, · · · ,bmwhere  and   are  non-negative
constants.

In  order  to  describe  system  (6)  in  state  space,  we
choose state variables as

x3 = e−b0u2

x4 = ẋ3−h1u2

...
xm+2 = ẋm+1−hmu2

(7)

where 

h1 = b1−a1b0

h2 = (b2−a2b0)−a1h1

h3 = (b3−a3b0)−a2h1−a1h2

...
hm = (bm−amb0)−am−1h1−
am−2h2− · · ·−a2hm−2−a1hm−1

. (8)

1264 Journal of Systems Engineering and Electronics Vol. 31, No. 6, December 2020



n = m+2Letting , the transfer function (6) can be then
converted to

ẋ3 = x4+h1u2

ẋ4 = x5+h2u2

...
ẋn = −an−2x3−an−3x4− · · ·−a1xn+hn−2u2

e = x3+b0u2

, (9)

or in the matrix form:{ ẋ2 = A2x2+B2u2

e = C2x2+ D2u2
(10)

where

x2 = [ x3 x4 · · · xn ]T,

A2 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−an−2 −an−3 −an−4 · · · −a1

 ,
B2 = [ h1 h2 · · · hn−2 ]T,

C2 = [ 1 0 · · · 0 ] ,D2 = b0. (11)

z

The additive attitude error in the IMU can also be cal-
culated  by a  model  similar  to  (6)  with  different  parame-
ters. The  rigid  body  attitude  can  thus  be  corrected.  De-
note  as the LOS angle decoupled by the corrected atti-
tude  measurement.  Assume  that  the  error  in  LOS  angle
equals the additive attitude, i.e.,

z = x1+ e. (12)

x =
[

xT
1 xT

2

]T
Choose  as the augmented state vector.

By  combining  (4),  (10)  and  (12),  one  can  get  the  state
equation and  the  measurement  equation  of  the  augmen-
ted state system, i.e.,{ ẋ = A(t)x+B(t)u

z = Cx+ Du
(13)

where

A(t) =
[ A1(t)

A2

]
,B(t) =

[ B1(t)
B2

]
,

C = [ C1 C2 ] ,C1 = [ 1 0 ] ,D = [ 0 D2 ] ,
u = [ u1 u2 ]T, z = z, (14)

which is a linear time-variant system.

3. Observability analysis
In control theory, observability is a measure of how well
internal states of a system can be inferred from the know-
ledge  of  its  external  outputs.  Informally,  this  means  that
one can determine the behavior of the entire system only
from  the  system's outputs.  If  the  system  equation  satis-
fies the  observability  condition,  the  estimate  of  the  Kal-

man filter  will  converge  to  track  the  system perfectly  as
time progressing,  even if  we start  with  an arbitrary  state
estimate.  The  observability  analysis  for  system  (13)  in
this  section  is  based  on  the  observability  rank  condition
for linear time-variant systems shown in the lemma below.
Lemma 1 [33]　Given a linear time-variant system{ ẋ = A(t)x+B(t)u

z = C(t)x+ D(t)u (15)

x ∈ Rn,u ∈ Rl, z ∈ Rpwhere . Let{
O0(t)=C(t)
Oi+1(t) = Oi(t)A(t)+ Ȯi(t), i = 0,1, · · · ,n−2 . (16)

[t0, t f ]The  system  is  observable  in  the  interval  if  the
observability matrix

O(t) =


O0(t)
O1(t)
...

On−1(t)

 (17)

satisfies

rank O(t f ) = n. (18)

The observability of the model (13) is described in the
theorem as follows.
Theorem  1　 The  system  model  (13)  is  observable

during the nearly whole terminal guidance phase.
Proof　 Apply the  lemma  in  system  model  (13)  de-

scribed in this paper, one can get

O0 = [ 1 0 1 0 · · · 0 ]
O1 = O0A(t)+ Ȯ0 = [ 0 1 0 1 · · · 0 ]
O2 = O1A(t)+ Ȯ1 = [ 0 p1 0 0 · · · 0 ]
O3 = O2A(t)+ Ȯ2 = [ 0 p2 0 0 · · · 0 ]

...

On−2 = On−3A(t)+ Ȯn−3 =

[ 0 pn−3 −an−2 −an−3 · · · −a1 ]
On−1 = On−2A(t)+ Ȯn−2 =[

0 pn−2 a1an−2 a1an−3−an−2 · · · a2
1−a2

]

(19)

where 
p1 = −

2ṙ
r

p j+1 = −
2ṙ+ j

r
p j, j = 1,2, · · · ,n−3.

(20)

O0,

O1, · · · ,On−1

Thus,  the  observability  matrix  is  composed  by 
 in the following form:
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O =



1 0 1 0 · · · 0

0 1 0 1 · · · 0

0 p1

...
...

. . .
...

0 p2 0 0 · · · 1
...

... −an−2 −an−3 · · · −a1

0 pn−2 a1an−2 a1an−3−an−2 · · · a2
1−a2


.

(21)

O
n−2

O0,

O1, · · · ,On−3 On−2

O0,

O1, · · · ,On−3

On−1

O0,O1, · · · ,On−2

O0

O0

The  key  to  the  observability  analysis  is  to  determine
the rank of ,  which is quite complicated in most cases.
Notice  that  there  exists  an  dimensional  identity  in
the  top-right  corner  of  the  matrix,  meaning  that 

 are  linearly  independent.  Besides,  can-
not  be  expressed  by  the  linear  combination  of 

. Therefore, the observability matrix does not
have full rank if and only if  can be expressed by the
linear  combination  of .  What  should  the
linear  expression  be  like?  Notice  that  only  has  a
nonzero element in its first component, so the coefficient
before  should  be  zero.  By  observing  the  third,  the
fourth  until  the  last  component  of  the  bases  sequentially
one can determine all coefficients. The only possible lin-
ear expression can be as

On−1 = −a1On−2−a2On−3− · · ·−an−2O1. (22)

Observe  the  second  component  of  each  item  above,
one can get

pn−2+a1 pn−3+a2 pn−4+ · · ·+an−3 p1+an−2 = 0. (23)

m r
r

t1 t f

O(t1) = n
[t0, t1]

Considering (20),  the solution to (23) is  no more than
 separate  values  for .  During  the  terminal  guidance

phase,  varies  continuously  and  tends  to  zero.  There
must  exists  a  near  to  and less  than  where (23)  does
not hold and therefore rank . Thus, the system is
observable in the interval .

m = 1Specially, when , the condition turns to be

a1−
2ṙ
r
= 0, (24)

r
t f

[t0, t1] t1 t f

which almost impossibly holds in practice because  is a
time-variant variable. Even if it holds at the final time 
unfortunately, we can tell that the system is observable in
the interval  where  is quite near to and less than .

4. Filter design

4.1    Continuous-discrete augmented state
Kalman filter

The Kalman  filter  is  an  efficient  recursive  filter  that  es-
timates the internal state of a linear dynamic system from
a series of noisy measurements. It is used in a wide range

of  engineering  and  econometric  applications  from  radar
and computer vision to estimation of structural macroeco-
nomic models [34].

The  Kalman  filter  algorithm  can  be  divided  into  two
phases:  a  prediction  phase  and  an  update  phase  [35].  In
the prediction phase, the state estimate from the previous
time  instance  to  produce  an  estimate  of  the  state  at  the
current time instance via the dynamical model. In the up-
date phase,  the  current  prediction  is  combined  with  cur-
rent observation information to refine the state estimate.

In engineering applications, the Kalman filter is usual-
ly performed in discrete form. However, since the system
model (13)  is  time-variant  and high-order,  the exact  dis-
cretization  of  the  continuous-time  dynamical  model  is
difficult. On  the  other  hand,  the  measurements  are  ob-
tained  at  discrete  times.  Therefore,  the  continuous-dis-
crete  version  of  Kalman  filter  will  be  applied  for  the
problem.

The system model  (13)  can be easily  converted to  the
model  assumed  in  continuous  discrete  Kalman  filter  by
adding corresponding noises as{ ẋ = A(t)x+B(t)u+ω

zk = Cxk + Duk +νk, k ⩾ 1
(25)

xk uk νk x(tk) u(tk) v(tk)
A(t) B(t) C D ω(t)

Q ≜ diag(Q1,Q2) Q1

x1 Q2 x2 νk

R

where ,  and  denote  ,  and ,  respec-
tively; , ,  and  are the same as in (13);  is
the  process  noise  which  is  assumed  to  be  zero  mean
Gaussian  white  noise  with  spectral  density  matrix

 where   corresponds  to  the  original
state  and  corresponds to the bias state ;  is the
observation  noise  which  is  assumed  to  be  zero  mean
Gaussian white noise with covariance . The initial state
and  the  noise  vectors  at  each  step  are  all  assumed  to  be
mutually  independent.  The  so-called  continuous-discrete
augmented state  Kalman  filter  algorithm is  just  the  con-
tinuous-discrete  Kalman  filter  algorithm  applied  in  the
augmented state system (25), which is shown in detail as
follows.
Algorithm  1　 Continuous-discrete  augmented  state

Kalman filter (CD-ASKF)　

x̂k−1|k−1 Pk−1|k−1

tk−1 x̂k|k Pk|k

tk

For the augmented state  system model  (25),  given the
estimated mean  and covariance  at time in-
stant ,  the  estimated  mean  and  covariance  at
time instance  is obtained by following steps.
Step 1　Prediction
Integrate the differential equations

˙̂x = A(t)x̂+B(t)u, (26)

Ṗ = A(t)P+ PA(t)T+Q, (27)

x̂(tk−1) = x̂k−1|k−1 P(tk−1) =
Pk−1|k−1 tk

from  the  initial  conditions  and  
 to time instance . The predicted mean and cova-
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x̂k|k−1 = x̂(tk) Pk|k−1 = P(tk)riance are given as  and . The in-
tegration can be computed by numerical integration meth-
ods such as Runge-Kutta fourth-order method.
Step 2　Update
The update  step  is  the  same  as  the  discrete-time  Kal-

man filter, given by

Kk = Pk|k−1CT(CPk|k−1CT+R)−1, (28)

x̂k|k = x̂k|k−1+Kk[zk − (Cx̂k|k−1+ Duk)], (29)

Pk|k = (I−KkC)Pk|k−1. (30)

Q
The selection of the process noise spectral density ma-

trix  depends  on  the  uncertainty  of  the  dynamical  mo-
del. In the process of the terminal guidance of KKV, it is
quite small.

RkThe  selection  of  the  observation  noise  covariance 
depends on the accuracy of the seeker.

e

The  initial  state  estimate  can  be  chosen  as  the  first
measurement  of  the  seeker.  The  initial  state  estimate  of
the additive attitude  can be chosen as 0.

4.2    Continuous-discrete two-stage Kalman
filter (CD-TSKF)

x1

x2

The  ASKF  is  intuitive,  but  causes  higher  computational
cost and  round-off  error.  TSKF  is  a  method  of  decoup-
ling  the  augmented  filter  into  two parallel  and  lower-or-
der  filters.  The  difficulty  in  decoupling  the  CD-ASKF
(26)−(30) is that the covariance of augmented state is not
block diagonal, which means that the original state  and
the  bias  state  are  correlated.  To  solve  the  problem,
define a bias free state

x̃1 = x1−Vx2, (31)

x2 Vwhich is uncorrelated with .  The blending matrix  is
defined by [25]

V = cov(x1, x2)[cov(x2)]−1. (32)

x̃1 x2

x1

The two decoupled filters, called as bias free filter and
bias filter, can be run in parallel way (with some connec-
tion) to give the estimates of  and , respectively. The
estimate of  is obtained via the mixture of the two fil-
ters’ outputs.
Algorithm 2 　CD-TSKF
For  the  augmented  state  system  model  (25),  the  CD-

TSKF consists of the following decoupled filters.
(i) Bias free filter

Vk−1|k−1

ˆ̃x1,k−1|k−1 P̃1,k−1|k−1 tk−1

Vk|k ˆ̃x1,k|k

P̃1,k|k tk

Given the blending matrix , the estimated mean
 and  covariance  at  time  instant ,  the

blending matrix  and the estimated mean  and co-
variance  at  time instance  are obtained by follow-
ing steps.

Step 1　Prediction
x̂2 P2

tk

Given the predicted mean  and covariance  at time
instance  from  the  bias  filter,  integrate  the  differential
equations

V̇ = A1(t)V−V A2−VQ2 P−1
2 , (33)

˙̂̃x1 = A1(t) ˆ̃x1+B1(t)u1+VQ2 P−1
2 x̂2−VB2u2, (34)

˙̃P1 = A1(t)P̃1+ P̃1 AT
1 (t)+Q1+VQ2VT, (35)

V(tk−1) = Vk−1|k−1 ˆ̃x1(tk−1) =
ˆ̃x1,k−1|k−1 P̃1(tk−1) = P̃1,k−1|k−1 tk

Vk|k−1 = V(tk) ˆ̃x1,k|k−1 = ˆ̃x1(tk) P̃1,k|k−1 =

P̃1(tk)

from  the  initial  conditions , 
 and   to  time  instance .  The

predicted blending matrix,  mean and covariance are giv-
en  as ,  and  

. The integration can be computed by numerical in-
tegration  methods  such  as  Runge-Kutta  fourth-order
method.
Step 2　Update
The updated blending matrix, mean and covariance are

given by
K1,k = P̃1,k|k−1CT

1 (C1 P̃1,k|k−1CT
1 +R)−1, (36)

Sk = C1Vk|k−1+C2, (37)

Vk|k = Vk|k−1−K1,kSk, (38)

ˆ̃x1,k|k = ˆ̃x1,k|k−1+K1,k(zk −C1 ˆ̃x1,k|k−1− D2u2), (39)

P̃1,k|k = (I−K1,kC1)P̃1,k|k−1. (40)

(ii) Bias filter
x̂2,k−1|k−1

P2,k−1|k−1 tk−1 x̂2,k|k

P2,k|k tk

Given  the  estimated  mean  and  covariance
 at  time instant ,  the estimated mean  and

covariance  at  time  instance  are obtained  by  fol-
lowing steps.
Step 1　Prediction
Integrate the differential equations

˙̂x2 = A2 x̂2+B2u2, (41)

Ṗ2 = A2 P2+ P2 AT
2 +Q2, (42)

x̂2(tk−1) = x̂2,k−1|k−1

P2(tk−1) = P2,k−1|k−1 tk

x̂2,k|k−1 = x̂2(tk)
P2,k|k−1 = P2(tk)

from  the  initial  conditions  and
 to time instance . The predicted mean

and  covariance  are  given  as  and
. The  integration  can  be  computed  by  nu-

merical integration methods such as Runge-Kutta fourth-
order method.
Step 2　Update

Sk
ˆ̃x1,k|k−1

P̃1,k|k−1

Given ,  the  predicted  mean  and  cova-
riance  from the  bias  free  filter,  the  updated  mean
and covariance are given by

K2,k = P2,k|k−1ST
k (C1 P̃1,k|k−1CT

1 +Sk P2,k|k−1ST
k +R)−1, (43)
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x̂2,k|k = x̂2,k|k−1+K2,k(zk−C1 ˆ̃x1,k|k−1−Sk x̂2,k|k−1−D2u2), (44)

P2,k|k = (I−K2,kSk)P2,k|k−1. (45)

(iii) Mixing
The estimate of original state is given by x̂1,k|k = ˆ̃x1,k|k +Vk|k x̂2,k|k

P1,k|k = P̃1,k|k +Vk|k P2,k|kVT
k|k
. (46)

x̂0|0 P0|0

Q Rk

P0|0
ˆ̃x1,0|0 = x̂1,0|0 P̃1,0|0 =P1,0|0

V0|0 = 0

The selection of initial mean , covariance , spec-
tral density matrix  of process noise and covariance 
are  the  same  as  CD-ASKF.  Since  is  often  chosen
as  diagonal,  one  can  set ,  and

.
Theorem 2　The CD-TSKF (Algorithm 2) is  equiva-

lent to the CD-ASKF (Algorithm 1).

x1Proof　From (31), the mean and covariance of  are
given by {

x̂1 = ˆ̃x1+Vx̂2

P1 = P̃1+VP2VT
. (47)

The mean and covariance of the augmented state are

x̂ =
[

ˆ̃x1+Vx̂2

x̂2

]
, (48)

P =
[ cov(x1) cov(x1, x2)

cov(x2, x1) cov(x2)

]
=

[
P̃1+VP2VT VP2

P2VT P2

]
.

(49)

A1 B1 A1(t) B1(t)Here we use ,  instead of ,  for simplify.
By using the equations in Algorithm 2 and a few algebra
tricks, one can see that

˙̂x =
 ˙̂̃x1+ V̇ x̂2+V ˙̂x2

˙̂x2

 =  (
A1

ˆ̃x1+B1u1+VQ2 P−1
2 x̂2−VB2u2

)
+

(
A1V−V A2−VQ2 P−1

2

)
x̂2+V (A2 x̂2+B2u2)

A2 x̂2+B2u2

 =[
A1

(
ˆ̃x1+Vx̂2

)
+B1u1

A2 x̂2+B2u2

]
=

[ A1

A2

] [ ˆ̃x1+Vx̂2

x̂2

]
+

[ B1

B2

]
u = A(t)x̂+B(t)u, (50)

Ṗ =
 ˙̃P1+ V̇P2VT+VṖ2VT+VP2V̇T V̇P2+VṖ2

Ṗ2VT+ P2V̇T Ṗ2

 =
(A1 P̃1+ P̃1 AT

1 +Q1+VQ2VT)+ (A1V−V A2−VQ2 P−1
2 )P2VT+

V(A2 P2+ P2 AT
2 +Q2)VT+VP2(A1V−V A2−VQ2 P−1

2 )T

(A1V−V A2−VQ2 P−1
2 )P2+

V(A2 P2+ P2 AT
2 +Q2)

(A2 P2+ P2 AT
2 +Q2)VT+ P2(A1V−V A2−VQ2 P−1

2 )T A2 P2+ P2 AT
2 +Q2

 =[ A1

A2

]  P̃1+VP2VT VP2

P2VT P2

+  P̃1+VP2VT VP2

P2VT P2

 [ A1

A2

]T

+

[ Q1

Q2

]
=

A(t)P+ PAT(t)+Q, (51)

Kk =

[
P̃1,k|k−1+Vk|k−1 P2,k|k−1VT

k|k−1 Vk|k−1 P2,k|k−1

P2,k|k−1VT
k|k−1 P2,k|k−1

]
[ C1 C2 ]T·(

[ C1 C2 ]
[

P̃1,k|k−1+Vk|k−1 P2,k|k−1VT
k|k−1 Vk|k−1 P2,k|k−1

P2,k|k−1VT
k|k−1 P2,k|k−1

]
[ C1 C2 ]T+R

)−1

=[
P̃1,k|k−1CT

1 +Vk|k−1 P2,k|k−1ST
k

P2,k|k−1ST
k

]
(C1 P̃1,k|k−1CT

1 +Sk P2,k|k−1ST
k +R)−1 =[

K1,k(C1 P̃1,k|k−1CT
1 +Sk P2,k|k−1ST

k +R−Sk P2,k|k−1ST
k )+Vk|k−1 P2,k|k−1ST

k

P2,k|k−1ST
k

]
(C1 P̃1,k|k−1CT

1 +Sk P2,k|k−1ST
k +R)−1 =

[
K1,k +Vk|k K2,k

K2,k

]
,

(52)

x̂k|k =

 ˆ̃x1,k|k +Vk|k x̂2,k|k

x̂2,k|k

 =


[ ˆ̃x1,k|k−1+K1,k(zk −C1 ˆ̃x1,k|k−1− D2u2)]+ (Vk|k−1−K1,kSk)·[
x̂2,k|k−1+K2,k(zk −C1 ˆ̃x1,k|k−1−Sk x̂2,k|k−1− D2u2)

]
x̂2,k|k−1+K2,k[zk −C1 ˆ̃x1,k|k−1− (Sk x̂2,k|k−1+ D2u2)]

 = ˆ̃x1,k|k−1+Vk|k−1 x̂2,k|k−1

x̂2,k|k−1

+ [ K1,k +Vk|k K2,k

K2,k

]
(zk − [C1 C2]

 ˆ̃x1,k|k−1+Vk|k−1 x̂2,k|k−1

x̂2,k|k−1

 − [0 D2]
[ u1

u2

])
=

x̂k|k−1+Kk[zk − (Cx̂k|k−1+ Du)], (53)
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Pk|k =

[
P̃1,k|k +Vk|k P2,k|kVT

k|k Vk|k P2,k|k

P2,k|kVT
k|k P2,k|k

]
=

(I−K1,kC1)P̃1,k|k−1+ (Vk|k−1−K1,kSk)·
(I−K2,kSk)P2,k|k−1(Vk|k−1−K1,kSk)T (Vk|k−1−K1,kSk)(I−K2,kSk)P2,k|k−1

(I−K2,kSk)P2,k|k−1(Vk|k−1−K1,kSk)T (I−K2,kSk)P2,k|k−1

 =(
I−

[
K1,k +Vk|k K2,k

K2,k

]
[ C1 C2 ]

)[
P̃1,k|k−1+Vk|k−1 P2,k|k−1VT

k|k−1 Vk|k−1 P2,k|k−1

P2,k|k−1VT
k|k−1 P2,k|k−1

]
=

(I−KkC)Pk|k−1, (54)

which are the same as (26)−(30) in Algorithm 1.

5. Numerical simulation
To testify the effect  of  the designed filter,  the numerical
simulation is  conducted  under  a  typical  working  condi-
tion. The ballistic missile’s initial positions in the launch
point inertial coordinate system are xt0 = 339.98 km, yt0 =
20.97 km and zt0 = 0 km, respectively. Its initial velocity
is Vt0  = 1 500 m/s. The KKV’s initial point is at the ori-
gin of the launch point inertial coordinate system. Its ini-
tial  velocity  is Vm0

 =  715  m/s.  The  terminal  guidance
phase starts at t0 = 90.183 s. A typical missile-target pur-
suit curve is shown in Fig. 2.
 
 

(a) Elevation plane

(b) Azimuth plane
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Fig. 2    Typical missile-target pursuit curve
 

The model of the impact interference of the filter in the
simulation is approximated as

e(s)
u2(s)

=
2×10−6s2+2×10−4

s2+102s+104 . (55)

Simulations are conducted in different cases. In Case 1
the  impact  interference is  ignored in  the  design of  filter,
whereas in the latter cases it is considered. In Case 1, the
state  vector  of  filter  includes  LOS  angle  and  LOS  rate
only.  In  Case  2,  the  traditional  discrete-time  ASKF  (D-

ASKF)  is  applied.  The  system model  is  discretized  with
the  two-order  truncation  error  via  the  Taylor  expansion.
The CD-ASKF and the  CD-TSKF are  applied  in  Case  3
and Case 4, respectively.

e b

The  preceding  theoretical  analysis  is  conducted  in  the
plane,  but  simulations  are  made  in  a  three-dimensional
space. The subscripts  and  are attached to the symbols
of physical quantities to denote the elevation loop and the
azimuth loop, respectively.

u2

e ê

In CD-ASKF and CD-TSKF, with the impact interfer-
ence estimated, the forces  generated by pulse thrusters,
true values and estimates of the additive attitude given as
 and  in different loops are shown in Fig. 3 and Fig. 4.

Note that since the two algorithms are equivalent, the re-
sults are the same.
 
 

(a) Thrust

(b) True value of the additive attitude

(c) Estimate of the additive attitude

u 2
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Fig.  3     Thrust,  additive attitude and its  estimate in elevation loop
(CD-ASKF and CD-TSKF)
 

From Fig. 3 and Fig. 4 one can see similar results hap-
pening in both loops. In Fig. 3(b) the true value of the im-
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pact  interference  error  varies  quickly  with  the  switching
on and off of the pulse thrusters. In Fig. 3(c) the estimate
of  the  impact  interference  error  keeps  a  similar  shape  to
the true value, but the amplitude is not the same as that of
the  true  value.  This  is  because  the  frequency  of  the  true
value  is  so  high  that  the  estimate  cannot  get  up  with  it
for  the  limitation  of  the  filter ’s  sampling  period.  If  the
sampling  period  can  be  shortened,  the  precision  of  esti-
mation  can  be  improved.  The  same  phenomena  can  be
observed from Fig. 4.
  

(a) Thrust

(b) True value of the additive attitude

(c) Estimate of the additive attitude
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Fig.  4      Thrust,  additive  attitude  and  its  estimate  in  azimuth  loop
(CD-ASKF and CD-TSKF)
 

The forces generated by pulse thrusters, true values and
estimates of the additive attitudes in different loops in D-
ASKF are shown in Fig. 5 and Fig. 6. The discretized dy-
namical model used is not as exact as that in the continu-
ous-discrete  filters,  so  the  error  is  larger  and  the  esti-
mates are quite small.

The introduction of  estimating the impact  interference
is  useful  for  improving  the  estimation  precision  of  the
LOS rate.  The estimation results  for  the  LOS rate  in  the
elevation loop under different cases are shown in Fig. 7.

Comparing  the  results  in Fig.  7(a), Fig.  7(b) and
Fig. 7(c), one can see that the estimation error of the LOS
rate  can  be  reduced  when  the  impact  interference  has
been  considered.  When  the  impact  inference  is  ignored
(Fig.  7(a)),  a  vibration  with  a  high  frequency  occurs  in
the estimate of the LOS rate, just like the impact interfer-
ence. But in CD-ASKF and CD-TSKF (Fig. 7(c)), the es-
timate of LOS rate has tended to a closer neighborhood of

the true value. In D-ASKF (Fig. 7(b)), the estimate of ad-
ditive attitude is less accurate than in continuous-discrete
filters as discussed before, so the improvement of the pre-
cision  of  LOS rate  is  not  obvious.  The  same  results  can
be  found  from Fig.  8 where  the  estimation  result  of  the
LOS rate in the azimuth loop are shown.
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(c) Estimate of the additive attitude

u 2
e 
/N

e e
 /(

°)

1

0

90 95 100 105 110 115
Time/s

90 95 100 105 110 115
Time/s

90 95 100 105 110 115
Time/s

×104

−1

0

−0.8

0.8

0

−0.02

0.02

e e
 /(

°)
^

Fig.  5     Thrust,  additive attitude and its  estimate in elevation loop
(D-ASKF)
 
 

(a) Thrust

(b) True value of the additive attitude

(c) Estimate of the additive attitude
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Fig. 6    Thrust, additive attitude and its estimate in azimuth loop
(D-ASKF)
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To  further  prove  the  effectiveness  of  the  proposed
method,  the  above  simulations  are  conducted  100  times.
A statistic result for the 100 runs are shown in Table 1.
 

Table 1    Statistics of simulation results

Items Ignore D-ASKF CD-ASKF CD-TSKF

Average miss distance /m 0.774 0.562 0.294 0.294

Average RMSE of pitch
LOS rate /(º)/s

0.100 0.083 0.038 0.038

Average RMSE of yaw
LOS rate /(º)/s

0.080 0.064 0.036 0.036

Average execution time
(one iteration) /ms

0.071 0.110 0.124 0.104

 
Miss distance  measures  the  performance  of  the  inter-

ception. It is defined as the minimum relative distance.

θ̂

θ

Root  mean-squared  error  (RMSE)  measures  the  accu-
racy of an estimate. The ith RMSE of an estimate  given
the true value  is defined as

RMSEi =

√√
1
N

N∑
k=1

(θ̂k − θk)
2 (56)

θk θ

tk θ̂k θk N
where i represents the ith simulation;  is the true value 
at time ;  is the estimate of ;  is the number of es-
timates.

The  results  in Table  1 is  the  averaged  RMSE for  100
runs of simulation, i.e.,

RMSE =
100∑
i=1

RMSEi

RMSEi

Note that at the end of the terminal guidance phase, the
LOS rate  suddenly  diverges,  making  it  impossible  to  be
tracked.  Thus,  the  last  few  periods  of  data  are  omitted
when calculating the  of the LOS rate.

Execution  time  of  one  iteration  means  average  time
consumed when the filter calculates an estimate for a new
time instant. It describes the computational cost of the filter.

From  the  statistic  result  in Table  1,  one  can  see  that
with  the  impact  interference  estimated,  the  estimation
precision of the LOS rate can be improved, and the miss
distance  can  be  then  reduced.  The  D-ASKF  is  the  most
naive method. The CD-ASKF uses the continuous dynami-
cal model instead of the discretized model with larger er-
ror.  It  reduces  the  estimation  error  and  consumes  more
time because of the numerical integration. The CD-TSKF
achieves the same performance in estimation error as the
CD-ASKF, but reduces the computation time because of
the parallel structure and lower-dimension.

Table  2 gives the  interval  distribution  of  miss  dis-
tances. It  gives  an  extra  evidence  of  guidance  perform-
ance in different cases.
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6. Conclusions
The strong impact interference on the target seeker mea-
surements, caused by the large lateral thrust in the termi-
nal guidance process of a KKV is described with a linear
term.  The  observability  of  the  system  consisting  of  the
missile-target relative motion model and the impact inter-
ference term has  been proven.  A method to  estimate  the
impact  interference  and  the  LOS  rate  together  via  using
Kalman filter  has  been  proposed  to  improve  the  estima-
tion precision of the LOS rate. In the design of the filter,
the  continuous-discrete  and  two-stage  techniques  have
been  applied  to  tackle  the  time-variant  and  high-order
model issues.

From the simulation result it can been seen that the fre-
quency  of  the  estimate  of  the  impact  interference  is  like
that  of  the  true  value,  although  the  amplitude  is  not  as
high as that of the true value because of the limitation of
the  sampling  period  in  the  filtering  algorithm.  Since  the
introduction of the estimation for the impact interference,
the estimation for the LOS rate is less affected by the im-
pact interference, so the interception performance of mis-
sile  is  improved.  By  using  the  continuous-discrete  and
two-stage filter  techniques,  the  proposed  CD-TSKF  in-
creases the estimation accuracy and reduces the computa-
tional  cost.  It  shows  obvious  superiority  to  the  method
before.
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