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Abstract: Clustering is one of the unsupervised learning prob-
lems. It is a procedure which partitions data objects into groups.
Many algorithms could not overcome the problems of morpho-
logy, overlapping and the large number of clusters at the same
time. Many scientific communities have used the clustering al-
gorithm from the perspective of density, which is one of the best
methods in clustering. This study proposes a density-based spa-
tial clustering of applications with noise (DBSCAN) algorithm
based on the selected high-density areas by automatic fuzzy-
DBSCAN (AFD) which works with the initialization of two para-
meters. AFD, by using fuzzy and DBSCAN features, is modeled
by the selection of high-density areas and generates two para-
meters for merging and separating automatically. The two gene-
rated parameters provide a state of sub-cluster rules in the
Cartesian coordinate system for the dataset. The model over-
comes the problems of clustering such as morphology, overlap-
ping, and the number of clusters in a dataset simultaneously. In
the experiments, all algorithms are performed on eight data sets
with 30 times of running. Three of them are related to overlap-
ping real datasets and the rest are morphologic and synthetic
datasets. It is demonstrated that the AFD algorithm outperforms
other recently developed clustering algorithms.
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1. Introduction

Clustering is one of the techniques in data mining. The
main aim of clustering is to divide a given data (point) in-
to similar groups while dissimilar groups contain the dis-
similar data. Clustering is useful in data mining, docu-
ment retrieval, image segmentation, pattern classification
and statistic [1,2]. In the field of knowledge discovery in
databases, clustering is defined as an unsupervised learn-
ing technique, because there is no prior knowledge about
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the dataset for analyzing. Scientific community focuses
on the popular techniques and develops them by its own
methods with effectiveness and efficiency in data mining.
Using fuzzy c-means clustering and neural network, a
new multiple model adaptive control method was pro-
posed, which led to the stability of the control switching
system [3]. Pulse description words of detected signals
are performed by the density-based spatial clustering of
applications with noise (DBSCAN) algorithm which
shows the identification time of key target signals. It can
adapt to the complex signal environment with noise inter-
vention and overlapping signals, and is not susceptible of
the loss of local pulse parameters [4]. Local-DBSCAN
(LDBSCAN) was proposed to distinguish the false tar-
gets (FTs) from the physical targets (PTs) after compen-
sating the FTs time delays, while PTs possess small dis-
tribution [5]. Different from the other work which fo-
cused on estimating the density of each sample using dif-
ferent kinds of density estimators, a clustering algorithm
named adapative DBSCAN was developed based on in-
herentpropertiesofthenearestneighborgraph[6]. Anewalgo-
rithm NRDD-DBSCAN based on the DBSCAN algo-
rithm was presented using resilient-distributed datasets
(RDDs) to explore the outliers which influence the data
quality of IoT [7].

Many clustering algorithms have been presented with
the different points of view and subject intersection in a
related field, while each algorithm has its own advantage
and disadvantage, and all of them have not been able to
solve the complex, overlapping, heterogeneous outlier
datasets simultaneously. In [8], a multi-stage model for
anomaly detection was proposed to remove the problem
of DBSCAN. The other work [9] proposed a method of
non-triangle inequality (non-TI) clustering in the context
of social network, which used the distance function in
quantum logic-based query language.
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Generally, the clustering algorithms are divided into
eight categories which include partition, hierarchy, fuzzy
theory, distribution, density, graph theory, grid and fractal
theory model [10]. The K-means algorithm and its frame-
work, with the concept of partition for the developing of
other algorithms, is one of the popular algorithms, which
is frequently used in the data mining field. K-means al-
gorithm failed, when it had faced with the arbitrary shape
in spatial data and it could only minimize an amount of
cost functions which lead to convergence in the local
minimum [11]. K-medoids [12], partitioning around
medoids (Pam) [13] and clustering large applications
(CLARA) [14] are also based on partitioning and reduce
the sensitivity in terms of noise, but the algorithms fail to
address arbitrarily shaped clusters in their strategy.

Some of the algorithms based on hierarchical cluster-
ings such as balanced iterative reducing and clustering
using hierarchies (BIRCH) algorithm [15], clustering us-
ing representatives (CURE) [16], receiver operating char-
acteristic (ROC) curve [17] and Chameleon [18] from the
perspective of tree perform arbitrarily shaped clusters.
They show better results than others. Nonetheless, they
are not able to overcome the time complexity.

To overcome the complexity structure, some algo-
rithms based on the hierarchical clustering algorithm
were proposed. One of them presented an automatic ver-
sion based on hierarchical clustering [19]. The leaders-
subleaders algorithm [20] assures the potentiality and sig-
nificance of hierarchical clustering in terms of time series
in DataStream. The considering of the Euclidean dis-
tance discloses the existing of the density problem in a
large dataset. In order to tackle them, shared nearest
neighbor (SNN) was proposed in [21] which was based
on the graph model. The algorithm finds the nearest
neighbors of each data point and then redefines the simi-
larity between pairs of points in connection with a num-
ber of nearest neighbors. DBSCAN [22] is based on dens-
ity data with two parameters, one of which is the number
of neighbors and the other is the radius of the node. It will
be discussed in detail in the next section.

Optics [23] is an algorithm proposed in order to over-
come the problem of DBSCAN. For solving the problem
of detecting meaningful clusters in various densities of
data, the algorithm is considered within the scope of two
concepts: one is the maximum distance for each core
point and the other is the density of each core point. Spa-
tial-temperal DBSCAN (ST-DBSCAN) [24] was constru-
cted by modifying the DBSCAN algorithm, by using
the density factor, which tried to find noise data when
clusters have dissimilar densities in the spatial-temporal
dataset. Enhanced DBSCAN [25] is also based on DB-
SCAN proposing local epsilon instead of the global epsi-
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lon. The Gaussian mixture model (GMM) [26], based on
kernel density, estimates the density region with a small
number of components and allows for arbitrary cluster-
ing. Another algorithm Gaussian density distance (GDD)
[27] presents a new clustering method without prior in-
formation and parameters by combining the Gaussian
kernel and Euclidian distance. By using the rough set the-
ory, rough-DBSCAN [28] overcomes the runtime scan-
ning dataset with the perspective of density.

In order to take the density based on arbitrary shape
clusters and overcome the time consuming problem, the
algorithm uses the core leader for the selection of the
high-density data. Another kind of clustering is fuzzy c-
means (FCM) clustering [29], which is basic for develop-
ing fuzzy -clustering. Fuzzy neighborhood (FN-DB-
SCAN) [30] based on the DBSCAN algorithm was intro-
duced by using the fuzzy neighborhood relation con-
cept instead of the crisp neighborhood relation. The FN-
DBSCAN algorithm gives more robust results than DB-
SCAN.

The spectral clustering (SC) algorithm is one of the
density-based clustering algorithms, and clusters data
with the graph method. The algorithm has demonstrated
the clustering on the unstructured dataset [31]. Identify-
ing density-based local outliers factor (LOF) converts
binary concept to degree concept (degree formula) for
each data in the dataset. Then it uses degree formula for
distinguishing the near data (normal data in the cluster)
and the far data (outlier data) [32]. Breunig et al. [33]
used the fuzzy proximity relations between data points in
order to gain the dissimilar dense clusters without any
priori knowledge of a dataset. The aim of this study is to
consider the advantage and disadvantage of the cluster-
ing algorithm, which have been mentioned above, and
then propose a algorithm which overcomes the limits.
This paper conducts discovering with the gaps in cluster-
ing by considering the accuracy clustering on three prob-
lems (overlapping, morphology and the number of
clusters). The proposed algorithm automatic fuzzy-DB-
SCAN (AFD) has tried to overcome morphology, over-
lapping and the number of clusters at the same time. It is
initialized with two parameters and generates two para-
meters Eps2 (second epsilon) and Pos (epsilon position
for merging and separating) during running which are
defined by the state of sub cluster rules. Although many
algorithms have been proposed without parameters, they
ignore the mentioned problems.

In the experiment, we show and compare the perfor-
mance of our algorithm regarding accuracy by external
indices [34, 35] such as rand index (RI), adjusted rand in-
dex (ARI) and f-measure (F) [36]. Our experiment is per-
formed on the three real and five synthetic datasets. We
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will also describe the DBSCAN and FN-DBSCAN algo-
rithms (our algorithm is inspired from them) in Section 2.
We propose an algorithm with the generated state of sub
cluster rules during running. It is written by symbolic set
in Section 3. The performance of AFD with regard to ac-
curacy and representation is also demonstrated by com-
parison of well-known algorithms in Section 4 and fina-
lly, this research’s conclusions are described in Section 5.

2. Related work

2.1 DBSCAN

DBSCAN is able to distinguish the noise data and classi-
fy the arbitrary shape dataset. It includes two parameters:
epsilon (Epsl) and the minimum number of points/data
(MinPoints), which are based on a user defined neighbor
radius and the existing number of points related to the ra-
dius. DBSCAN can be conceptually described as follows.
The neighborhood is specified by different types of dis-
tance functions. For two points p and ¢ and their dis-
tance dist(p,q), the epsilon of point p is defined by
{g € D|dist(p,q)<Eps} which indicates the radius of it. A
core object denotes that a point which is its epsilon con-
tains at least a minimum number of points (MinPoints)
(see Fig. 1).

(a) Data p density-reachable
from data ¢

(b) Data p and data ¢ density-
connected to each other with data
® : Border;

A : Outlier; « : Core.

Fig.1 Basic notion in density clustering

Let C ={Cy,---,C;} be the clusters with respect to Eps1
and MinPoints in the dataset p. We define outlier ob-
jects as a set of the objects far from the core object
in dataset D not belonging to any cluster C;, i.e.,
outlier ={p e D|Vi: p¢ D}. If it is not a core object or
outlier object, it would be the border which is density-
reachable from a core object (see Fig. 1). An object p is
directly density-reachable from the object ¢, when p is
within the epsilon-neighborhood of ¢ and ¢ is also a core
object. p € Ng,,(q) where Ng,(q) is the subset of the
dataset which includes Eps-neighborhood of ¢, and
INg,s(@)l > MinPts (core object condition).

Data p is density-reachable from the data ¢ in connec-
tion with Epsl and MinPoints if there is a sequence ob-
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ject P={py,ps,--,pu}, pr=qor p,=p such that p;+1
is directly density-reachable from p; with respect to Epsl
and MinPoints, for 1<i<n,p; € D (see Fig. 1(a)). An ob-
ject p is density-connected to the object ¢ with respect to
Eps! and MinPoints, if there is an object o € D then both
pand ¢ are density-reachable from o (see Fig. 1(b)).
Density connection is a symmetric relation. A cluster C is
a non-empty subset of D satisfying the following require-
ments [22]:

(1) Vp,q: if ge C and p is density-reachable from ¢
with respect to Eps1 and MinPoints, then p € C. (maxim-
ality)

(i1) Yp,qe C: p is density-connected to g with res-
pect to Eps1 and MinPoints. (connectivity) [22].

2.2 FN-DBSCAN

In this algorithm, four formulas are defined for the exten-
sional DBSCAN by FN-DBSCAN. Here, the neighbor-
hood set of points N, (y) is shown as follows:

F(x;e;) ={y € DIN,(y)>¢,}, x€D. M

N, : D —[0,1] is any membership function that deter-
mines the neighborhood relation between data (Cartesian
plane) that is done by (2). ¢, is different from the defini-
tion of the radius in DBSCAN. Instead of distanced-based
DBSCAN, the new level-based set with the fuzzy neigh-
borhood set is used and shown below [30]. Here, k is the
value coefficient and k > 0 affects the neighborhood radi-

us. Let Y ={y,---,y,} and the exponential neighborhood
relation and formula are shown in Fig. 2 and (2) respec-
tively.
d(x,y)\
NY) = exp(— (kﬁf—”) ] @)
N,

X i & o d(x,y)
Fig.2 Exponential neighborhood relation [30]

Each core point x is defined with the neighborhood
membership function which is shown in the following
equation. d(x,y) is the Euclidian distance between two
points x and y. d,. is the maximum distance between
two points in the coordinate system [30]. For simplicity,
in (3) a point/data is defined with the neighbor degree to
all points in the dataset, and (4) shows the concept of
fuzzy cardinality [30].
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d(x,y)
R G)
0, otherwise
Card FN(x;¢)) : Z N.(y)>e&, 4)

YEN(x;&1)

The algorithm using &,&, and MinPoints, has tried to
convert the distance-based DBSCAN to level-based
DBSCAN. However, those features are density-based
clustering.

3. AFD algorithm

In this paper, we propose clustering using the features of
DBSCAN and fuzzy for solving the number of clusters,
overlapping and morphological problems, as shown in
Fig. 3. The upside of the subfigures presents three clus-
ters and the downside of them presents four clusters.
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(a) Overlapping (b) Morpological (c) Number of clusters
clusters clusters in a dataset

Fig.3 Three problems

Firstly, our algorithm selects the high-density region
with (2) (fuzzy value) and then all data are scanned from
the left to the right coordinate system by DBSCAN with
predefined parameters. Scanning gains the core nodes
from the dataset using Epsl and MinPoints, which leads
to categorization of the sub clusters. Secondly, the sub
clusters are sent to the A_rule function in order to decide
the merging and separating of them. The function gene-
rates two parameters such as second epsilon (Eps2) and
epsilon position (Pos) automatically and pass to the
B rule function. The generated parameters are done by
using the arrangement of the location of sub clusters in a
dataset space (Cartesian coordinate system).

All the state locations with the center of sub-clusters
are defined in the coordinate system. The states are Mini-
mum, Maximum, Dmean and Diff (see Definitionl).
Merging and separating are done based on the four state
locations. Our algorithm by using the concept of fuzzy
cardinality and fuzzy neighborhood, used in (1) and (2)
respectively and in the concept of the DBSCAN algo-
rithm, proposes a new point of view for the problem of
clustering, which is mentioned above. Data, in order to

trim the scaling, are converted to normal data [30] by

'min

Xy= oI =1, m (5)
J (X;nax _X;mn)
where
X;mn = ItI;llill'xisj’ (6)
X}nax:mgxi,j’ ]: 1’...’m. (7)

i=l,n

The Iris dataset has 150 instances with four attributes
such as sepal length, sepal width, petal length and petal
width which are defined in three classes.

Definition 1 State locations are defined as follows
and Fig. 4 also presents an example of the Iris dataset.

Dmean=
0 32.6855 48.14 4135

32.6855 0 1635 8.887

48.144 2 16.352 3 0 8212

41.3472 88768  8.212 0
Maximum=

48.144 2 32.6855 48.14 4135
Minimum=

32.6855 8.8768 8212 8212
Diff= Critic point Eps 2

23.808 6 0.665 1 0

Fig. 4 An example of Iris dataset

Dmean: The distance matric value between the center
of sub clusters.

Maximum: The maximum value of each column in
Dmean.

Minimum: The minimum value of each column in
Dmean.

Diff: The difference value between each column in
Minimum.

Definition 2 Find peaks (Pos): return a vector local
maximum and minimum value as peaks. A local peak is a
data sample that is either higher than its two neighboring
samples (here, one sub cluster with its two neighboring
sub clusters) or lower than them. See Fig. 5(e) findpeak =
3 and Fig. 5(f) findpeak = 2.

Definition 3 Binary separation: return the binary
code from each state of sub clusters to each other such as
Minimum, Maximum and Average of both. The binary
code for them will be done by left sub clusters to right
sub clusters (scanning dataset from left to right) if the left
sub cluster is less than the right one, then it takes zero,
otherwise one for the station. See Fig. 5(d), Fig. 5(e) and
Fig. 5(f) and results of them as follows:

(1) Fig. 5(d) by taking the maximum peak: BMA
Minimum = 101;

(i1) Fig. 5(e) by taking the maximum peak: BME =
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Means = 101;

(i) Fig. 5(f) by taking the minimum peak: BMI =
Maximum = 111;

The metric measures are F =0.9600, RandIndx =
0.949 5, AdjRandIndx = 0.885 7 on the IRIS dataset. x is

used for better presentating the peak.
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Fig. 5 Dataset performed by the proposed algorithm

The proposed algorithm is presented below and writ-
ten in nine lines, which could be divided into three steps
(see Algorithm 1). Lines 1-6 are written for the first step,
as shown in Fig. 5(a). Lines 7 and 8 refer to the second
step as shown in Fig. 5(b). For a better understanding of
Lines 7 and 8, two rule are described (see Algorithm 2
and Algorithm 3). In these lines based on the gained
Eps2, values have been tried to merge and separate the
sub clusters and line 9 is the deciding data, which does
not belong to any clusters, as shown in the third step and
Fig. 5(c). Rule A is divided into five parts: The first part
is defined as the sets and the rest of them are sub rules,
which happens during the running algorithm. Sub rule 0
(line 1) checks the completely separable clusters. Other
sub rules (lines 3—5) check different conditions and gain
Eps2. Rule B with eight lines based on Eps and Diff is as-
signed to carry out the separation or merging of sub clusters.

Algorithm 1 AFD

BEGIN

1. Require: d-dimensional data set (D), Number of data
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points (N), Epsl, and MinPoints parameters.
2. Normalizing the data points with (5).
3. Gaining neighborhood degree of normalized data
points with (2).
4. Providing sub clusters with DBSCAN (by using
Epsl and MinPoints parameters).
5. For all sub clusters gain the mean of sub clusters.
6. Calculating the distance between per mean of sub
clusters (called as Dmean).
7. Finding the Eps2 and Pos with Dmean (Call the
rule_A function).
8. Merging or separating sub clusters with Eps2 (call
the rule_B function).
9. Obtaining the mean of sub clusters and clustered re-
maining of data points (not belong to any cluster).
END
Algorithm 2 Rule A function
BEGIN
1. Use Definition 1 and Definition 2 for finding peak of
them, then create set for them.
2. Use the binary check of sets and calculate intersect
with them.
3. Obtaining the peak of the Minimum set intersected
with the maximum set.
Eps2 = Diff(position = peak of the minimum set)
4. Obtaining the peak of the minimum set and no any
peak in the maximum set.
Eps2 = Diff(position = peak of the minimum set)
5. Obtaining the peak of the minimum set intersected
with the minimum set.
Eps2 = Diff(position = intersect the peak of minimum
and minimum sets)
Return Eps2, Pos
END
Algorithm 3 Rule B function
BEGIN
1. Based on the Eps2 set
2. For [ each of Eps2 set
3. For J each of Diff set
4. If Eps(1) > Diff(J)
5. Create new cluster
6. End
7. End
8. End
Return Set of sub cluster
END
For better representing the dataset, we show three
graphics (three classes in 2-dimentional based on the two
attributes, as shown in Fig. 5(a), Fig. 5(b) and Fig. 5(c)).
In running, with initialization of the parameters Epsl =
0.53, MinPts = 5, we gain states of sub clusters, which
are guided to decide the merging and separating of sub
clusters. Fig. 5(d), Fig. 5(e), Fig. 5(f) and Fig. 5(g) are
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generated by Rule A with Eps2 = 0.664 9 and Pos = 2,
see Fig. 5(g) and Fig. 4. Here, Eps2 = 0.664 9 is the same
as Eps2 = 0.665 1 in Fig. 4. For separation, we need the
amount less than one (e.g., Eps2 = Eps2 — 0.000 2). Then
Rule B is used for separating and merging sub clusters
which means if Eps2 = 0.664 9 < Eps2 = 0.665 1 (critic
point), it leads to generating two new sub clusters. See
Figs. 6-8 for observing clustering steps on the Iris dataset.
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Fig. 7 Spactral clustering on Iris dataset with sigma =2
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4. Experimental results

The experiment is performed on three real and five syn-
thetic datasets (see Fig. 9). The real datasets are obtained
from the University of California, Irvine (UCI) Machine
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Learning Repository such as Wine, Glass and Iris data-
sets that are suitable for testing overlapping datasets and
for testing the morphology of datasets. We use synthetic
datasets. To compare algorithms, features based on par-
tial, fuzzy, density clustering are considered.
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(a) Corner cluster
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(d) Two spiral clusters

(b) Four separate clusters closely

(c) Two separate clusters

—

SOOI NCOD

|
—_

(e) Cluster in cluster

Fig. 9 Synthetic datasets

They are also popular in the clustering field, but the
disadvantages of them are not overcome to one of the
mentioned problems. In this paper, our algorithm is com-
pared with well-known DBSCAN, fuzzy means and K-
means with the average of 30 times running. For measur-

ing the performance of the algorithm regarding accuracy
on datasets, well-known measures such as rand, adjusted
rand and F-measure have been used. In Table 1, the maxi-
mum values of indices are bolded and Table 2 shows
their parameters.

Table 1 All algorithms with rand, adjusted rand and F-measure
Name Index Wine Glass Iris  Cluster in cluster Corner separate Four separate cluster Two separate cluster Two spiral
RandIndx 9.28E-01 7.96E-01 9.42E-01 1 1 1 1 1
ADF AdjRandIndx 8.39E-01 4.87E-01 8.68E-01 1 1 1 1 1
F-measure  9.48E-01 4.66E-01 9.53E-01 1 1 1 1 1
RandIndx  5.81E-01 6.55E-01 8.64E-01 1 1 5.87E-01 1 1
DBSCAN AdjRandIndx 2.43E-01 3.03E-01 7.16E-01 1 1 3.36E-01 1 1
F-measure 4.47E-01 5.70E-01 6.72E-01 1 1 2.58E-01 1 1
RandIndx  8.69E-01 7.97E-01 8.80E-01 5.00E-01 1 1 1 5.34E-01
Fuzzy means AdjRandIndx 7.09E-01 4.49E-01 7.29E-01  —9.15E-04 1 1 1 6.73E-02
F-measure  8.85E-01 4.70E-01 8.93E-01 5.04E-01 1 1 1 6.30E-01
RandIndx  9.42E-01 7.65E-01 8.74E-01 5.00E-01 8.31E-01 8.84E-01 1 5.26E-01
K-means AdjRandIndx 8.69E-01 3.37E-01 7.16E-01  —5.28E-04 8.25E-01 7.22E-01 1 5.24E-02
F-measure  0.954 9 4.50E-01 8.85E-01 5.10E-01 7.47E-01 7.16E-01 1 6.06E-01

We notice the AFD algorithm has more robust results
than the others except on the Glass dataset with adjusted
rand and F-measure, and on the Wine dataset with F-
measure. The other advantage of the AFD algorithm is
that it achieves all datasets with correct number except
for Glass. The proposed algorithm and some recent den-

sity-based algorithms such as LOF and spectral cluster-
ing which are performed on the Iris dataset are shown in
Figs. 6-8. It can be seen that spectral clustering and LOF
are unable to cluster the Iris dataset. Each color indicates
a cluster except pink.
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Table 2 Parameters settings

Name Wine Glass ris Cluster in Corner Four separate  Two separate Two spiral
cluster separate cluster cluster
Eps1 =0.19 Epsl =0.60 Epsl =0.60 Epsl =0.7 Eps1 =0.8 Epsl =0.7 Epsl =0.2 Epsl =0.7
AFD MinPoint=4  MinPoint=3  MinPoint=3 MinPoint=10 MinPoint=31 MinPoint=10 MinPoint=5 MinPoint= 10
MinPoint=4, MinPoint=5, MinPoint=35, MinPoint=1, MinPoint=4, MinPoint=4, MinPoint=3, MinPoint=3,
DBSCAN Eps=0.5 Eps=0.5, Eps=0.8950 Eps=0.001 Eps=0.8950 Eps=0.9 Eps=0.5 Eps=0.5
M=2,Cluster M=2,Cluster M=2,Cluster M=2,Cluster M=2,Cluster M=2, Cluster M=2,Cluster M =2, Cluster
number = 3, number = 6, number = 3, number = 2, number = 4, number = 4, number = 2, number = 2,
Fuzzy M=3,Cluster M=3,Cluster M=3,Cluster M=3,Cluster M=3,Cluster M =3, Cluster M =3, Cluster M =3, Cluster
means number = 3, number = 6, number = 3, number = 2, number = 4, number = 4, number = 2, number = 2,
M=4,Cluster M=4,Cluster M=4,Cluster M=4,Cluster M=4,Cluster M=4,Cluster M=4,Cluster M =4, Cluster
number = 3 number = 6 number =3 number = 2 number = 4 number = 4 number = 2 number = 2
K-means Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster
number =3 number = 6 number =3 number =2 number = 4 number = 4 number = 2 number =2

5. Conclusions and future work

The proposed algorithm focusing on a variant shape data-
set in terms of efficiency has been tested on the real data-
set and synthetic dataset. It generates two parameters
called Eps2 and Pos in the inner dataset, which are
presented in order to make a decision between separating
and merging data. The results of our experiments demon-
strate that the AFD algorithm shows better results than
the other algorithms, which is applied to the real dataset
of UCI benchmark (Wine, Glass and Iris) datasets and
synthetic datasets (the rest of the datasets). AFD is able to
run in low dimensions, but it is more time consuming
than others. The challenge here is Epsl and MinPoints
parameters, which should be initialized carefully. The dif-
ferent initializations lead to generating different clusters
with Eps2 and Pos, which will be a challenge in this
study. Generally, initialization parameters are performed
by observing the high density. We need to estimate the
amount of them in initialization. In the future, we plan to
extend this algorithm considering the mentioned chal-
lenge by metaheuristic methods. Metaheuristic methods
with their own power search on functional space lead to
the best solution to initialization parameters.
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