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Abstract: The issue of small-angle maneuvering targets inverse
synthetic  aperture  radar  (ISAR)  imaging  has  been  successfully
addressed  by  popular  motion  compensation  algorithms.  How-
ever, when the target’s rotational velocity is sufficiently high dur-
ing  the  dwell  time  of  the  radar,  such  compensation  algo-
rithms cannot obtain a high quality image. This paper proposes
an  ISAR  imaging  algorithm  based  on  keystone  transform  and
deep  learning  algorithm.  The  keystone  transform  is  used  to
coarsely  compensate  for  the  target ’s  rotational  motion  and
translational motion, and the deep learning algorithm is used to
achieve a super-resolution image. The uniformly distributed point
target data  are  used  as  the  data  set  of  the  training  u-net  net-
work.  In  addition,  this  method  does  not  require  estimating  the
motion  parameters  of  the  target,  which  simplifies  the  algorithm
steps.  Finally,  several  experiments  are  performed  to  demonst-
rate the effectiveness of the proposed algorithm.
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1. Introduction
Inverse  synthetic  aperture  radar  (ISAR) has  been widely
used for military and civilian purposes, such as target re-
cognition, identification, and classification [1−5]. In gene-
ral,  real  targets  often  have  complex  motion  components
[6,7].  These  motion  components  lead  to  range  distortion
and Doppler frequency shift, which results in a defocused
image. To obtain focused ISAR image, motion compens-
ation  is  done  in  two  steps.  The  first  step  is  translational
motion compensation, which consists of range alignment
and phase adjustment [8,9]. The second step is rotational
motion compensation.

In order to obtain an ideal ISAR image during imaging
processing,  the  motion-compensated  point  scatterers  are

required to stay in the initial distance unit, so that the im-
age of the point scatterers will  not appear in several dis-
tance  units  at  the  same  time,  resulting  in  defocus-
ing  [10,11]. However,  in  the  actual  ISAR  imaging  pro-
cess,  the  phenomenon  of  movement  around  the  point
scatterer  often  occurs,  especially  in  the  high-resolution
imaging. The  possibility  of  range  cell  migration  correc-
tion  (RCMC)  occurring  at  the  scattering  point  will  be
greatly increased due to the improvement of the distance
resolution  [12]. However,  RCMC has  its  own character-
istics, which  is  caused  by  the  coupling  of  its  signal  dis-
tance frequency domain and slow time domain. Keystone
transform is widely used to correct the motion of the scat-
ter point and the resolution element [13].

Deep  learning  has  gained  popularity  and  defined  the
state-of-the-art results in various fields in science and en-
gineering; these  include  speech  recognition,  natural  lan-
guage understanding, visual object recognition, and many
other  applications  [14−18].  Deep  convolutional  neural
networks (CNNs) are first applied to image classification,
and its output is the category of image [19,20]. However,
the output of image segmentation is an image, so it can be
regarded  as  classifying  every  pixel  in  the  image.  Based
on this, Ronneberger et al. [21] proposed a u-net network
structure in 2015, which can achieve the same resolution
of  input  and  output.  Mccann et  al.  [22] applied  this  net-
work to the inverse problem of medical imaging. Taking
the blurred image generated by sparse signal as the input
of  the  network  and  outputting  the  clear  image  from  the
full  view, it  is  proved that  the u-net  network is  effective
for image super-resolution.

Based on that, this paper focuses on the imaging prob-
lem of  large-angle  targets,  and  proposes  an  ISAR  ima-
ging  algorithm  based  on  keystone  transform  and  deep
learning. This makes it possible to get a clear ISAR ima-
ge when the target rotation angle is large.

The  rest  of  the  paper  is  organized  as  follows:  maneu-
vering target echo signal analysis is shown in Section 2. In
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Section 3,  we focus on the theory of  keystone transform
and u-net network. Experimental simulation analysis is pre-
sented in Section 4, and conclusions are given in Section 5.

2. Maneuvering target imaging model

P

ω

vr

Fig. 1 shows the ISAR imaging geometry of a maneuver-
ing target. It is assumed that  is a random point scatterer
on  the  target  in  the  far  field  of  radar,  and  the  target
has rotational and translational motion in the radial direc-
tion. The target angular velocity is ,  the radial  velocity
is , and the origin of the coordinate system is the center
of rotation.
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Fig. 1    ISAR imaging geometry model of a maneuvering target
 

M
N
N

fn = fc+m∆ f (m = 0,1,2, · · · ,N −1) fc

∆ f

Assume  that  the  stepped-frequency  continuous  wave
(SFCW)  form  signal  transmitted  by  the  radar  has 
bursts and  frequency steps, and it is described by a se-
quence  of  pulses  with  increased  carrier  frequencies:

,  where  is the car-
rier frequency, and  is the frequency step. The echoes
of all point scatterers can be expressed as

s(t,m) =
K∑

k=1

Ak exp
{
−j

4π
c

( fc+m∆ f )r(t)
}

(1)

Ak k
r(t)

P

where  is  the  reflectivity  density  at  point ,  c  is  the
speed  of  light,  is  the  distance  from  the  radar  to  the
point :

r(t) =
[
R(t)2+ r2

P+2R(t)rp sinθ(t)
] 1

2 (2)

rp =
√

x2
n + y2

n (xn,yn)
R(t)
where ,  is  any  point  on  the  target,

 is  the  distance  between  the  radar  and  the  target,
which can be expanded with Taylor series as

R(t) = R0+ vrt+ · · · (3)

R0where  is the initial distance of the radar to the target.
Taking the first two terms of the Taylor series, we have

R(t) = R0+ vrt. (4)

θ(t)
Assuming the initial angle of the target is 0, the target

rotation angle  can be expressed as
θ(t) = ωt. (5)

R0 rpSince  is  much larger  than ,  the  distance  between
the points and the radar can be approximated as

r(t) � R(t)+ xn cos(ωt)− yn sin(ωt). (6)

Assume  the  coherent  processing  interval  (CPI)  is  not
too long, then we can get

cos(ωt) � 1− 1
2

(ωt)2, (7)

sin(ωt) � ωt. (8)

r(t)Thus,  can be written as

r(t) � R(t)+ xn−
1
2

xnω
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1
2

xnω
2t2− ynωt. (9)

Therefore, we can rewrite the base-band signal as

s(t,m) =
K∑

k=1

Ak exp
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·
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)

In (10),  the first  term is  a constant,  indicating the dis-
tance distribution  of  scattering  points,  which  can  be  ig-
nored  in  the  imaging  process.  The  second  term  repre-
sents the echo envelope movement caused by the transla-
tion motion. The third term represents the echo envelope
movement caused by the rotation motion. The fourth term
represents the  carrier  phase  change  caused  by  the  Dop-
pler  effect.  In  the  second and third  terms,  different  slow
times  have  different  envelope  translations.  When  the
translation  motion  exceeds  a  range  resolution  unit,
RCMC  will  be  generated,  and  the  scatterers  drift
from  its  original  range  position  to  a  new  position

, so  it  is  necessary  to  re-
move such phase errors along the range-direction.

3. Algorithm theory and application
3.1    Keystone transform

t τ

From the radar echo data [23], the RCMC is expressed as
the coupling between the signal frequency f and the slow
time . The virtual time  is defined as
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fcτ = ( f + fc)t. (11)

Thus, (10) becomes

s(τ,m) =
K∑

k=1

Ak exp
[
−j

4π(m∆ f + fc)
c

(R0+ xn)
]
·

exp
[
−j

4π
c
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·

exp
[
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4π
c

(
−xnω

2 f 2
c τ

2

2( f + fc)

)]
. (12)

fc m∆ fSince  is much larger than , we have

s(τ,m) =
K∑

k=1

Ak exp
[
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c
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{
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−1
2

xnω
2τ2

After  applying  the  keystone  transform,  and   have
been decoupled in the second term of the phase function.
If we perform the inverse Fourier transform with respect

to the fast-time index n, the quadratic term  can
be  neglected  compared  with  the  actual  size  of  the  range
resolution cell.

By differentiating  the  phase  in  (12),  the  Doppler  fre-
quency  shift  introduced  by  the  carrier  phase  change  can
be calculated as

fd � −
2 fc

c
(vr − ynω) . (14)

According to  the  above equation,  in  the  coherent  pro-
cessing  interval,  the  Doppler  frequency  shift  changes  li-
nearly due to the existence of velocity, which will lead to
the  frequency  dispersion  of  the  echo  signal  and  have  a
great impact on the distance resolution.

s (x,r)

For  the  ISAR  imaging  system,  the  electromagnetic
wave transmits through the space and back can be regarded
as a complex nonlinear system between the target and the
radar.  In  the  2-D  field,  we  can  describe  the  echo  data

 as

s (x,r) = σ (x,r)⊗t̂⊗xh (x,r) (15)

σ (x,r) h (x,r)

⊗

where  and  represent the backscatter coeffi-
cients of  the  target  field  and  the  impulse  response  func-
tions of the radar system, respectively, and  is the con-
volution operation.

σ (x,r) s (x, t)
ISAR imaging is an inverse problem, which is to solve

the  function  from  the  radar  echo ,  it  is  the
process of solving a two dimensional convolution, it  can
be expressed as

σ̂ (x,r) = s (x,r)⊗t̂⊗xhs (x,r) (16)

hs (x,r)
hs (x,r)

where  is  the  impulse  response  function  of  the
imaging system. Theoretically, if we can design  to
satisfy

h (x,r)⊗hs (x,r) = δ (x,r) (17)

δ (·) σ̂ (x,r)
σ (x,r)

hs (x,r)

where  represents the impulse function, then  is
the reconstruction of  without distortion. However,
due to the effects of complex movement on maneuvering
targets,  it  is  difficult  to  design  an  accurate  non-linear
function  to  reconstruct  the  target  image.  In  this
paper, we use the non-linear function fitting ability of the
CNN to realize image reconstruction.

3.2    CNN model

Considering that the original u-net training is slow, in this
paper, we build a more elegant architecture fully convolu-
tional network [24]. We modify and extend this architec-
ture such that it works with very few training images and
yields  more  precise  segmentations,  see Fig.  2.  The main
idea  is  to  add  a  batch  normalization  (BN)  layer  behind
each  convolution  layer.  Normalized  input  features  can
speed up the learning process and make it easier to opti-
mize the algorithm. This is normalization of the input lay-
er.  The  extension  of  normalization  to  each  layer  is  the
core idea of the BN layer, that is, the output of the upper
layer does not affect the training of this layer, so that each
layer  of  data  has  its  own  distribution  and  speeds  up  the
training process.
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Fig. 2    Modified network structure of u-net
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Firstly, the BN layer processing flow includes the fol-
lowing steps. Calculate the mean within the batch:

µ =
1
λ
· z[i]. (18)

Secondly, calculate the variance:

ξ =
∑

(zi− ξ)2
. (19)

ziThirdly, normalize :

zi
norm =

zi−µ√
ξ2+ε

. (20)

ZiFinally, adjust :

Zi = α · zi
norm+β (21)

α βwhere  and   are  the  parameters  of  network  learning
and they are updated in reverse propagation.

The BN layer has two advantages. One is that each di-
mension of each layer is normalized, which can make the
network have a higher learning rate, and the other is that
it can slightly reduce the over-fitting effect.

The modified network structure is shown in Fig. 2.
Some modifications have been made to the network to

enhance  radar  imaging.  Firstly,  because  the  radar  echo
signal is a complex signal, the following adjustments are
made to the u-net input channel. The number of u-net in-
put  channels  is  changed  to  two.  The  real  and  imaginary
data are  put  into  two channels  respectively,  and the  out-
put  dimension  remains  unchanged.  Secondly,  in  a  3×3
convolution,  the  valid  convolution  mode  is  changed  to
sample convolution while keeping the size of the picture
unchanged.  Thirdly,  considering the time and efficiency,
the  number  of  generated  pulses  is  128,  the  number  of
sampling points is 128, the input size is 128×128×2, and
the  output  size  is  128×128×1.  Finally,  in  order  to  speed
up  the  training  of  the  network,  the  real  part  and  imagi-
nary  part  of  the  input  complex image are  normalized by
the maximum and minimum values respectively:

η∗ =
η−ηmin

ηmax−ηmin
(22)

η ηmin

ηmax

where  is the size of each pixel,  is the smallest pixel
value in  the image,  and  is  the largest  pixel  value in
the image.

[0,1]
After normalization, the size of each pixel in the input

image can be mapped to , which makes training easier.

3.3    Algorithm implementation flow

Fig. 3 shows the flow chart of the algorithm in this paper,
point target coordinates are generated, and then echo data
are obtained  by  (13).  Since  the  rotation  angle  and  velo-
city of  the  target  are  unknown,  the  output  will  be  defo-

cused if it passes the network. Therefore, this paper firstly
performs preprocessing  by  the  motion  compensation  al-
gorithm (keystone transform), which can compensate for
the phase errors caused by the target’s rotational motion
and  translational  motion.  Then,  fast  Fourier  transform
(FFT) is  performed,  and put  the  real  and imaginary data
into the network’s prediction input.
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Fig. 3    Flow chart of the algorithm in this paper
 

The radar parameters are shown in Table 1.
 
 

Table 1    Radar imaging parameters

Radar parameter name Symbol Numerical value

Initial frequency of transmitted signal f0/GHz 3

Target initial distance R0/km 10

Pulse repetition frequency PRF /KHz 50

Transmit signal bandwidth B/MHz 150

Number of bursts Mburst 128

Number of pulses Npulse 128
 

4. Simulation analysis
4.1    Training data generation

In this paper, in order to obtain better training results, the
first quadrant points in the training set are uniformly distri-
buted,  and  the  other  quadrant  points  are  consistent  with
the  first  quadrant  points.  The  points  obtained  are  distri-
buted in the four quadrants, and eventually 1 000 training
data are obtained.

The FFT image varies  with the motion parameters,  so
it cannot be trained and predicted by the neural network,
but the image is relatively good by using keystone trans-
form. Therefore, for the imaging of maneuvering targets,
in the training, motion compensation is firstly carried out
by  keystone  transform,  which  roughly  compensates  the
additional  phase  generated  by  translation  and  rotation,
and then the results are obtained by FFT, which is placed
in the u-net network for training. In the training set of this
paper,  the  rotational  angular  velocity  of  the  target  is
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0.15  rad/s,  the  radial  velocity  of  the  target  is  2  m/s,
Fig. 4(a) is the FFT image, Fig. 4(b) is the imaging result

after  keystone  transform,  and Fig.  4(c) is  the  ideal  point
scatterers model.
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Fig. 4    Training samples
 

4.2    Analysis of results

4.2.1    Experiment 1

Fig. 5 shows the ISAR images of different targets at a speed
of 2 m/s and a rotation angle of 0.15 rad/s, and Fig. 5(a)
and Fig. 5(e) are the FFT imaging results. It can be seen
from the figure that the obvious defocusing phenomenon
occurs due to the range cell migration caused by rotational
and  translational  motions.  Keystone  transform  can  coar-
sely  compensate  for  the  target ’s  rotational  motion  and
translational motion, as shown in Fig. 5(b) and Fig. 5(f).

Fig. 5(c) and Fig. 5(g) are the u-net prediction results, and
Fig.  5(d) and  Fig.  5(h) show  the  ideal  point  scatterers
model.  The  point  scatterer  used  to  analyze  the  profile  is
circled  in  red  in  the  image. Fig.  6 shows  the  range  and
azimuth profile comparison. It can be seen that, under the
FFT algorithm, there is no sidelobe in azimuth and range
echo; under  keystone  transform,  the  azimuth  peak  side-
lobe  is  good,  but  the  range  peak  sidelobe  is  very  high,
while  the  deep  learning  algorithm  greatly  improves  the
sidelobe suppression performance and has a better focus-
ing degree.
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Fig. 5    Algorithm of this paper tests results for different targets
 

We compare the proposed algorithm with Gabor wave-
let transform (GWT) and polar formatting algorithm (PFA).
Fig. 7 shows the ISAR images of the maneuvering target
at a speed of 2 m/s and a rotation angle of 0.15 rad/s, Fig. 7(a)
is the GWT imaging result, and Fig. 7(b) is the PFA ima-
ging result.  It  can be seen that  after  GWT and PFA pre-
processing,  due  to  the  effect  of  the  residual  phase  error
after coarse compensation, the image is still defocused in

the  direction  of  distance  and  cross  distance. Fig.  7(c) is
the proposed method result, where the error phase is suc-
cessfully removed and a clear ISAR image is formed. The
point scatterer used to analyze the profile is circled in red
in the image. Fig. 8 shows the range and azimuth profile
comparison. It can be seen that the proposed method has
the minimum peak to side lobe ratio and shows high per-
formance in correction of phase error. 
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Fig. 6    Profile comparison of the point scatterer marked by the red circle in Fig. 5(a)
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Fig. 8    Profile comparison of the point scatterer marked by the red circle in Fig. 7(a)
 

4.2.2    Experiment 2

In  this  paper,  the  measured  data  of  Boeing  727  aircraft
provided  by  the  U.S.  naval  research  laboratory  are  used

for experimental simulation. Fig. 9 shows the ISAR ima-
ges at a speed of 2 m/s and a rotation angle of 0.16 rad/s,
and Fig. 10 shows the profile of the point scatterer on the
tail of the aircraft marked by a red circle in Fig. 9(a).
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Fig. 9    Simulation results of Boeing 727
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Fig. 10    Profile comparison of the point scatterer marked by the red circle in Fig. 9(a)

Fig. 11 shows the ISAR images at a speed of 3 m/s and
a rotation angle of 0.14 rad/s, and Fig. 12 shows the pro-
file of the point scatterer on the tail of the aircraft marked
by  a  red  circle  in Fig.  11(a). Compared  to  the  FFT  al-

gorithm and the  keystone  transform,  the  proposed meth-
od has a smaller peak sidelobe ratio, and it obtains a more
focused image in both directions.
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Fig. 12    Profile comparison of the point scatterer marked by the red circle in Fig. 11(a)
 

From the above simulation results  and analysis,  it  can
be seen  that  the  proposed  method  achieves  high  resolu-
tion imaging of moving targets,  and it  only needs 0.56 s
to realize fast imaging on TITAN BLACK GPU through
network.

5. Conclusions
In this paper,  an ISAR imaging algorithm based on key-
stone  transform  and  deep  learning  imaging  is  proposed

for the moving target with large rotation angle and small
speed. The keystone transform preprocesses echo data to
roughly  compensate  the  translation  and  rotation  of  the
target, and then takes the uniformly distributed point tar-
get data as the training dataset of u-net neural network to
obtain 1 000 training set data. The u-net neural network is
used  to  predict  maneuvering  targets  in  different  motion
situation and to  obtain  high resolution images.  The ima-
ging results verify the effectiveness of the method.
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