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Abstract: Most  existing  studies  about  passive  radar  systems
are  based  on  the  already  known  illuminator  of  opportunity  (IO)
states.  However,  in  practice,  the  receiver  generally  has  little
knowledge  about  the  IO  states.  Little  research  has  studied  this
problem.  This  paper  analyzes  the  observability  and  estimability
for  passive  radar  systems  with  unknown  IO  states  under  three
typical scenarios. Besides, the directions of high and low estim-
ability  with  respect  to  various  states  are  given.  Moreover,  two
types of observations are taken into account. The effects of dif-
ferent  observations  on  both  observability  and  estimability  are
well  analyzed.  For  the  observability  test,  linear  and  nonlinear
methods are  considered,  which  proves  that  both  tests  are  ap-
plicable to  the  system.  Numerical  simulations  confirm  the  cor-
rectness of the theoretical analysis.
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1. Introduction
Passive radar works with the help of non-cooperative illu-
minators of opportunity (IOs), which is also called passive
coherent  location  (PCL)  system  [1−6].  Compared  with
the  conventional  active  counterparts  that  use  their  own
dedicated transmitters, passive radar has a number of ad-
vantages, such as easy construction, spectrum saving, and
significant  performance  improvement  with  multi-static
configuration.  However,  since  the  receiver  generically
has  no  prior  knowledge  of  the  IO  waveform,  one  may
have  difficulty  gaining  the  aforementioned  superiorities.
Hence,  intensive  attention  has  been  paid  to  the  research
filed on passive radar systems.

Target localization and tracking are hot research topics
in  passive  radar.  In  [7]  and  [8],  two joint  delay-Doppler
estimators were proposed, where the direct-path interfer-

ence (DPI) to the surveillance channel was taken into ac-
count.  The  direct-path  delay  was  compensated  based  on
the assumption that the IO location has been obtained for
simplifying the problem model. Abdullah et al. [9] proved
that  the  passive  radar  utilizing  the  stationary  long-term
evolution (LTE) communication station as IO could offer
a satisfying performance on moving vehicle tracking. To
the best of our knowledge, almost all existing studies as-
sume  that  the  IO  location  is  fixed  and  exactly  known.
However, such an assumption deviates from the real situ-
ation.  For instance,  the passive radar may be required to
promptly  deploy  in  some  unfamiliar  areas.  Therefore,
little knowledge about the IO states, such as the IO loca-
tion, could be provided to the receiver in advance. Hence,
the  system  has  to  simultaneously  estimate  the  states  of
both the IO and targets for its radar function. Herein, the
problem is regarded as the simultaneous localization and
mapping  (SLAM)  or  opportunistic  navigation  (OpNav)
problem [10]. In  contrast  to  these  two problems,  the  en-
vironment in the passive radar is more complex since the
IO states  are  dynamic.  Therefore,  studying the  target  lo-
calization  and  tracking  problems  without  the  knowledge
of  the  IO  states  is  extremely  necessary.  First  of  all,  we
should  find  out  whether  such  problems  have  solvability.
This paper aims to make a detailed analysis of the observ-
ability in passive radar systems with unknown IO states.
Simultaneously, the degree of observability, i.e., estimabi-
lity, is considered.

Observability is  an  important  concept.  When  the  sys-
tem  is  observable,  a  unique  solution  about  the  system
states  can  be  obtained  [11].  In  general,  a  passive  radar
system is nonlinear. Several major methods for nonlinear
observability analysis are concluded as follows. First, the
geometric  approach  extracts  the  information  associated
with the parameters of target motion. Rao [12] adopted an
elementary geometry method to analyze the observability
of  an  observer  with  a  multi-leg  trajectory  in  a  bearings-
only  system.  Based  on  the  similar  analysis,  a  method  to
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calculate the  target  range  using  bearings-only  measure-
ment  was  given  in  [13].  Second,  the  linear  observability
test  that  converts  the  nonlinear  system  model  into  its
pseudo-linear form may be exploited to nonlinear observ-
ability analysis. Jauffret et al. [14] proved that the neces-
sary and sufficient condition for the system to be observ-
able over a given finite time period is the so-called Gram
matrix reversible. Since the Gram matrix is computation-
ally intractable, Becker [15] gave an equivalent but more
simple  criterion.  Song  [16]  extended  such  analysis  to  a
broader target  motion  model.  Finally,  the  nonlinear  ob-
servability test is the most common analysis tool for non-
linear systems, in which two methods are typically used.
One is the extension of the linear Gram matrix criterion,
where  relative  Jacobian  matrices  are  utilized  to  take  the
place of the state transition and observation matrices [17].
The  other  is  based  on  examining  the  Fisher  information
matrix (FIM) [18−21]. Besides, some research studied the
observability by constructing the piece-wise constant sys-
tem (PWCS) model [22−27].

In  this  work,  the  observability  and  estimability  for
passive  radar  systems  are  studied.  The  contributions  of
this paper are given as follows. First, different from most
existing research  with  already  known  IO  states,  the  ob-
servability with unknown and dynamic IO states in three
typical scenarios is analyzed, which demonstrates whether
the system in each scenario is observable. Second, associ-
ated estimability  is  also  studied  by  decomposing  the  er-
ror  covariance  matrix  of  the  extended  Kalman  filter
(EKF).  Third,  we  consider  the  effect  of  two  different
types of observations on both observability and estimabil-
ity.  Fourth,  two  observability  analysis  methods,  linear
and nonlinear observability tests, are applied. Theoretical
analysis proves  that  both  tests  are  applicable  to  the  sys-
tem. Finally,  experimental  results  validate  the  correct-
ness  of  the  theoretical  analysis  and  illustrate  that  the  IO
and  target  states  can  be  simultaneously  estimated.  It  is
worth  pointing  out  that  Guo et  al.  [28]  studied  a  similar
problem  about  the  observability  without  experimental
validation,  where the necessary and sufficient  conditions
for local observability are derived based on FIM. This pa-
per extends the work of [28] in four different ways. First,
the observability  under  more  configurations  is  con-
sidered. Second,  starting  from the  rigorous  local  proper-
ties of observability, both linear and nonlinear observabil-
ity tests are used, which may have less computation than
the  method  in  [28].  Importantly,  simulation  experiments
are  given  to  confirm  the  correctness  of  our  analysis.
Third, we  additionally  analyze  the  corresponding  estim-
ability. Finally, the effect of different observations on the
system is also studied.

The rest  of  the  paper  is  organized  as  follows.  In  Sec-

tion  2,  the  problem model  is  given.  In  Section  3,  the  li-
near  and  nonlinear  observability  test  tools  are  studied.
Besides,  the  observability  analysis  with  unknown  IO
states  using  different  observations  is  deduced.  Section  4
introduces a method to analyze system estimability. Sim-
ulation results are illustrated in Section 5.

2. Problem formulation

Xr = [pT
r , ṗT

r ]T

pr = [xr,yr]T ṗr = [ẋr, ẏr]T

We consider three typical cases in passive radar systems:
(i)  single  receiver  with  single  target  and  single  IO
(SRSTSIO), (ii) single receiver with multiple targets and
single  IO  (SRMTSIO),  and  (iii)  single  receiver  with
single  target  and  multiple  IOs  (SRSTMIOs).  Both  target
and  IO states  are  dynamic  and  unknown to  the  receiver.
Herein,  only  one  receiver  with  the  state  is
considered,  where  and   are as-
sociated location and velocity states, respectively. We as-
sume  that  the  receiver  states  are  exactly  known.  More-
over,  the  system  will  not  lose  the  measurements  of  the
targets and IOs during the receiver observation period.

2.1    State model

M N

Xt,i = [pT
t,i, ṗT

t,i]
T pt,i = [xt,i,

yt,i]T i Xg, j = [pT
g, j, ṗT

g, j]
T pg, j =

[xg, j,yg, j]T j

T s

Suppose  that  IOs  and  targets  are  in  the  surveill-
ance area. They all maneuver with the nearly constant ve-
locity  (NCV)  model.  Let  with  

 be the state of the th IO.  with 
 is  designated  as  the  state  of  the th  target.

Hence,  the  discrete-time  (DT)  IO  state  model  with  the
sampling interval  is

Xt(k+1) = Ft Xt(k)+wt(k) (1)

wt

Qt Ft

where  is the  IO  process  noise  vector,  which  is  as-
sumed to be a zero-mean unrelated Gaussian white noise
sequence with the covariance .  is the state transition
matrix, which is denoted as

Ft =


1 0 T s 0
0 1 0 T s

0 0 1 0
0 0 0 1

 .
Xt

Xt,1 Xt

Xt = [XT
t,1,XT

t,2, · · · ,XT
t,M]T

F′t
Q′t

Ft Qt

It  should  be  noted  that  when  a  single  IO  exists,  is
equal  to .  While  considering  multiple  IOs,  will  be
augmented  to . Then  the  associ-
ated state transition matrix  and the process noise cova-
riance  are augmented to diagonal matrices with diago-
nal elements composed of  and , respectively, i.e.,

F′t =


Ft,1

Ft,2
. . .

Ft,M


and
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Q′t =


Qt,1

Qt,2
. . .

Qt,M

 .
Similarly, the DT target state model is defined as

Xg(k+1) = Fg Xg(k)+wg(k) (2)

Fg = Ft

wg

Qg

where  is the state transition matrix of the target,
 is a  zero-mean  unrelated  Gaussian  white  noise  se-

quence with the covariance . While multiple targets are
taken into account, variables in the target state model are
similarly augmented as the case with multiple IOs.

X = [XT
t ,XT

g ]T

For the observability analysis, the system state is desig-
nated as . Hence, the system state model is

X(k+1) = FX(k)+w(k) (3)

F = diag[Ft,Fg] w = [wT
t ,wT

g ]T

Q = diag[Qt,Qg]

where ;  is a  zero-mean un-
related Gaussian  white  noise  sequence  with  the  covari-
ance .

2.2    Observation model

In  this  problem,  all  the  observations  from the  target  and
the IO should be centrally processed at the receiver with

αi i
i = 1,2, · · · ,M

an appropriate filter. Herein, for clarity, we define the ob-
servation only produced by the IO as the IO observation
(IOO) and the observation related to the target as the tar-
get observation (TO), respectively. Hence, the whole sys-
tem observations  are  composed  of  IOOs  and  TOs.  As-
sume that the IOO is only the angle of arrival (AOA). Let

 be the AOA observation generated by the th IO, where
. Whereby,

αi = arctan
yt,i− yr

xt,i− xr
. (4)

fd,i j

j
i i = 1,2, · · · ,M j = 1,2, · · · ,N

Two types of TOs are considered in this paper. One is
based  on  single  observation  from  the  target  (SOT).  The
other  utilizes  joint  observation  from the  target  (JOT).  In
the conventional  passive  location  that  only  collects  sig-
nals emitted  by  the  target,  single  observation  with  Dop-
pler  difference can determine both the target's  range and
velocity.  Compared  with  other  observations,  such  as
AOA that can only give the direction of the target motion,
Doppler  difference  is  more  attractive  in  practice.  Hence,
for the SOT case,  the TO only contains the Doppler dif-
ference  information.  Therefore,  let  be  the  Doppler
difference  in  terms  of  the th  target  associated  with  the
th IO [29], where , . Then

fd,i j = −
fc,i

c

[ (pr − pg, j)T( ṗr − ṗg, j)
∥pr − pg, j∥2

+
(pg, j− pt,i)T( ṗg, j− ṗt,i)
∥pg, j− pt,i∥2

−
(pt, j− pr)T( ṗt, j− ṗr)
∥pt, j− pr∥2

]
(5)

fc,i i c
∥ · ∥2

β j j
ρi j i j

i = 1,2, · · · ,M j = 1,2, · · · ,N

where  is  the  carrier  frequency  of  the th  IO,  is  the
speed  of  light,  represents  the  2-norm  operator.  For
the JOT  case,  the  AOA  from  the  target  and  time  of  ar-
rival (TOA) [30] are considered, the reasons of which are
given as follows. First, computing the observability mat-
rix  will  be  more  intractable  if  the  observation  vector  is
augmented based on the Doppler difference. Second, the
calculation  of  the  Jacobian  matrix  of  the  AOA  is  relati-
vely simple. However,  the expression of the target AOA
has no relationship with the IO. Hence, only using target
AOA observation will make the problem identical to tar-
get tracking with bearing-only measurements. Finally, the
TOA  observation  is  absorbed  in  order  to  simplify  the
computation  and  make  the  observation  related  to  the  IO
states,  which can also improve the tracking performance
in practical applications when the carrier frequency of the
IO is low [30,31]. Let  be the AOA from the th target,
and  be  the  TOA  from  the th  IO-target  pair,  where

, . Hence,

β j = arctan
yg, j− yr

xg, j− xr
, (6)

ρi j = ∥pr − pg, j∥2+ ∥pg, j− pt,i∥2. (7)

Therefore,  two types  of  the  system observation model
are

Z s(k+1) = hs[X(k+1)]+ vs(k+1), (8)

Zo(k+1) = ho[X(k+1)]+ vo(k+1), (9)

Z s = [αT, f T
d ]T

α = [α1, · · · ,αM]T fd = [ fd,11, · · · ,
fd,MN]T vs

Rs = diag[σ2
α1
, · · · ,σ2

αM
,σ2

fd,11
, · · · ,σ2

fd,MN
]

Zo = [αT,ρT,βT]T

ρ = [ρ11, · · · ,ρMN]T β = [β1, · · · ,βN]T

vo

Ro = diag[σ2
α1
, · · · ,

σ2
αM
,σ2
ρ11
, · · · ,σ2

ρMN
,σ2
β1
, · · · ,σ2

βN
] σ

where  is the observation vector in terms of
the  SOT  case  with  and  

;  is  the  observation  noise,  which  is  assumed to
be a zero-mean unrelated white Gaussian noise sequence
with the covariance ;

 is the observation vector in terms of the
JOT  case  with  and  ;

 is assumed to be a zero-mean unrelated white Gaussian
noise  sequence  with  the  covariance 

, where  is the correspond-
ing observation noise.

3. Observability test and analysis
If the initial state of a system can be uniquely determined
by the system output with a given input function, such a
system  will  be  treated  as  observable  [32].  In  this  paper,
linear and nonlinear observability tests [33] are applied to
determining whether the system in each scenario with dif-
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ferent observations is observable.

3.1    Observability test

3.1.1    Nonlinear observability test
For a  nonlinear  system,  the  global  observability  is  diffi-
cult  to  establish  since  the  system  may  distinguish
between  initial  conditions  over  a  long  period  of  time.
Hence, local properties are more applicable [33,34]. Par-
ticularly, a  system is  supposed to be instantaneously ob-
servable  in  a  certain  neighborhood  of  the  state  trajecto-
ries [35]. Besides, it is suitable to utilize the nonlinear ob-
servability  test  to  analyze nonlinear  systems,  which may
better reflect the characteristics of the systems. Therefore,
an observability algebraic test based on establishing local
weak observability  of  the  nonlinear  system with its  con-
trol affine form is applied [36]. The control affine form of
a  continuous-time  (CT)  nonlinear  system  can  be  written
as

∑
NL

:

 Ẋ(t) = f0[Ẋ(t)]+
r∑

i=1

fi[Ẋ(t)]ui

Z(t) = h[X(t)]
(10)

X Z f
h u

where  is the state vector,  is the observation vector, 
is the state function,  is the observation function, and 
is  the control  input  vector.  The algebraic  test  establishes
the  local  weak  observability  by  constructing  a  nonlinear
observability matrix with the Lie derivative. Such a non-
linear observability matrix is calculated as

ΓNL = ∇X[L0
f h(X),L1

f h(X), · · · ,Ln−1
f h(X)]T (11)

∇X

X n X f = [ f1, f2, · · · , fn]T

h = [h1,h2, · · · ,hm]T

m
Z

where  represents the gradient according to the system
state ,  is  the  dimension  of ,  is
the  vector  of  state  function,  is  the
vector of observation function, and  is the dimension of

. The calculation rules of Lie derivative is defined as

L0
f h(X) = h(X), (12)

L1
f h(X) = ⟨∇X h(X), f (X)⟩, (13)

L2
f h(X) = ⟨[∇XL1

f h(X)], f (X)⟩, (14)

⟨·⟩where  is the inner product operator.∑
NL

X = X0

ΓNL

It  is  worth  noting  that  a  system  is  locally  weakly

observable at   if  the  nonlinear  observability  ma-
trix  is full rank [10,37].
3.1.2    Linear observability test
Consider a  DT  linear  time-varying  (LTV)  system  de-
noted as ∑

L

:
{

X(k+1) = F(k)X(k)+G(k)u(k)
Z(k) = H(k)X(k)

(15)

X(k) n Z(k)
m u(k) r

F(k) H(k) G(k)
n×n m×n n× r

where  is the -dimensional state vector,  is the
-dimensional  observation  vector,  and  is  the -di-

mensional  control  vector. ,  and   are
matrices with , , and  dimensions, respecti-
vely. ∑

L
ΓL

k ΓL

A  linear  system  is said  to  be  completely  observ-

able if  the linear observability matrix,  denoted by ,  is
full-rank for all values of  [38], where  is calculated
as

ΓL =



H(k)
H(k+1)F(k)

H(k+2)F(k+1)F(k)
...

H(k+n−1)F(k+n−2) · · ·F(k)


. (16)

l ∑
L

However,  we  focus  on  the  local  observability  rather
than  global  observability.  Here,  we  utilize  the -step ob-

servability matrix to furnish the local observability of 
[27,39]. The matrix defined in (16) is rewritten as

ΓL(k,k+ l) =

H(k)
H(k+1)F(k)

H(k+2)F(k+1)F(k)
...

H(k+ l−1)F(k+ l−2) · · ·F(k)


.

(17)

∑
L

l

k k+ l−1
ΓL(k,k+ l)

The  system  is  locally -step  observable  over  the

time  period  from  to   if  and  only  if  the  matrix
 is full rank.

Note  that  the  nonlinear  system  defined  in  Section  2
should be changed to its linearized error form for apply-
ing this linear test [27].

3.2    Observability analysis with unknown IO states

The observability of passive radar systems with unknown
IO states using different observations under three typical
cases is analyzed in this subsection. Based on the two ob-
servability  tests,  we  will  prove  whether  the  system  in
each scenario is observable.
3.2.1    Geometry singularity
We assume that the receiver, target, and IO are not colli-
near  in  the  forthcoming  analysis  since  the  observability
matrix will lose rank. A simple example will be given to
prove this point.

Consider  a  non-collinear  SRSTSIO  case,  where  the
system  has  prior  knowledge  of  the  IO  initial  states.

1196 Journal of Systems Engineering and Electronics Vol. 31, No. 6, December 2020



X = [XT
t ,XT

g ]T =

[xt,yt, ẋt, ẏt, xg,yg, ẋg, ẏg]T

Z s = [Xt,α, fd]T

Zo = [Xt,α,ρ,β]T

Hence,  the  system  state  is  defined  as 
, the dimension of which is eight.

The  observation  vector  is  for  SOT  and
 for JOT, respectively [10].{

∇T
X[L0

f0
hq(X)],

q = 1,2,3,4; ∇T
X[Lp

f0
h6(X)], p = 0,1,2,3

}
ΓNL rank(ΓNL) = 8

(i) Analysis with SOT. For the nonlinear observability
test, the only linearly independent rows are 

  in  terms  of  the
matrix . Hence, , which means the sys-
tem has the local weak observability.

Z s

For the linear observability test, the observation vector
 leads to the Jacobian matrix denoted as

H(k) =


I4×4 0
ζr,t(k) 0

Ur,t,g(k) Or,t,g(k)

 (18)

I4×4 ζr,t(k) = [−Bt,r(k),At,r(k),0,0]
α

Ur,t,g(k) = [pt Ur,t,g(k), ṗt Ur,t,g(k)]
fd Or,t,g(k) =

[pg Or,t,g(k), ṗg Or,t,g(k)] fd

where  is the unit matrix, 
is  the derivative of the IO AOA observation  to the IO
states,  is  the  derivative  of
the  Doppler  difference  to  the  IO  states, 

 is  the  derivative  of  to  the  target
states, where

pt Ur,t,g(k) =

− fc

c

[( xΩt,g(k)−δA
g,t(k)

∥pg(k)− pt(k)∥22
−

xΩt,r(k)−δA
t,r(k)

∥pt(k)− pr(k)∥22

)
·( yΩt,y(k)−δB

g,t(k)

∥pg(k)− pt(k)∥22
−

yΩt,r(k)−δB
t,r(k)

∥pt(k)− pr(k)∥22

)]
, (19)

ṗt Ur,t,g(k) = − fc

c
[(At,g(k)−At,r(k))(Bt,g(k)−Bt,r(k))], (20)

At,g(k) =
xt(k)− xg(k)
∥pg(k)− pt(k)∥2

, (21)

At,r(k) =
xt(k)− xr(k)
∥pt(k)− pr(k)∥2

, (22)

Bt,g(k) =
yt(k)− yg(k)
∥pg(k)− pt(k)∥2

, (23)

Bt,r(k) =
yt(k)− yr(k)
∥pt(k)− pr(k)∥2

, (24)

xΩt,g(k) = ∥pg(k)− pt(k)∥2[ẋt(k)− ẋg(k)], (25)

xΩt,r(k) = ∥pt(k)− pr(k)∥2[ẋt(k)− ẋr(k)], (26)

yΩt,g(k) = ∥pg(k)− pt(k)∥2[ẏt(k)− ẏg(k)], (27)

yΩt,r(k) = ∥pt(k)− pr(k)∥2[ẏt(k)− ẏr(k)], (28)

δA
g,t(k) = [pg(k)− pt(k)]T · [ ṗg(k)− ṗt(k)]At,g(k), (29)

δA
t,r(k) = [pt(k)− pr(k)]T · [ ṗt(k)− ṗr(k)]At,r(k), (30)

δB
g,t(k) = [pg(k)− pt(k)]T · [ ṗg(k)− ṗt(k)]Bt,g(k), (31)

δB
t,r(k) = [pt(k)− pr(k)]T · [ ṗt(k)− ṗr(k)]Bt,r(k), (32)

pg Or,t,g(k) =

− fc

c

[( xΩg,r(k)−δC
r,g(k)

∥pr(k)− pg(k)∥22
+

xΩg,t(k)−δC
g,t(k)

∥pg(k)− pt(k)∥22

)
,

( yΩg,r(k)−δD
r,g(k)

∥pr(k)− pg(k)∥22
+

yΩg,t(k)−δD
g,t(k)

∥pg(k)− pt(k)∥22

)]
, (33)

ṗg Or,t,g(k) = − fc

c
[(Cg,r(k)+Cg,t(k))·

(Dg,r(k)+Dg,t(k))], (34)

Cg,r(k) =
xg(k)− xr(k)
∥pr(k)− pg(k)∥2

, (35)

Cg,t(k) =
xg(k)− xt(k)
∥pg(k)− pt(k)∥2

, (36)

Dg,r(k) =
yg(k)− yr(k)
∥pr(k)− pg(k)∥2

, (37)

Dg,t(k) =
yg(k)− yt(k)
∥pg(k)− pt(k)∥2

, (38)

xΩg,r(k) = ∥pr(k)− pg(k)∥2[ẋg(k)− ẋr(k)], (39)

xΩg,t(k) = ∥pg(k)− pt(k)∥2[ẋg(k)− ẋt(k)], (40)

yΩg,r(k) = ∥pr(k)− pg(k)∥2[ẏg(k)− ẏr(k)], (41)

yΩg,t(k) = ∥pg(k)− pt(k)∥2[ẏg(k)− ẏt(k)], (42)

δC
r,g(k) = [pr(k)− pg(k)]T · [ ṗr(k)− ṗg(k)]Cg,r(k), (43)

δC
g,t(k) = [pg(k)− pt(k)]T · [ ṗg(k)− ṗt(k)]Cg,t(k), (44)

δD
r,g(k) = [pr(k)− pg(k)]T · [ ṗr(k)− ṗg(k)]Dg,r(k), (45)

δD
g,t(k) = [pg(k)− pt(k)]T · [ ṗg(k)− ṗt(k)]Dg,t(k). (46)

rank[ΓL(0, l)] = 8 ∀l ⩾ 4
l = 1 ΓL(0, l)

l = 4

Hence, based on (17), , . In par-
ticular,  when ,  the rank of  is  5 with linearly
independent rows 1, 2, 3, 4, and 6. Both the rank and the
number  of  linearly  independent  rows  increase  by  one  as
each additional time step adds until . Finally, all the
linearly independent rows are 1, 2, 3, 4, 6, 12, 18, and 24.
Therefore, the system is proved to be locally observable.
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{∇T
X[L0

f0
hq(X)],

q = 1,2,3,4; ∇T
X[Lp

f0
hq(X)], p = 0,1,q = 6,7}

ΓNL rank(ΓNL) = 8

(ii) Analysis with JOT. For the nonlinear observability
test, the only linearly independent rows are 

  in  terms  of
the matrix . Hence, .

Zo

For  the  linear  observability  test,  the  Jacobian  matrix
with the corresponding observation vector  is

H(k) =



I4×4 0

ζr,t(k) 0

Sr,g,t(k) Vr,g,t(k)

0 ψr,g(k)


(47)

where
ψr,g(k) = [−Dg,r(k),Cg,r(k),0,0], (48)

Sr,g,t(k) = [At,g(k),Bt,g(k),0,0], (49)

Vr,g,t(k) = [(Cg,r(k)+Cg,t(k)),

(Dg,r(k)+Dg,t(k)),0,0]. (50)

rank[ΓL(0, l)] = 8 ∀l ⩾ 2
ΓL(0, l)

l = 2
ΓL(0, l)

Based on (17), , .  In particular,
the rank of  is 6 at the first time step, where rows
1, 2, 3, 4, 6, and 7 are linearly uncorrelated. When ,
the rank of  increases to 8 with additional linearly
independent rows 13 and 14, and will no longer increase
as the time step increases.

xg > xr yg > yr

α(k) = β(k) fd(k) =
0 ρ(k) = ∥pr(k)− pt(k)∥2

ΓNL ΓL

Consider the collinear geometry case. More simply, the
target is assumed to locate between the IO and the receiver,
i.e.,  and . Hence, the system measurements
have  the  following  relationship: , 
,  and . Therefore, the ranks of ob-

servability matrices  and  all drop to 4 for both SOT
and JOT cases. Besides, no observable states exist in the
null space  of  the  corresponding  observability  matrix  ex-
cept the known IO states [26].
3.2.2    Observability analysis

The  forthcoming  analysis  will  give  the  theorems  and
proofs about the system observability.
Theorem 1　 In the SRSTSIO scenario with unknown

IO states, the passive radar system is observable for both
SOT and JOT cases.

X = [XT
t ,XT

g ]T

F = diag[Ft,Fg]
Z s = [α, fd]T Zo = [α,ρ,β]T

Proof　 The system state vector in this case is defined
as ,  where  the  corresponding  state  transi-
tion matrix is . The observation vector is

 for SOT, and  for JOT.{
∇T

X[Lp
f0

h1(X)], p = 0,1,2; ∇T
X[Lp

f0
h2(X)], p = 0,

1, · · · ,4
}

ΓNL rank(ΓNL) = 8

(i) Analysis with SOT. For the nonlinear observability
test, rows    

 are  linearly  uncorrelated  in  terms  of  the  matrix
. Hence, .

For  the  linear  observability  test,  empty  knowledge  of
IO initial states yields the Jacobian matrix given as

H(k) =

 ζr,t(k) 0

Ur,t,g(k) Or,t,g(k)

 . (51)

rank[ΓL(0, l)] = 8 ∀l ⩾ 5
l = 1 ΓL(0, l)

l = 3

l = 2 l = 3
l = 4

l = 5

Hence, based on (17), , . In par-
ticular,  when ,  the rank of  is  2 with linearly
independent  rows  1  and  2.  The  rank  increases  by  2  as
each  additional  time  step  adds  until . The  corres-
ponding additional linearly independent rows are 3 and 4
at , and 5 and 6 at . The rank increases to 7 with
additional  linearly  independent  row  8  at .  When

, the rank increases to 8 and will  no longer increase
as the time step increases. Finally, rows 1, 2, 3, 4, 5, 6, 8,
and 10 are all linearly uncorrelated.{

∇T
X[Lp

f0
hq(X)], p = 0,1,q = 1,2,3; ∇T

X[L2
f0

hq(X)],

q = 1,2
}

ΓNL rank(ΓNL) = 8

(ii) Analysis with JOT. For the nonlinear observability
test, rows  

 are  linearly  uncorrelated  in  terms  of  the  matrix
. Hence, .

For the linear observability test, the Jacobian matrix is

H(k) =


ζr,t(k) 0

Sr,g,t(k) Vr,g,t(k)

0 ψr,g(k)

 . (52)

rank[ΓL(0, l)] = 8 ∀l ⩾ 3
l = 1 ΓL(0, l)

l = 2
l = 3

Hence, based on (17), , . In par-
ticular,  when ,  the rank of  is  3 with linearly
independent rows 1,  2,  and 3.  The rank increases to 6 at

.  Three  additional  linearly  independent  rows  4,  5,
and 6 are added. When , the rank increases to 8 and
will no longer increase as the time step increases. Finally,
the linearly independent rows are from 1 to 8.　　　　□
Theorem 2　 In the SRMTSIO scenario with unknown

IO states, the passive radar system is observable for both
SOT and JOT cases.

X = [XT
t ,XT

g1
,XT

g2
, · · · ,XT

gN
]T

F = diag[Ft,Fg1 ,Fg2 , · · · ,FgN
]

Z s = [α, fd1 , fd2 , · · · , fdN
]T

Zo = [α,ρ1,β1,ρ2,β2, · · · ,ρN ,βN]T

Proof　 The system sate vector in this case is defined
as ,  where  the  corresponding
state  transition  matrix  is .
The  observation  vector  is  for
SOT, and  for JOT.

N = 1 N ⩾ 2{
∇T

X[Lp
f0

h1(X)], p = 0,1,2;∇T
X[Lp

f0
h2(X)], p = 0,1,2,3,4;

∇T
X[Lp

f0
h2(X)], p = 0, 1,2,3,q = 3,4, · · · ,N +1

}
ΓNL rank(ΓNL) = 4N +4

(i)  Analysis  with  SOT.  For  the  nonlinear  obser-
vability  test,  the  results  are  identical  to  Theorem  1  for

.  For ,  the  only  linearly  independent  rows
are  

  according to
the matrix . Hence, .

For the linear observability test, the Jacobian matrix is

H(k) =


ζr,t(k) 0 · · · 0

Ur,t,g1 (k) Or,t,g1 (k) · · · 0
...

...
. . .

...

Ur,t,gN
(k) 0 · · · Or,t,gN

(k)


. (53)
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rank[ΓL(0, l)] = 4N +4 ∀l ⩾ 5 N ⩾ 1
l = 1 ΓL(0, l) N +1

1,2, · · · ,N +1
l = 3

3N +3 4N +3
3N +5 3N +6 4N +4

l = 4 l = 5 4N +4

4N +6

Hence, ,  for  .  In
particular,  when ,  the  rank  of  is   with
linearly  independent  rows .  The  rank
doubles  as  each  additional  time  step  adds  until ,  all
the  linearly  independent  rows  of  which  are  from  1  to

.  The  rank  increases  to  with  additional  li-
nearly  independent  rows , ,  ···  ,  at

.  When ,  the  rank  increases  to  and  will
no longer increase as the time step increases. Finally, the
additional linearly independent row  is added.

{∇T
X[Lp

f0
hq(X)], p = 0,1, q = 1,2, · · · ,2N +1;

∇T
X[L2

f0
hq(X)],q = 1,2}

ΓNL N ⩾ 1 rank(ΓNL) = 4N +4

(ii) Analysis with JOT. For the nonlinear observability
test,  rows  

 are  linearly  uncorrelated  in  terms
of the matrix  for . Hence, .

For  the  linear  observability  test,  the  Jacobian  matrix
is

H(k) =



ζr,t(k) 0 · · · 0

Sr,g1 ,t(k) Vr,g1 ,t(k) · · · 0

0 ψr,g1 (k) · · · 0

...
...

. . .
...

Sr,gN ,t(k) 0 · · · Vr,gN ,t(k)

0 0 · · · ψr,gN
(k)


. (54)

N ⩾ 1 rank[ΓL(0, l)] = 4N +4
∀l ⩾ 3 l = 1 ΓL(0, l)
2N +1 2N +1

l = 2
4N +2 l = 3

4N +4

4N +4

Based  on  (17),  for , ,
.  In  particular,  when ,  the  rank  of  is
 with  linearly  independent  rows  from 1  to .

The  rank  doubles  at ,  all  the  linearly  independent
rows of which are from 1 to . When , the rank
increases  to  and  will  no  longer  increase  as  the
time  step  increases.  Finally,  all  the  linearly  independent
rows are from 1 to .  　 　　　　　　　　　　□
Theorem  3　 In the  SRSTMIOs  scenario  with  un-

known  IO  states,  the  passive  radar  system  is  observable
for both SOT and JOT cases.

X = [XT
t1
,XT

t2
, · · · ,XT

tM
,XT

g ]T

F = diag[Ft1 ,Ft2 , · · · ,FtM
,Fg]

Z s = [α1, · · · ,αM, fd1 , · · · , fdM
]T

Zo = [α1, · · · ,αM,ρ1, · · · ,ρM,β]T

Proof　The system state vector in this case is defined
as ,  where  the  corresponding
state  transition  matrix  is .
The  observation  vector  is 
for SOT, and  for JOT.

M = 1
M ⩾ 2

{
∇T

X[Lp
f0

hq(X)], p = 0,1,q = 1,2, · · · ,
2M;∇T

X[L2
f0

hq(X)], q = 1,2,3,4
}

ΓNL

rank(ΓNL) = 4M+4

(i) Analysis with SOT. For the nonlinear observability
test,  the  results  are  identical  to  Theorem  1  for .
When ,  rows 

 are  linearly  uncorrelated
according  to  the  nonlinear  observability  matrix .
Hence, .

For  the  linear  observability  test,  the  Jacobian  matrix
is

H(k) =

ζr,t1 (k) 0 0 · · · 0
0 ζr,t2 (k) 0 · · · 0
...

...
...

. . .
...

0 0 · · · ζr,tM
(k) 0

Ur,t1 ,g(k) 0 0 · · · Or,t1 ,g(k)
0 Ur,t2 ,g(k) 0 · · · Or,t2 ,g(k)
...

...
...

. . .
...

0 0 · · · Ur,tM ,g(k) Or,tM ,g(k)


.

(55)

M = 1
ΓL(0, l)

M ⩾ 2 rank[ΓL(0, l)] =
4M+4 ∀l ⩾ 3 ΓL(0, l) 2M
l = 1 2M

l = 2
4M l = 3

4M+4

4M+4

Based  on  (17),  for ,  the  results  are  identical  to
Theorem  1,  where  the  matrix  is  full  rank  when
the  time  step  is  at  least  5.  For , 

, . In particular, the rank of  is  at
 with  linearly  independent  rows  from 1  to .  The

rank doubles at , all the linearly independent rows of
which are from 1 to .  When ,  the rank increases
to  and will no longer increase as the time step in-
creases.  Finally,  all  the  linearly  independent  rows  are
from 1 to .

M = 1
M = 2

{
∇T

X[Lp
f0

h1(X)], p = 0,2;∇T
X[Lp

f0
hq(X)], p = 0,

1,q = 2,3,4,5; ∇T
X[L2

f0
hq(X)], q = 3,4

}
M ⩾ 3 M

{
∇T

X[L0
f0

hq(X)],
q = 1,2, · · · ,M+3,M+5, · · · ,2M; ∇T

X[L1
f0

hq(X)], q = 1,
3, · · · ,M,M + 1, · · · ,2M + 1; ∇T

X[L2
f0

hq(X)],q = 1,3, · · · ,
2M−1,2M

}
M{

∇T
X[L0

f0
hq(X)],q=1,2, · · · ,M+3,M+5,· · · ,

2M + 1; ∇T
X[L1

f0
hq(X)],q = 2,4, · · · ,M,M+1, · · · ,2M+1;

∇T
X[L2

f0
hq(X)],q = 1,3, · · · ,2M−1,2M

}
rank(ΓNL) = 4M+4

(ii) Analysis with JOT. For the nonlinear observability
test, the results are identical to Theorem 1 for . When

,  rows  
   are linearly uncor-

related.  For ,  if  is  odd,  rows 
  

 
 are  linearly  uncorrelated.  Whereas,  if  is

even,  rows 
  

 are linearly uncor-
related. Hence, .

For the linear observability test, the Jacobian matrix is
H(k) =

ζr,t1 (k) 0 0 · · · 0
0 ζr,t2 (k) 0 · · · 0
...

...
...

. . .
...

0 0 · · · ζr,tM
(k) 0

Sr,g,t1 (k) 0 0 · · · Vr,g,t1 (k)
0 0 0 · · · ψr,g(k)
0 Sr,g,t2 (k) 0 · · · Vr,g,t2 (k)
...

...
...

. . .
...

0 0 · · · Sr,g,tM
(k) Vr,g,tM

(k)



.
(56)

rank[ΓL(0, l)] = 4N +4 ∀l ⩾ 3
1 ⩽ M ⩽ 2 ΓL(0, l) 2M+1

l = 1 2M+1
4M+2

Based  on  (17), , . In  par-
ticular,  for ,  the  rank  of  is   at

 with  linearly  independent  rows  from  1  to .
The  rank  increases  to ,  where  additional  linearly
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3M+1 3M+2, · · · 5M+1
l = 3 4M+4

6M+1 6M+2
M ⩾ 3 ΓL(0, l) 2M+1 l = 1
1,2, · · · ,M+3,M+5, · · · ,3M−1

4M+2
3M+1,3M+2, · · · ,4M+3,4M+5, · · · ,

6M−1 l = 2 l = 3 4M+4

6M+1 6M+2

independent  rows , ,  are  added.
When ,  the  rank  increases  to  and  will  no
longer  increase  as  the  time  step  increases.  Additional  li-
nearly independent rows  and  are added. If

, the rank of  is  at , where rows
 are linearly independent.

The rank increases to  with additional linearly in-
dependent  rows 

 at . When , the rank increases to 
and will no longer increase as the time step increases. Ad-
ditional linearly independent rows  and  are
added.　   　　　　　　　　　　　　　　　　　　□

From  Theorems  1−3,  one  can  see  that  passive  radar
systems with unknown IO states in these three scenarios
are all observable for both SOT and JOT cases. It is also
obvious that both linear and nonlinear observability tests
are applicable to these systems. Besides, for the linear ob-
servability test,  the  length  of  time steps  to  make the  ob-
servability  matrix  full  rank  with  JOT  is  generally  less
than that with SOT. Moreover, adding the number of IOs
can diminish the length of time steps to make the observ-
ability matrix full rank for SOT. Without loss of general-
ity,  our  method  can  also  analyze  the  scenario  including
multiple receivers with multiple IOs and targets.

4. Estimablity analysis

n

The observability can only qualitatively but not quantitati-
vely  reflect  the  characteristics  of  the  system.  However,
the  degree  of  observability,  i.e.,  estimability,  also  needs
to be considered. The estimability can assess whether the
system  has  good  or  poor  observability.  Herein,  the  me-
thod in  [40] is  adopted,  where  the  estimability  of  differ-
ent  states  of  the  system is  assessed  by  decomposing  the
normalized error covariance matrix of the filter. The pur-
poses  of  the  normalization  are  twofold:  (i)  transforming
the estimation  error  covariance  matrix  to  be  dimension-
less, and (ii) bounding the eigenvalues between zero and

. The first  purpose is based on a congruent transforma-
tion given as follows:

P′(k+1) = [
√

P(0)]−1 P(k+1)[
√

P(0)]−1 (57)

P(0)
P(k+1)
P′(k+1) P(k+1) P(0)

where  is  the  initial  estimation  error  covariance,
 is  the  posterior  estimation error  covariance,  and
 is the modified version of . Here,  is

assumed to be diagonal and positive definite. This trans-
formation  makes  the  comparisons  between  the  eigenva-
lues meaningful. The other purpose is achieved based on

P′′(k+1) =
n

trace[P′(k+1)]
P′(k+1) (58)

P′′(k+1) P′(k+1)where  is the modified version of .
P′′(k+1)The eigenvalues  and eigenvectors  of  can re-

flect the characteristics of the system states. In particular,
a  large  eigenvalue  represents  a  low  estimability,  which
means  the  linear  combination  of  system  states  has  poor
observability.  The  corresponding  eigenvector  provides
the direction of such low estimability. Whereas, the most
observable  linear  combination  of  states  is  demonstrated
by the smallest eigenvalues [41].

5. Simulation results

∆X = X̂−X
X̂

X

Herein,  only  the  SRMTSIO  and  SRSTMIOs  cases  are
tested. If the analysis results in this two cases are correct,
then  the  analysis  results  in  the  SRSTSIO  case  are  also
correct. Note  that  all  the  observations  are  centrally  pro-
cessed in the EKF. If a system is observable,  the corres-
ponding estimation error covariance should be converged,
and the estimation error  will remain bounded
for  a  single-run  EKF,  where  is the  EKF state  estima-
tion and  is the true state [41].

Xt(0) Xg1 (0) Xg2 (0)

Xr(0)
1.2π
180

Pt(0) Qt(0)

For  the  SRMTSIO  case,  two  targets  are  considered,
where  the  true  initial  states  of  the  IO  and  targets  with
NCV models are assumed to be , , and ,
respectively. The  receiver  maneuvers  following  the  co-
ordinated  turn  model  with  respect  to  the  initial  state

, where the turn rate is  rad/s. Assume that both
the  IO and  targets  have  the  same initial  estimation  error
covariance  and process noise covariance , where

Qt(0) =
1×10−3 0 1×10−3 0

0 2.5×10−4 0 5×10−4

1×10−3 0 1×10−3 0
0 5×10−4 0 1×10−3

 . (59)

∆Xt(0) = ∆Xg(0)

The carrier frequency of the IO is 6 GHz. Suppose that
the IO and targets have the same initial estimation error,
i.e., .  The  specific  simulation  parameter
settings are listed in Table 1.
 

Table 1    Simulation parameter settings for SRMTSIO case

Parameter Value

Xt(0) [52 000,30 000,−50
√

2,50
√

2]T

Xg1 (0) [45 000,−10 000,−40,−40
√

3]T

Xg2 (0) [60 000,−20 000,−40,40
√

3]T

Xr(0) [15 000,18 000,−100,−100]T

Pt(0) diag[3 0002,3 0002,1002,1002]

σα/rad 0.001

σβ/rad 0.001
σα/Hz 0.001

σρ/m 100
∆Xt(0) [150,−150,5,−5]T

∆Xg(0) [150,−150,5,−5]T
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Xt2 (0) = [50 000,40 000,50
√

2,−50
√

2]T

Xg(0) =
[45 000,−10 000,−40,−40

√
3]T

∆Xi

±2σi

i = 1,2, · · · ,n i

For the SRSTMIOs case, the additional IO with the ini-
tial  state  is as-
sumed  to  exist  based  on  the  simulation  settings  in  the
SRMTSIO case.  Simultaneously,  the target  with 

 is retained. Other simula-
tion settings remain the same as defined in the SRMTSIO
case.  The  results  for  associated  with  the  estimation
error variance bounds  in the two cases are plotted in
Fig.  1 and  Fig.  2,  where  represents  the th

X

i i

element of the system state . Fig. 3 and Fig. 4 demon-
strate the corresponding results for the eigenvectors with
regard  to  the  largest  and  smallest  eigenvalues  based  on
the  EKF,  which  gives  the  least  and  the  most  observable
directions in the two scenarios, respectively. Specifically,
the th system state in Fig. 3 and Fig. 4 represents the th
element of the system state vectors defined in Theorem 2
and Theorem 3, respectively.
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(a) Estimation errors and variance bounds with SOT
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Fig. 1    Estimation errors and variance bounds for SRMTSIO case
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From Fig. 1 and Fig. 2, one can see that the estimation
error variances  converge,  and  the  estimation  errors  re-
main bounded, which indicates that the systems with JOT
and SOT are observable in each case, that is, confirming
the correctness of the theoretical analysis. From Fig. 3, it
can  be  concluded  that,  in  the  SRMTSIO  scenario  with
JOT,  the  linear  combination  of  the  fifth,  sixth,  seventh,
and eighth states of the system, in terms of , ,  and

, will have a high estimability, whereas the linear com-
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bination of  the first,  second,  fifth,  sixth,  ninth,  and tenth
states,  in  terms  of , , , ,  and  ,  will  have  a
low estimability  according  to  the  rest  of  the  states.  That
is,  the states of the first  target  could be better  estimated.
As  for  SOT,  the  linear  combination  of  the  third,  eighth,
eleventh, and twelfth states, in terms of , ,  and ,
will have a high estimability, whereas the linear combina-
tion of the ninth and tenth states, in terms of  and , wi-
ll have a low estimability according to the rest of the sates.
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Fig. 2    Estimation errors and variance bounds for SRSTMIOs case
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Relatively speaking,  the  Doppler  difference  observa-
tion has  an important  effect  on the  velocity  states.  From
Fig. 4, it is obvious that, in the SRSTMIOs scenario with
JOT, the linear combination of the ninth, tenth, eleventh,
and twelfth states, in terms of , ,  and , will have
a high estimability, whereas the linear combination of the

xt1 yt1 xt2 yt2 xg yg

ẏg

xt2 yt2 xg yg

first,  second, fifth, sixth, ninth, and tenth states, in terms
of , , , ,  and  ,  will  have  a  low estimability
according to the rest of the states. As for SOT, the twelfth
state, in terms of , will have a high estimability, where-
as  the  linear  combination  of  the  fifth,  sixth,  and  tenth
states, in terms of , ,  and , will have a low estim-
ability according to the rest of the states.
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1 2 3 4 5 6 7 8 9 10 11 12
System state

(a) The most observable direction with JOT

1 2 3 4 5 6 7 8 9 10 11 12
System state

(b) The least observable direction with JOT

(c) The most observable direction with SOT

1 2 3 4 5 6 7 8 9 10 11 12
System state

(d) The least observable direction with SOT

1 2 3 4 5 6 7 8 9 10 11 12
System state

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

0.6

0.4

0.2

0

−0.2

−0.4

0.6

0.8

1.0

0.4

0.2

0

−0.2

−0.4

C
oe

ffi
ci

en
t

0.6

0.8

0.4

0.2

0

−0.2

−0.4

−0.6

−0.8

0.4

0.2

0

−0.2

−0.4

−0.6

−0.8

Fig.  4      The least  and the  most  observable  directions  according to
the system states for SRSTMIOs case

JING Tong et al.: Observability and estimability of passive radar with unknown illuminator states using different observations 1203



6. Conclusions
In this  paper,  we study the problem of observability and
estimability analysis  for  passive  radar  systems  with  un-
known IO states  in  three typical  scenarios.  Different  ob-
servations are considered in each case. Linear and nonlin-
ear  observability  tests  are  both  considered  to  examine
whether the system is observable. The estimability is also
studied.

We observe  that  the  systems  in  all  scenarios  are  ob-
servable.  The  two  observability  tests  that  have  the  same
conclusions are both applicable to the system. For the ef-
fect of different observations, the linear observability test
with  SOT  generally  needs  more  time  steps  to  make  the
observability matrix full rank than that with JOT. Further-
more,  increasing  the  number  of  IOs  can  decrease  such
time  steps  for  SOT.  Besides,  the  estimability,  especially
the directions of good and poor observability for the vari-
ous states, is significantly dependent on the observations.
In future work, we will consider the case, where the IOs
and targets have various dynamic models.
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