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Abstract: The detection and recognition of radar signals play a
critical role in the maintenance of future electronic warfare (EW).
So  far,  however,  there  are  still  problems  with  signal  detection
and  recognition,  especially  in  the  low  probability  of  intercept
(LPI) radar.  This  paper  explores  the  usefulness  of  such  an  al-
gorithm in the scenario of LPI radar signal detection and recog-
nition based on visibility graphs (VG). More network and feature
information can be extracted in the VG two-dimensional  space,
this algorithm can solve the problem of signal recognition using
the autocorrelation function. Wavelet denoising processing is in-
troduced into the signal to be tested, and the denoised signal is
converted to  the  VG domain.  Then,  the  signal  detection  is  per-
formed by using the constant false alarm of the VG average de-
gree. Next, weight the converted graph. Finally, perform feature
extraction on the weighted image,  and use the feature  to  com-
plete  the  recognition.  It  is  testified  that  the  proposed  algorithm
offers  significant  improvements,  such  as  robustness  to  noise,
and the detection and recognition accuracy, over the recent re-
searches.
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1. Introduction
Low probability of intercept (LPI) [1] radar signal detec-
tion  and  recognition  technology  is  a  research  hotspot  in
recent years. Signal detection is the premise of electronic
intelligent  (ELINT),  therefore,  it  is  the  basic  content  of
radar signal reconnaissance theory research. And the sig-
nal modulation type has become an important direction of
the electronic warfare (EW) research since 1980 [2], it is
an important parameter for recognizing the working state
of the radar. LPI radars have very low peak power, wide
spectrum,  high  duty  cycle,  and  low  signal-to-noise  ratio

(SNR), making it difficult for EW receivers to detect and
recognize them [3]. Therefore, the research on LPI radar
signal detection and recognition is very important for fu-
ture EW.

In  recent  years,  many  methods  for  recognizing  LPI
radar  signals  have  been  preprocessed  by  using  time-fre-
quency analysis. The purpose is to use new machine learn-
ing methods [4] in the time-frequency domain and recog-
nize the generated signals [5−8], the recognition probabil-
ity and the robustness to noise are getting good perform-
ance.  However,  the  detection  of  LPI  radar  signals  has
rarely  been  proposed,  and  the  basic  idea  is  to  recognize
the detected signals. Moreover, the visibility graph (VG)
research is also one of the hotspots in recent years. Refer-
ences [9, 10] proposed the VG and horizontal VG (HVG)
method  to  convert  time  signals  into  complex  networks.
In  [11],  a  method for  rapidly  converting time series  into
VG was proposed. In [12], the VG theory was introduced
into  the  analysis  of  wall  turbulence  time  series,  which
provides the  strong support  for  accurate  time series  ana-
lysis  of  uneven  turbulence.  References  [13,14] intro-
duced a weighted complex network method based on VG,
assigning a weight  to each adjacent  edge,  and signal  de-
tection and recognition processing were performed on the
obtained weighted complex network.

VG  is  periodic  and  it  has  a  linear  relationship  with
fractional Brownian  motion  and  fractional  Gaussian  dis-
tribution  [15,16].  For  simple  random  sequences,  HVG
presents  analytical  solutions  [10]. The  reliability  of  con-
verting  white  noise  random  sequences  into  VG  was
proved  in  [17].  The  VG converted  into  the  band-limited
signal  detection  was  introduced  in  [18],  and  the  authors
extracted the eigenvalues of the VG adjacency matrix for
signal  detection.  In  [19−22],  VG  theory  was  introduced
into various types of signal recognition, the main idea is
to convert the original random sequence into another do-
main that is easy to be processed by the matrix. The res-
ult is to promote the analysis and processing accuracy of
the original sequence [22].
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This  paper  discusses  the  case  of  the  LPI  radar  signals
processing  method  based  on  the  VG  theory.  Firstly,  the
signal received by the EW receiver is preprocessed. Pre-
processing  is  a  filtering  algorithm  based  on  the  wavelet
denoising  principle  (WDP).  Then  we  obtain  the  power
spectrum  of  the  signal  to  be  tested  and  compare  it  with
the power spectrum of the additive white Gaussian noise
(AWGN)  signal.  The  real  signal  is  detected.  Second-
ly, the autocorrelation function is obtained for the detec-
ted signal, and the autocorrelation signal is converted in-
to a VG network. Thirdly, we generate the weighted VG
network and perform feature extraction. Finally, the sup-
port  vector  machine  (SVM)  and  the -nearest  neighbor
(KNN)  [4] are  used  for  signal  modulation  type  recogni-
tion. The  machine  learning  algorithm  classifies  the  ex-
tracted features, including the modulation types of 14 LPI
radar signals,  which  are  monopulse  (MP),  linear  fre-
quency  modulation  (LFM),  binary  phase  shift  keying
(BPSK), quadrature  phase  shift  keying  (QPSK),  fre-
quency shift keying (FSK), V-Shaped, LFM-BPSK, LFM-
QPSK, Barker, Frank, and polyphase code (P1, P2, P3, P4).

The rest of this paper is organized as follows. Section 2
gives the expressions of the modulation types of each LPI
radar signal and introduces the viewable method. The sig-
nal preprocessing  algorithm  and  the  VG  weighting  al-
gorithm  are  overviewed  in  Section  3.  Section  4  briefly
describes the  feature  extraction.  Section  5  is  the  valida-
tion of this paper including simulation experiment setup,

results, and discussion.

2. Signal model

2.1    LPI radar signals

Assume  that  the  radar  pulse  signal  observation  equation
can be expressed as

y[k] = x[k]+n[k] =
[10pt]V · exp{j[2π fc[k](kT s)+φ[k]}+n[k] (1)

y[k]
x[k]

n[k]
fc[k]

k
T s fs

τpw 0 ⩽ kT s ⩽ τpw φ[k]

where  represents the discrete-time signal intercepted
by  the  EW  receiver,  is  the  discrete-time  complex
radar signal,  is the complex AWGN, V  is the signal
amplitude which is constant within a pulse width,  is
the  signal  carrier  frequency,  is  the  sample  index  for
each  increase for the sampling frequency ,  for a gi-
ven pulse time interval , , and  is the
phase modulation function.

fc[k] φ[k]

φ[k] fc[k]

In  practice,  LPI  radar  signals  are  generally  classified
into three  types:  frequency  modulation,  phase  modula-
tion,  and  combined  modulation.  When  the  radar  signal
type  is  frequency  modulation ,  the  phase por-
tion is constant; when the radar signal type is phase mo-
dulation ,  the  frequency portion is constant [6],
and  the  third  one  is  frequency  modulation  and  phase
modulation  combination.  The  14  modulation  types  are
shown  in Table  1,  including  simple  pulses,  frequency
modulation, phase modulation, and combined modulation.

 

Table 1    Radar signal modulation type

Modulation type fc[k] Hz/ φ[k] rad/
MP constant constant

LFM f0 +
B
τpw

(kTs) constant

BPSK constant π(0, )

QPSK constant
(
0,

π
2
,π,

3π
2

)
FSK { f1, f2, · · · , fNF }} constant

V-Shaped


f0 +

B
τpw

(kTs), 0 ⩽ k <
τpw

2

f0 +
B
2
− B
τpw

(kTs),
τpw

2
⩽ k < τpw

constant

LFM-BPSK f0 +
B
τpw

(kTs) π(0, )

LFM-QPSK f0 +
B
τpw

(kTs)
(
0,

π
2
,π,

3π
2

)
Barker constant (+1,+j,−1,+j,+1)

Frank constant 2π
M

(i−1)( j−1)

P1 constant − π
M

[M− (2 j−1)][( j−1)M+ (i−1)]

P2 constant − π
2M

[2i−1−M][2 j−1−M]

P3 constant −π(i−1)2

Nc

P4 constant π(i−1)2

Nc
−π(i−1)
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2.2    VG and HVG

S = {t1, t2, · · · , tn}
n

a,b,c
a < c < b

ya yb

yc a b a < b

For VG, considering that the time series 
is  the  sampling  time  of  radar  signals,  without  loss  of
generality,  there  are  three  arbitrary  moments ,  and

 is  satisfied  between  them.  If  and  only  if  one
node can draw a straight line connecting  and , and a
line does not intersect any intermediate reference “height”

,  the  two  nodes  and   (assuming   and  without
loss of generality) can be connected by a (non-direction-
al) link line. According to the three criteria stated in [8],
the following inequation is satisfied:

yc < ya+
c−a
b−a

(yb− ya), ∀c : a < c < b. (2)

ya yb

yc a b
a < b

For  HVG,  similarly,  if  and  only  if  a  node  can  draw a
horizontal line connecting  and , not intersecting any
intermediate reference , the two nodes  and  (assum-
ing  and  without  loss  of  generality)  can  pass  one
(non-directional)  link  line  connection.  According  to  the
three  criteria  set  out  in  [9],  the  following  inequation  is
satisfied:

yc < inf(ya,yb), ∀c : a < c < b. (3)

When  the  adjacent  edges  are  connected,  there  are
only  two connections  between M0 and M1 between any
three  nodes,  which  can  be  summarized  as  shown  in
Table 2 [15].

 
 

Table 2    Sequential VG/HVG motifs sequence of three points

Motif

Criterion

M0 M1

VG {∀y0,y1 : y2 ⩽ 2y1 − y0} {∀y0,y1 : y2 > 2y1 − y0}

HVG {∀y0,y2 : y1 > y0}∪ {∀y0 : y1 < y0,y2 < y1} {∀y0 : y1 < y0,y2 > y1}
 

n
n×n

p(n)(n ∈ [0,1]) p(n) =
1
3

(
2
3

)n−2

p(n)

We can know that VG has periodicity from the defini-
tions of VG and HVG, and at least one adjacent edge of
the VG can be connected to the vertex. There are no iso-
lated points,  and  boundary  points  will  appear  at  the  be-
ginning  and  the  end  of  the  sequence  [23−25].  The  14
kinds  of  LPI  radar  wave  length  determine  the  size,  and
VG and HVG adjacency matrix.  If  the time series  has 
nodes and the adjacency matrix is , the adjacent mat-
rix  form  is  naturally  different.  For  simple  time  series,
HVG can obtain an analytical solution, assuming that the
probability  distribution  of  a  random  noise  sequence  is

,  then .  For  more  general

sequences, such as Markov sequences,  can also ob-
tain  analytical  solutions  [24].  Therefore,  for  LPI  radar
signals, under  different  sequence  lengths,  the  VG  adja-
cency  matrix  behaves  differently,  but  they  all  have  their
own  distribution  methods.  Within  a  certain  range,  the
length of the size of VG or HVG matrix will make a little
difference on recognition.

3. Preprocessing techniques
The algorithm illustrates the overall  LPI radar signal de-
tection and recognition technique proposed in this paper.
The output is successful detection probability (SDP) and
successful recognition probability (SRP).
Algorithm　 LPI radar  signal  detection  and  recogni-

tion algorithm

Input　Signal to be tested through the AWGN channel
Output　SDP, SRP

fs fb N
{ f1, f2, · · · , fNF

}

Step  1　Give  LPI  radar  parameters  including  samp-
ling frequency , code rate , the number of symbols ,
and  of FSK.
Step 2　Wavelet  denoising for the signal to be tested

through the AWGN channel.
Step  3　 Convert  the  signal  to  be  tested  into  VG  or

HVG.
Step  4　 Set the  dynamic  threshold  for  signal  detec-

tion.
Step  5　Perform autocorrelation  for  the  detected  real

signal.
Step 6　Weight the VG or HVG network.
Step 7　Perform feature extraction on weighted com-

plex networks.
Step 8　Classify features by using SVM and KNN al-

gorithms.

3.1    Signal preprocessing

LPI radar signals generally have low SNR characteristics,
so reasonable noise reduction is one of the key technolo-
gies for signal detection and recognition.  The essence of
wavelet denoising is equivalent to signal filtering, and the
interference noise is  removed as much as possible under
the premise  of  retaining  LPI  radar  signals,  which  com-
bines feature extraction and low-pass filtering. Set an ap-
propriate  threshold.  When  the  high-frequency  wavelet
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coefficients extracted  after  the  time-domain  signal  pro-
cessing  are  fewer  than  the  threshold,  the  noise  signal  is
considered  to  be  removed;  otherwise,  the  signal  data
greater  than the threshold is  retained as  an effective LPI
radar  signal.  Therefore,  the  suppression  of  LPI  radar
noise by wavelet transform is reasonable. In this paper, a
signal  detection  method  based  on  wavelet  denoising  is
designed.  Assume  that  the  signal  after  through  the
AWGN channel can be expressed as

Yi = S i+σZi, i = 1, · · · ,n (4)

Yi

S i σ
Zi

Yi

where  is the signal obtained after through the AWGN
channel,  is  the  original  signal  to  be  tested,  is  the
noise  level,  and  is  the  noise  signal.  The  contami-
nated  signal  is mostly  the  high-frequency  signal.  Us-
ing  the  principle  that  signals  and  noise  have  different
characteristics under wavelet transform, a series of coeffi-
cients obtained  after  wavelet  decomposition  are  pro-
cessed, and the noise and signals are separated.

Yi = A1+D1 = A2+D2+D1 = A3+D3+D2+D1 (5)

Di

Ai

Ai

where  is the high-frequency component of the decom-
posed  signal,  and  is  the  low-frequency  component  of
the decomposed signal. Usually, the low-frequency com-
ponent  is  the  most  important,  which  can  roughly  reflect
the  characteristics  of  the  signal,  and  the  noise  is  gene-
rally distributed in the high-frequency component so that
the  signal  and  noise  are  separated.  With  the  increase  of
the  number  of  layers,  the  better  noise  suppression  effect
of  the  after  wavelet  decomposition  is,  the  better  the
signal  is  obtained  after  wavelet  inverse  transformation.
However, considering the amount of calculation and time
cost, the number of layers is generally not too much. The
essence of  the algorithm is  to  reduce the wavelet  coeffi-
cients  generated  by  noise  and  retain  the  information  of
the original signal as much as possible.

3.2    Weighted complex network

The  weighting  algorithm  [26]  is  to  use  the  following
equation  for  all  adjacent  edges  of  a  vertex  in  a  complex
network, it can be expressed as

wi j = arctan
n j−ni

t j− ti
, j > i (6)

ti and t j

wi j ni

n j

w12 = arctan
15−10

2−1
=

1.373 4 w13=arctan
25−10

3−1
=1.438 2 w23=arctan

25−15
2−1

=

1.471 1

where  are the corresponding points of the time se-
ries,  is the weighted value of the joint node  and the
node , and the weighted complex network algorithm is
illustrated by taking three nodes as an example. Consider-
ing that  the  three  nodes  1,  2,  and  3  respectively  corres-

pond to values of 10, 15, and 25, then 

, , 
.

4. Feature extraction

4.1    Average weighted degree

Consider the average weighting of a complex network as
one of the best statistical attributes, because it is the most
direct and most reflective factor of network complexity. It
can be expressed as

aw =
∑
j∈B(i)

wi j (7)

B(i) iwhere  is the field of the node . The average weight-
ing of the network is the average of the total weight of all
vertex connections in the network.

4.2    Average clustering coefficient

The  average  clustering  coefficient  reflects  the  clustering
of the connection nodes, and its definition [26,27] can be
written as

Ci =
(M3)ii

(M2)ii[(M2)ii−1]
, C =

1
N

N∑
i=1

Ci (8)

Ci i M
C

where  is the clustering coefficient of the node ,  is
the  VG or  HVG matrix,  and  is  the  average clustering
coefficient.  This  coefficient  is  directly  processed  by  the
network as a whole, therefore it is universal.

In addition, there are other features that can be used for
LPI radar modulation type recognition, such as Newman
coordination  coefficient  [28,29],  normalized  network
structure entropy [30−32] and other features. However, in
the  application  of  this  paper,  adding  more  features  has
little effect on the improvement of the recognition effect,
so  we  comprehensively  consider  the  selection  of  the
above two features.

5. Experimental results and discussion

5.1    Experimental setup

fs

5×109 f0 1×109

fb 2×108 N

τpw
N
fb

{ f1, f2, · · · , f6}

{109,2×109,109,2×109,109,2×109}

f0

The experimental  setup  mainly  includes  LPI  radar  para-
meters  setting.  The  value  of  sampling  frequency  is

 Hz, the signal frequency  is  Hz, the code
rate  is   Hz, the number of symbols  is  6,  the

duration  is  equal  to ,  the  of  FSK  is

. When the radar sig-
nal  type  is  frequency  modulation,  the  phase  portion  is
constant,  the  value  is  0;  when  the  radar  signal  type  is
phase  modulation,  the  frequency  portion  is  constant,  the
value is .

5.2    Detection

Convert the measured signal after wavelet denoising [33]
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p f a

into a VG adjacency matrix, and find its average degree.
Similarly, we obtain the average degree of the noise sig-
nal.  The  false  alarm  probability  is  set  to  0.005,  500

Monte  Carlo  independent  experiments  are  carried  out,
and the results are shown in Fig. 1.
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(a) Dynamic threshold setting under different SNRs (b) SDP

Fig. 1    Signal detection simulation analysis
 

The  figure  shows  the  average  VG  degree  of  signal
passing through  AWGN  channel  and  after  wavelet  de-
noising  processing.  After  setting  the  false  alarm probabi
lity, each threshold value in the SNR range of (−20,0) is
obtained as  shown in Fig.  1(a),  and the  detection proba-
bility  of  the  signal  is  expected  to  be  high.  To  solve  the
SDP, 500  times  Monte  Carlo  experiments  verify  the  de-
tection probability as shown in Fig. 1(b).

p f a

In Fig. 1, when the SNR is −10 dB, the SDP is 90.9%,
and as  the  SNR increases,  the  SDP also  increases,  espe-
cially  when  SNR>−8  dB,  the  SDP  is  basically  100%.
Compared with [34], when the false alarm probability 
is  lower,  the  detection  performance  is  still  significantly
improved. Therefore, we have enough reasons to believe
that  the  detection  algorithm is  robust  to  noise.  Also,  the
algorithm is currently only for LPI radar signals, and it is
still applicable  to  the  scenarios  of  acoustic  signal  pro-
cessing and other signal processing.

5.3    Recognition

Modulation type  recognition  is  performed  on  the  detec-
ted  signal.  First,  find  the  autocorrelation  function  of  the
signal and convert it to VG or HVG. The inverse Fourier
transform of the signal  is  used to obtain the autocorrela-
tion function, which is converted into VG or HVG. Then
the  VG complex  network  is  weighted,  and  then  features
of the  weighted  network  are  extracted.  Finally,  the  ma-
chine learning algorithm is used to recognize the features,
including SVM and KNN [18]. The indicator for judging
the  classification  performance  mainly  is  the  SRP.  The
performance of the different kernel functions of the SVM
classifier is also different in the classification. Therefore,
to evaluate  the  classification  performance  of  these  fea-

ture  sets,  we  apply  an  additional  SVM  with  radial  basis
function (RBF) kernel functions and an SVM with poly-
nomial kernel  functions.  Similarly,  consider  KNN to ex-
periment  with  different  values  of K  (K=3  and K=10)  on
the combined feature vector set.  Their  classification per-
formance for 14 LPI radar signals is shown in Fig. 2.
 
 

SR
P

1.00

0.95

0.90

0.82

0.80
−5 −4 −3 −2 −1 0 1 2

SNR/dB
3 4 5

: SVM RBF; : SVM Poly;
: KNN (k=3); : KNN (k=10).

Fig. 2    Classification performance of different classifiers
 

Table 3 shows that the proposed algorithm is more ac-
curate than the previous research. Among them, we only
compare the  overall  experimental  results  with  those  us-
ing other existing methods and properly evaluate the SRP
function.

The overall  SRP of the algorithm proposed in this pa-
per  is  0.974,  which  is  greatly  improved  compared  with
the previously proposed LPI radar waveform recognition
technology. It is interesting to compare the following two
situations:  one  is  to  improve  the  accuracy  obtained  by
analyzing  the  time-frequency  data  processed  manually,
and the other is to improve the accuracy obtained by us-
ing  the  VG  domain  with  complex  network  properties.
Note that  time-frequency  analysis  and  deep  learning  re-
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quire a lot  of work and time, while the latter method re-
quires  very  little  engineering  work  and  adds  minimal
computational  cost.  Introducing  the  VG  idea  into  radar
signal  recognition  is  not  only  an  attempt  but  also  a  new
idea for the signal processing field. However, VG still has

certain limitations. For example, because it is an undirec-
ted graph, if the signal amplitude and phase are the same,
the  amplitude  linearly  increases  or  decreases,  and  the
converted VG is the same, such signals cannot be identi-
fied.

 
 

Table 3    Comparison between the proposed algorithm and related studies

Source Dataset Method Overall SRP

Reference [30] 9 kinds of LPI radar waveforms Time-frequency analysis+ multilayer perceptron (MLP) 0.765

Reference [8] 9 kinds of LPI radar waveforms Time-frequency analysis + Elman neural network (ENN) 0.938

Reference [31] 12 kinds of LPI radar waveforms Spectral correlation+ SVM 0.887

This paper 14 kinds of LPI radar waveforms VG+SVM+KNN 0.974
 

6. Conclusions
This paper proposes an LPI radar detection and recogni-
tion  algorithm  based  on  the  VG  theory.  The  algorithm
first performs signal noise reduction processing, and con-
verts the  noise-reduced  signal  into  a  VG  complex  net-
work. Secondly  it  obtains  the  dynamic  threshold  by  set-
ting the false alarm probability of the VG average degree
to  complete  signal  detection.  Then,  the  network  extracts
the  features  and  uses  machine  learning  algorithms  to
complete the LPI radar signal recognition. When the SNR
is  greater  than  −8  dB,  the  SDP  is  approximately  100%;
and the SRP is nearly 100% when the SNR is greater than
−2 dB. The experimental results also show that the avera-
ge  weighting  and  the  average  clustering  coefficient  are
the  most  promising  features  for  revealing  LPI  radar
waveform  hidden  information  when  considering  the
weighted complex network theory. In future research, we
will  extend  the  VG  theory  to  radar  signal  sorting  and
radar working pattern recognition applications.
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