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Abstract: In target tracking applications,  the Doppler  measure-
ment contains information of the target range rate, which has the
potential  capability  to  improve  the  tracking  performance.
However,  the  nonlinear  degree  between  the  measurement  and
the  target  state  increases  with  the  introduction  of  the  Doppler
measurement. Therefore, target tracking in the Doppler radar is a
nonlinear  filtering  problem.  In  order  to  handle  this  problem,  the
Kalman filter form of best linear unbiased estimation (BLUE) with
position measurements is proposed, which is combined with the
sequential filtering  algorithm  to  handle  the  Doppler  measure-
ment  further,  where  the  statistic  characteristic  of  the  converted
measurement error is calculated based on the predicted informa-
tion in the sequential  filter.  Moreover,  the algorithm is extended
to  the  maneuvering  target  tracking  case,  where  the  interacting
multiple  model  (IMM)  algorithm is  used as  the  basic  framework
and the model probabilities are updated according to the BLUE
position filter and the sequential filter, and the final estimation is
a weighted sum of the outputs from the sequential filters and the
model probabilities. Simulation results show that compared with
existing  approaches,  the  proposed  algorithm  can  realize  target
tracking  with  preferable  tracking  precision  and  the  extended
method can achieve effective maneuvering target tracking.
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1. Introduction
In radar tracking application, the target dynamics are usual-
ly  described  in  Cartesian  coordinates  while  the  measu-
rements  are  obtained  from  the  original  radar  coordi-
nates directly. Therefore, tracking is performed in mixed
coordinates, which leads to actually a nonlinear state es-
timation  problem.  For  a  practical  radar,  in  particular  the
Doppler  radar  or  the  ground  moving  target  indication

α−β

(GMTI)  radar,  the  Doppler  measurement  can  also  be
provided. The tracking accuracy can be greatly improved
by effective utilization of the Doppler information of the
target [1,2], but the measurement model is more complex
substantially when the Doppler measurement is involved
[3],  and  the  nonlinear  degree  between  the  measurement
and the target state increases in this case. There are many
types of  methods commonly used to realize target  track-
ing with nonlinear measurement [4−7], including the ex-
tended Kalman filter (EKF), the unscented Kalman filter
(UKF) and the particle filter (PF). In the EKF, the nonlin-
ear  measurement  function  is  approximated  by  the  linear
part of its Taylor expansion. Therefore, EKF is not good
at approximating the strong nonlinearity. The UKF uses a
minimum set of sample points to approximate the system
state  distribution,  which  is  more  accurate  than  the  EKF,
but the algorithm is more complex. The PF can solve the
nonlinear  filtering  problem  effectively  and  it  performs
well  in  the  strong  nonlinear  case.  However,  the  PF  has
the disadvantage of  large computational  complexity.  Be-
sides the above methods, to deal with the nonlinearity in
the measurement  equation,  many  measurement  conver-
sion  methods  were  proposed  [8−11].  The  measurements
in the radar (polar or spherical) coordinates are converted
to the Cartesian coordinates through different conversion
methods.  Then,  the  mean  and  corresponding  covariance
matrices of the converted error are calculated. Under the
condition of a steady state stationary,  the  filter  can
be applied with the measurement conversion method [12]
to solve the nonlinear target tracking problem. When the
range rate measurement is available, the pseudo measure-
ment produced by the product of range and range rate can
be used  to  reduce  the  nonlinearity,  which  can  be  pro-
cessed sequentially to improve the tracking accuracy [13,
14]. The pseudo state related to the range rate was intro-
duced in the statically fused (SF) method [15,16],  where
the  position  state  estimation  and  pseudo  state  estimation
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were combined by a static minimum mean squared error
estimator  (MMSE).  To  improve  the  performance  of  the
converted  measurement  method,  a  novel  multiplicative
unbiased  converted  measurement  Kalman  filter  algori-
thm with range rate (UCMKF-R) was developed in [17].
An  unbiased  and  consistent  measurement  conversion
from range, bearing, and range rate to the Cartesian posi-
tion and velocity with appropriate elimination of estima-
tion bias was proposed in [18]. For the measurements re-
ported in  the  direction  cosine  coordinates  (COS),  an  ef-
fective tracking  method named sequential  extended Kal-
man filter (SEKF) using de-biased converted position and
Doppler measurements in the COS (DCMSEKFcos) was
proposed  in  [19].  To  resolve  the  nonlinear  estimation
problem in the bistatic radar tracking system, the conver-
ted  measurement  sigma  point  Kalman  filter  (CMSPKF)
[20]  estimates  the  conversion  bias  and  the  converted
measurement error  covariance  with  a  sigma  point  trans-
form  (SPT)  using  a  combination  of  the  tracker's pre-
dicted estimate  and  the  raw  measurement  error  covari-
ance. On the other hand, the best linear unbiased estima-
tion (BLUE) can directly derive the form of the linear fil-
ter under the MMSE criterion for the nonlinear measure-
ments [21]. Considering the tracking with the range rate,
the recursive BLUE with the range rate was proposed in
[22].  Another  BLUE-related  filtering  method  with  the
range  rate  was  the  one  that  introduced  the  conventional
BLUE into the statically fusion method in [23].

Besides the nonlinear measurement,  most  targets  have
maneuvering  characteristics  in  practice  and  model-mis-
match  is  inevitable  with  the  single  target  state  model  in
filtering processing. Recently, numerous works have been
done concerning  the  maneuvering  target  tracking  prob-
lem.  The  research  in  this  field  includes  the  adaptive
single model  filter  based on maneuver identification and
detection,  such as  “current”  statistical  model  [24],  input
estimation  (IE),  variable  dimension  filter  [25],  etc.,  and
the ones based on multiple models, such as multiple-mod-
el algorithm,  interacting  multiple  model  (IMM)  al-
gorithm, and variable structure IMM algorithm [26]. The
IMM algorithm essentially  provides an algorithm frame-
work that is easy to combine with the conventional track-
ing  algorithm  based  on  a  single  model,  and  meanwhile
the  IMM approach can achieve  quick transition  between
the target  modes.  For  IMM-based  nonlinear  measure-
ment  filtering  methods,  the  modified  IE  (MIE)  and  the
BLUE  filter  are  fused  within  the  IMM  framework  to
achieve the accuracy and robustness of maneuvering tar-
get tracking [27]. In [28], the covariance intersection (CI)
fusion  algorithm  based  on  the  BLUE  filter  within  the
IMM framework  was  proposed  to  realize  target  tracking

with multiplatform. In [29], a sequential maneuver detect-
or was developed based on the Neyman Pearson criterion
to  overcome  threshold  shifting  which  results  from  the
maneuver detection  delay,  where  the  Doppler  measure-
ment  is  utilized to  solve the  optimization problem based
on  the  Mahalanobis  distance.  While  the  aforementioned
works  have  made  definite  contributions  to  the  classical
problems of nonlinear measurement and maneuvering tar-
get tracking, the current methods have not achieved satis-
factory results  and  there  are  still  some  issues  to  be  ad-
dressed:

(i)  In  existing  nonlinear  measurement  algorithms
[8−10], the error statistics are derived on the condition of
the measurement information, which will result in a non-
linear  biased  estimation.  Although  the  derivation  based
on  predicted  information  was  proposed  in  [11]  to  avoid
the above mentioned problem, it does not consider the ef-
fective utilization  of  the  Doppler  information.  The  se-
quential nonlinear  tracking  filter  with  Doppler  informa-
tion was proposed in [13,14] to deal with the strong non-
linearity of the range rate. However, the error statistics in
these methods are still based on the measurement inform-
ation.  In  summary,  the  existing  nonlinear  measurement
algorithms cannot deal with the biased estimation and the
range rate simultaneously.

(ii)  BLUE is  regarded  as  a  method  different  from the
converted measurement Kalman filter (CMKF). The rela-
tion  between  the  two  types  of  nonlinear  filtering  algori-
thms is not investigated. It gives us an idea whether there
is a relationship between the CMKF and the BLUE filter
that can be utilized.

(iii) Most of the existing nonlinear filtering algorithms
are proposed for un-maneuvering target tracking, not con-
sidering the maneuvering characteristics of targets. IMM-
based  filtering  methods  were  proposed  in  [27] for  man-
euvering target tracking with the nonlinear measurement.
However, the  above algorithms just  take  the  target  posi-
tion  into  consideration,  which  cannot  handle  the  range
rate appropriately.

Based  on  above,  de-correlated  unbiased  sequential
(DUSQ) filtering is proposed for target tracking with the
nonlinear  measurement.  The  main  contributions  are  as
follows:

(i) DUSQ filtering is derived, in which the statistics of
the converted pseudo measurement is calculated based on
the  predicted  information  to  avoid  the  drawbacks  based
on the measurement information.

(ii) The relationship between BLUE and CMKF is  in-
vestigated. The Kalman filter form of BLUE with the po-
sition  measurement  is  obtained,  which  is  combined with
the sequential  filtering algorithm based on the converted
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pseudo measurement further.
(iii)  DUSQ  is  extended  to  the  maneuvering  target

tracking case,  where  it  is  combined  with  the  IMM  al-
gorithm.  The  model  probabilities  are  obtained  according
to  the  estimation  results  from  the  BLUE  position  filter
and  the  sequential  filter.  Therefore,  the  accuracy  of  mo-
del probabilities can be improved.

The  rest  of  this  paper  is  organized  as  follows.  The
problem  is  formulated  in  Section  2.  The  Kalman  filter
form  of  BLUE  with  position  measurements  is  presented
in  Section  3.  The  sequential  filtering  based  on  BLUE
with the additional Doppler measurement is given in Sec-
tion 4.  In  Section 5,  the IMM BLUE sequential  filtering
algorithm  for  maneuvering  target  tracking  is  presented.
The Monte Carlo simulation results are shown in Section 6,
followed by conclusions in Section 7.

2. Problem formulation
In most cases, the range and angle measurements can be
obtained from the radar  system.  The measurement  equa-
tion has the nonlinear form as in (1) due to different co-
ordinate systems between the state and the measurement.

[rm
k , θ

m
k , ε

m
k ]T = h(xk)+ vk = [rk, θk, εk]T+ vk =√x2

k + y2
k + z2

k arctan
yk

xk
arctan

zk√
x2

k + y2
k

+ vk (1)

(xk,yk,zk)
rm

k θm
k

εm
k rk

θk εk

vk = [̃rk, θ̃k, ε̃k]T

r̃k θ̃k ε̃k

σr

σθ σε

where  is the  true  position  in  the  Cartesian  co-
ordinates.  The measured range ,  bearing  and eleva-
tion  are defined with respect to the true range , bear-
ing  and elevation  of  the  target  in  spherical  coordi-
nates. The measurement noise sequence is ,
where ,  and  are assumed to be additive measure-
ment  noise  with  zero  means  and  standard  deviations ,

 and , respectively.
In the Doppler radar, the additional range rate measure-

ment can be obtained with

ṙm
k = ṙk +˜̇rk (2)

ṙkwhere  is the true range rate of the target.

ṙk =
xk ẋk + ykẏk + zk żk

rk
(3)

(ẋk, ẏk, żk) ˜̇rk

σṙ ˜̇rk r̃k

ρ

where  is the  true  velocity  in  the  Cartesian  co-
ordinates.  The  measurement  noise  is  assumed  to  be
Gaussian distribution with zero means and standard devi-
ations .  The  correlation  coefficient  between  and  
is .

Note  that  the  nonlinear  relationship between the  state,
the  measurement  and  the  Kalman  filter  is  valid  only  for
the  linear  system  with  white  uncorrelated  noise.  The
problem here  is  how to  use  the  nonlinear  measurements

to estimate the target state.

3. Kalman filter form of BLUE with position
measurements

x̂k−1 Pk−1

k−1 Zk

k

The recursive BLUE filter is in general valid for a nonli-
near  as  well  as  linear  model.  In  this  part,  the  recursive
BLUE  filter  and  its  Kalman  form  deviations  are  given.
Suppose that the target state estimations are  and 
at  time ,  and  is  the  historical  measurement  data
until the moment . Based on the measurement model in
(1), the recursive form of the BLUE filter is given as fol-
lows [21].

(i) Prediction
xk

Pk

The predicted state  and the corresponding error cov-
ariance  are

xk =
[
xk ẋk yk ẏk zk żk

]T
= Fk−1 x̂k−1+Γk−1wk−1 (4)

Fk−1 wk−1

Γk−1 wk−1

where  is the state transfer matrix,  is the process
noise and  is the input matrix of .

Pk = cov
[
xk − xk |Zk−1

]
=[

cov
(
x̃k, x̃k

)
,cov
(
x̃k,˜̇xk

)
,cov
(
x̃k, ỹk
)
,

cov
(
x̃k,˜̇yk

)
,cov
(
x̃k, z̃k
)
,cov
(
x̃k,˜̇zk

)]
=

Fk−1 Pk−1FT
k−1+Γk−1Qk−1Γ

T
k−1 (5)

x̃k = xk − xk =
[
x̃k ˜̇xk ỹk ˜̇yk z̃k ˜̇zk

]T
(xk,yk,zk)

(ẋk, ẏk, żk)
Qk−1

wk−1

where ,  and
 are  the  predicted  position  and  velocity  in  the

Cartesian  coordinates,  respectively.  is the  covari-
ance matrix of .

(ii) Update

x̂p
k = E∗

[
xk |Zk

]
= xk +Kk

(
zp

k − zp
k

)
, (6)

Pp
k = Pk −KkSk KT

k , (7)

E∗[xk |Zk] xk

Zk

Kk Sk

where  represents the estimation of  under the
condition  based on  the  linear  MMSE  (LMMSE)  cri-
terion.  is the gain matrix and  is the covariance ma-
trix of innovation.

zp
k = E∗

[
zp

k |Zk−1
]
= µ1
[
λ1xk,λ1yk,λ1zk

]T
, (8)

zp
k =

 rm
k cosθm

k cosεm
k

rm
k sinθm

k cosεm
k

rm
k sinεm

k

 , (9)

Sk = cov
(
zp

k − zp
k |Zk−1

)
, (10)

Kk = cov
(
xk − xk, zp

k − zp
k |Zk−1

)
S−1

k = cov
(
x̃k, z̃p

k |Zk−1
)
S−1

k =

µ1
[
λ1cov

(
x̃k, x̃k

)
,λ1cov

(
x̃k, ỹk
)
, cov(x̃k, z̃k)

]
S−1

k ,
(11)
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z̃p
k = zp

k − zp
k λ1=E

(
cos θ̃k

)
=e−

σ2
θ

2 µ1=E(cos ε̃k)=
e−

σ2
ε

2 E(·)

Sk

where ,  and 
 are constants.  represents the expection of corres-

ponding elements. The detail  expression of the predicted
position measurement error covariance matrix  was de-
rived in [21], which is not given here for space limitation.

Rewrite the predicted position measurement as

zp
k =

 λ1µ1xk

λ1µ1yk

µ1zk

 = Λ−1
k Hk xk (12)

Hk Hk = diag
{[1 0],3}3×6 Λk

λ1 µ1

where  is  the  measurement  matrix,  and 
;  is  the  bias  compensation  matrix,  which

consists of the bias compensation factors  and  as

Λk =


λ−1

1 µ
−1
1 0 0

0 λ−1
1 µ

−1
1 0

0 0 µ−1
1

 . (13)

Substituting (12) into (6), the update state equation can
be expressed as a new form as

x̂p
k = xk +Kk(zp

k − zp
k ) =

xk +Kk(zp
k −Λ−1

k Hk xk) =
xk +KkΛ

−1
k (Λk zp

k −Hk xk) =
xk +Ck(zc,p

k −Hk xk) (14)

Ck = KkΛ
−1
kwhere  is considered as a new form of the Kal-

man gain.

Ck = KkΛ
−1
k = µ1[λ1cov(x̃k, x̃k),λ1cov(x̃k, ỹk),

cov(x̃k, z̃k)] ·S−1
k Λ

−1
k = [cov(x̃k, x̃k),cov(x̃k, ỹk),

cov(x̃k, z̃k)] ·Λ−1
k S−1

k Λ
−1
k (15)

Λk zp
k zc,p

kand  is denoted as .

zc,p
k = [xc

k yc
k zc

k]
T =


λ−1

1 µ
−1
1 rm

k cosθm
k cosεm

k

λ−1
1 µ

−1
1 rm

k sinθm
k cosεm

k

µ−1
1 rm

k sinεm
k

 (16)

zc,p
k

zp
k

Λk

From  (16),  can  be  considered  as  a  measurement
conversion  of  with  a  multiplicative  nature  of  the  bias

.

Ck

Furthermore, rewrite the covariance in (7) with respect
to  as

Pp
k = Pk −KkSk KT

k =

Pk −KkΛ
−1
k

[
ΛkSkΛ

T
k

] [
KkΛ

−1
k

]T
=

Pk −Ck DkCT
k (17)

Dk Dk = ΛkSkΛ
T
kwhere  is defined as , which is considered

to be  the  new  innovation  covariance.  Consider  the  rela-
tionship  between  the  innovation  and  measurement  error
covariance in the Kalman filter. We should have

Dk = Hk Pk HT
k +Rp

k . (18)

zc,p
k

Rp
k

Therefore, BLUE  is  a  kind  of  CMKF,  whose  conver-
ted measurement is  and the corresponding covariance

 is

Rp
k = Dk −Hk Pk HT

k = ΛkSkΛ
T
k −Hk Pk HT

k . (19)

4. DUSQ filtering based on BLUE with addi-
tional range rate measurement

rm
k θ

m
k εm

k ṙm
kBesides the position measurements ,  and ,  the 

measurement  is  also  available  in  the  Doppler  radar.  The
additional  Doppler  information  can  be  sequentially  used
to improve the target tracking performance.

4.1    Conventional sequential filtering algorithm

To eliminate the nonlinear influence of the range rate, the
pseudo measurement equation is constructed as follows:

ξm
k = rm

k ṙm
k = xk ẋk + ykẏk + zk żk + ξ̃k (20)

ξ̃k

E
[̃
ξk |rk, ṙk

]
= ρσrσṙ

where  is  the  error  of  pseudo  measurement  with  the
mean .  The  de-biased  pseudo  measu-
rement conversion can be given as

ξc
k = rm

k ṙm
k −ρσrσṙ = ξk + ξ̃

c
k (21)

ξk
ξk = rk ṙk = xk ẋk + ykẏk + zk żk ξ̃

c
k

where  is  the  true  pseudo  measurement  defined  as
,  is the error of the conver-

ted pseudo measurement in the Cartesian coordinates.
The structure of sequential filtering is shown in Fig. 1.

 
 

Angle

Range Measurement
conversion

Position
filtering

Sequential
filtering Output

Range
rate

θk, εk
m m

xk, yk, zk
c c c

rk
m

ξk
crk

m·

Fig. 1    Structure of conventional sequential filter
 

xc
k yc

k

zc
k

In  the  sequential  structure  where  the  position  filter
based on the converted position measurements ( ,  and

) is followed by the filter based on the de-biased pseudo

ξc
k ξc

k

rm
k xc

k

yc
k zc

k ξc
k

measurement ,  both  and the position filter input are
related  to ,  which  leads  to  the  correlation  between ,

,  and .
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Because  the  derivation  of  the  mean  and  covariance
matrix of  the  converted  measurement  error  is  condi-
tioned on the  radar  measurement  [13], the  final  state  es-
timation is correlated to the measurement and a biased es-
timate will be obtained.

4.2    DUSQ filtering based on BLUE

To overcome the drawbacks in the conventional  sequen-
tial  filtering  algorithm,  the  statistic  characteristics  of  the
converted measurement error is calculated conditioned on
the  predicted  position  in  the  proposed  algorithm.  As
shown  in  Section  3,  BLUE  with  position  measurements
can  be  seen  as  a  kind  of  CMKF,  which  is  based  on  the
predicted position information of the target.  The conver-
ted measurement  position  filter  in  the  conventional  se-
quential  algorithm  is  replaced  by  the  Kalman  form  of
BLUE.

k rt r̃t

rk,t r̃k,t

The statistic of the converted pseudo measurement er-
ror is also calculated conditioned on the predicted informa-
tion  to  avoid  the  drawbacks  calculated  based  on  measu-
rement  information.  For  brevity,  we drop the time index

 in the predicted information, i.e., let  and  stand for
 and  .  The  relationship  between  the  predicted  and

true values can be expressed as
rt = rk + r̃t

ṙt = ṙk +˜̇rt

θt = θk + θ̃t

εt = εk + ε̃t

(22)

rt θt εt ṙt

r̃t θ̃t ε̃t˜̇rt

where , ,  and  are the predicted range, bearing, ele-
vation and range rate of the target, respectively; , , 
and  are the corresponding predicted errors. The measu-
rements can be expressed further as

rm
k = rt − r̃t + r̃k

ṙm
k = ṙt −˜̇rt +˜̇rk

θm
k = θt − θ̃t + θ̃k
εm

k = εt − ε̃t + ε̃k

. (23)

mc
k Rc

kThe mean  and the covariance  of converted measu-
rement errors are calculated conditioned on the predicted
information as

Rc
k =


Rxξ

k
Rp

k Ryξ
k

Rzξ
k

Rxξ
k Ryξ

k Rzξ
k Rξk

 ,
mc

k = E
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x̃c
k ỹc

k z̃c
k ξ̃

c
k

]T∣∣∣∣rt, ṙt, θt, εt

}
= 04×1, (24)

Rxξ
k = cov

[
x̃c

k, ξ̃
c
k |rt, ṙt, θt, εt

]
=

e−
σ2
θt

2 e−
σ2
εt

2 cosθt cosεt

(
ρσrσṙrt +σ

2
r ṙt

)
, (25)

Ryξ
k = cov

[̃
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k, ξ̃
c
k

∣∣∣∣rt, ṙt, θt, εt

]
=

e−
σ2
θt

2 e−
σ2
εt

2 sinθt cosεt

(
ρσrσṙrt +σ

2
r ṙt

)
, (26)

Rzξ
k = cov[̃zc

k, ξ̃
c
k |rt, ṙt, θt, εt] =

e−
σ2
εt

2 sinεt(ρσrσṙrt +σ
2
r ṙt), (27)

Rξk = cov
[̃
ξc

k

∣∣∣∣rt, ṙt

]
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1+2ρ2
)
σ2

rσ
2
ṙ +σ

2
r

(
ṙ2
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2
ṙt
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2ρσrσṙ
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x̃c
k, ỹc

k, z̃c
k ξ̃c

k

σ2
rt
σ2
θt
σ2
εt

σ2
ṙt

rt θt εt ṙt

Rp
k

where  and  are the converted measurement er-
rors  in  positions  and pseudo measurement;  the  predicted
error variances , ,  and  can be obtained by Jaco-
bian transformation on the predicted error covariance; the
predicted  values , ,  and  can be  obtained accord-
ing to the predicted state. In addition, the position conver-
ted measurement error covariance  can be obtained by
(19).

Rp
k

Rc
k

Based on above results,  we can use  the  sequential  fil-
ter to update the position estimation according to (14) and
(17) from  the  BLUE  filter.  The  sequential  filtering  pro-
cess is similar with the conventional one, including the de-
correlation  between  position  and  pseudo  measurements
and EKF.  The  difference  is  that  the  converted  measure-
ment error covariance matrix  is replaced by (19), and
the remaining items in  are calculated by (25)–(28). Fi-
nally,  DUSQ  filtering  based  on  the  BLUE  algorithm  is
obtained.

k−1 x̂k−1

Pk−1

x̂k Pk

Assume the state estimation at  is  and the cor-
responding estimation error covariance is , the DUSQ
is  used  to  obtain  and   according  to  the  following
steps.

xk

Pk

rm
k θ

m
k εm

k

zc,p
k

Ck

x̂p
k

Pp
k

Step  1　Calculate  the  predicted  state  and corres-
ponding covariance  according to (4) and (5),  and use
the  position  measurements ,  and   of  the  Doppler
radar to obtain the converted position measurement  as
in (16), the gain of the Kalman filter form of BLUE  is
obtained by (15), and then the position state estimation 
and  can be obtained according to (14) and (17).

rm
k ṙm

kStep 2　Use  and  to obtain the de-biased pseudo
measurement  according  to  (21)  and  the  corresponding
statistical characteristics from (24)–(28).
Step 3　De-correlate between the position and pseudo

measurements,  where  the  Cholesky  factorization  [13]  is
applied  to  obtaining  the  de-correlated  pseudo  measure-
ment.
Step  4　 Use  the  de-correlated  pseudo  measurement

and position state estimation to filter sequentially, where
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x̂k Pk

the nonlinear  filtering  algorithm  is  similar  with  the  pro-
cess  in  the  conventional  sequential  filter.  The  final  state
estimation  and the corresponding error  covariance 
are obtained.

In summary, the structure of the proposed filter DUSQ
is  shown in Fig.  2,  where  SQ stands  for  sequential.  The
original radar  measurements,  i.e.,  range,  bearing,  eleva-
tion and range  rate  are  divided into  two parts  to  be  pro-
cessed separately. More specifically, the angle and range
measurements are input to the BLUE filter, which is con-
sidered to be the Kalman filter combined with a position
measurement conversion based on the predicted position.
On the  other  hand,  the  range  and  range  rate  measure-
ments are transformed to the pseudo converted measure-
ment  by the Doppler  conversion module and the EKF is
used to  process  the  pseudo  converted  measurement  se-
quentially. The state estimation is obtained by the sequen-
tial filter finally.

5. Extension to the maneuvering
target tracking case

In practice,  most  targets  have  maneuvering  characterist-
ics. The IMM algorithm is an effective maneuvering tar-
get tracking method and it  is  easy to combine with vari-
ous  filters  due  to  the  structure  of  it  [25].  Therefore,  the
proposed algorithm DUSQ is  extended to the maneuver-
ing  target  tracking  case.  More  specifically,  DUSQ  is
fused  within  the  IMM  framework  to  obtain  the  DUSQ-
IMM  algorithm,  where  each  sub-model  consists  of  a
DUSQ  filter  and  the  frame  of  DUSQ-IMM  is  shown  in
Fig. 3. The filtering steps are shown as below.

(i) Estimation interaction
x̂i,p

k−1

Pi,p
k−1 i k−1

Assume  that  the  position  estimated  state  and  the
corresponding covariance  of model  at time  are
known, the interaction state estimation and the error cov-
ariance of each filter can be obtained as

x̂ 0, j
k−1 =

N∑
i=1

x̂ i,p
k−1µ

(i| j)
k−1, (29)

P0, j
k−1 =

N∑
i=1

µ(i| j)
k−1

[
Pi,p

k−1+(
x̂ i,p

k−1− x̂ 0, j
k−1

) (
x̂ i,p

k−1− x̂ 0, j
k−1

)T]
, (30)

N µ(i| j)
k−1

i k−1
j k

where  is  the  total  number  of  models,  and  is  the
probability  of  model  at  time ,  under  the  condition
of model  at time .
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(ii) DUSQ of each model

x̂ j
k

P j
k ( j = 1,2, · · · ,N).

Based on the interaction results and the measurements,
perform  DUSQ  for  each  model  to  obtain  and

(iii) Model probability update
In  order  to  improve  the  accuracy  of  updated  model

probabilities, the model probabilities updated from BLUE
and  the  sequential  filter  are  fused  to  obtain  the  updated
model probability.

µ j
k = w j,p

k µ
j,p
k +w j,ξ

k µ
j,ξ
k (31)

w j,p
k w j,ξ

k

µ j,p
k µ j,ξ

k

where  and   are the  corresponding  weight  coeffi-
cients,  and  are the model probabilities from posi-
tion and pseudo measurement filters as

µ j,p
k = L j,p

k

cp
j

cp

µ j,ξ
k = L j,ξ

k

cξj
cξ

(32)

where 
cp

j =

N∑
i=1

πi jµ
i,p
k−1

cξj =
N∑

i=1

πi jµ
i,ξ
k−1

, (33)


cp =

N∑
j=1

L j,p
k cp

j ,

cξ =
N∑

j=1

L j,ξ
k cξj

. (34)

πi j

i j
 is  the  transition  probability  of  the  system  from

model  to model . The likelihood function of each filter
is calculated as

L j,p
k =
∣∣∣∣2πS j,p

k

∣∣∣∣− 1
2 · exp
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2

(
e j,p

k

)T (
S j,p

k
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} (35)

e j,p
k

S j,p
k e j,ξ

k

S j,ξ
k

where  is  the  residual  from the  BLUE filter  with  the
corresponding  covariance ,  and  is  the  sequential
residual with the corresponding covariance .

(iv) Final estimation
The filtering results are weighted by the updated prob-

abilities to obtain the final estimation as

x̂k =

N∑
j=1

x̂ j
kµ

j
k, (36)

Pk =

N∑
j=1

µ j
k

(
P j

k +
[
x̂ j

k − x̂k

] [
x̂ j

k − x̂k

]T)
. (37)

6. Simulation

σr σθ σε
σṙ

ρ

q = 0.2

Assume the target is initially located at (3 000 m, 6 000 m,
100 m), with the velocity of (100 m/s, 30 m/s, 2 m/s). It
performs  nearly  constant  velocity  (NCV)  motion  during
the whole tracking period and the sampling interval of the
Doppler radar is 1 s. The radar measurements include the
range, bearing,  elevation  angle  and  Doppler  measure-
ments  with  zero-mean  Gaussian  white  measurement
noises and the standard deviations of them are , , 
and  respectively,  and  the  correlation  coefficient
between  range  and  range  rate  is  denoted  as . The  pro-
cess  noise  is  assumed  to  be  zero-mean  Gaussian  white
with  the  standard  deviation  of  m/s2 .  The  number
of Monte Carlo runs is 200.

DUSQ  is  used  to  realize  target  tracking.  Meanwhile,
the conventional SELF in [13], the SFCMKF in [15] and
the  BLUE  with  Doppler  measurement  approach
(BLUESF) in [23] are simulated. In order to better verify
the  performance  of  the  proposed  algorithm, Table  1
provides  the  measurement  parameters  setting  for  each
case  [15]. The  performances  of  the  algorithms  are  com-
pared  in  terms  of  the  position  and  velocity  root  mean
squared errors (RMSEs) and non-credibility index (NCI).
The RMSE is generally used to evaluate the tracking ac-
curacy  of  the  algorithm  and  the  NCI  [30]  is  the  metric
used  to  evaluate  the  consistency  between  the  estimated
state error and the corresponding covariance. The smaller
the values of RMSE and NCI, the better the tracking per-
formance of the algorithm.

The RMSE of comparison results under different measu-
rement  parameter  settings  are  shown  in Figs.  4–10.
Firstly,  the  proposed  DUSQ  has  the  best  performance
among  all  algorithms,  since  its  unbiased  measurement
conversion and the statistical characteristic of the conver-
ted  measurement  error  are  deduced  based  on  the  predi-
cted  position  information.  In  SEKF  and  SFCMKF,  the
measurement  conversion  is  a  de-biased  one  and  the  sta-
tistical characteristic of the converted measurement error
is  deduced  based  on  the  measurement.  Therefore,  the
tracking performance is not as good as DUSQ. BLUESF
and SFCMKF fall into the category of the SF algorithm,
which  indicates  that  they  require  a  great  deal  of  time  to

 

Table 1    Measurement parameters in different cases [15]

Parameter 1 2 3 4 5 6 7

σr/m 50 50 100 100 150 150 150

σθ /(°) 0.1 0.1 0.2 0.2 0.5 0.5 0.5

σε /(°) 0.1 0.1 0.2 0.2 0.5 0.5 0.5

σṙ/(m/s) 0.1 0.1 0.1 0.1 0.1 0.9 1.5
ρ 0.9 0 0 –0.9 0 0 0
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converge  for  the  pseudo  state  estimation,  especially  in
large position measurements errors cases, see Figs. 8–10.

ρ

ρ = 0.9 ρ = 0 ρ = −0.9 ρ = 0

Secondly, in order to evaluate the influence of the cor-
relation  coefficient ,  the  RMSE  comparisons  with

, ,  and ,  in  different  position
measurements  errors  are  shown  in Fig.  4, Fig.  5, Fig.  6
and Fig. 7.  It  can be seen that the performances of these
algorithms are not influenced by the correlation between

range and range rate measurements.

ρ σṙ

Thirdly, to evaluate the influence of position measure-
ments accuracy on estimation,  and  are fixed, and the
RMSE comparisons under different position measurement
errors are given in Fig. 5, Fig. 6 and Fig. 8. It can be seen
that DUSQ has the best performance and the advantage of
it is more obvious as the position measurement errors in-
crease.
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Fig. 4    Position RMSE of Case 1
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σṙ

σṙ

Finally, the standard deviation of the Doppler measure-
ment  error  is  varied  to  investigate  the  influence  of
it  on  the  estimation  performance. Figs.  8–10  show  the
RMSE  comparisons  when  is  0.1  m/s,  0.9  m/s  and
1.5  m/s,  respectively.  It  can  be  seen  that  DUSQ has  the
best performance  and  the  superiority  of  it  is  more  obvi-
ous as the Doppler measurement error decreases.

σr = 150 σθ =

σε = 0.5◦ σṙ = 1.5 ρ = 0
The  NCI  comparison  result  with  m,  

,  m/s and  is shown in Fig. 11, and
the results in other cases are similar, which are not given
repeatedly.  It  can  be  seen  that  DUSQ  has  the  smallest
NCI in  this  case,  which  indicates  that  DUSQ  is  notice-
ably superior to other algorithms in terms of consistency.
Furthermore,  the  NCIs  of  SEKF and  SFCMKF are  very
close due to the measurement conversion based on radar
measurements, the NCIs of BLUESF and DUSQ are simi-
lar and lower than the other two NCIs, because the BLUE
algorithm is utilized in BLUESF and DUSQ, and the in-
troduction of the BLUE can avoid the drawback of meas-
urement conversion based on measurements.
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Fig. 11    Comparison of NCIs with different algorithms
 

Besides  tracking  accuracy  of  algorithms,  computation
burden is  another  important  performance  index.  Simula-

tions are made using Matlab R2016b on a 2.40 GHz Intel
core i5-2430 PC for 100 iterations. Results are shown in
Fig.  12.  It  can  be  seen  that  the  DUSQ  algorithm  is
achieved  without  increasing  computation  burden  signifi-
cantly,  while  the  computation  burden  of  the  other  two
SF-type (BLUESF and SFCMKF) algorithms is large.
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Fig. 12    Computation cost of 100 iterations
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In  order  to  verify  the  effectiveness  of  DUSQ-IMM in
the maneuvering case, the simulation scene in [27] is set
here:  a  target  starts  at  (–2  000 m,  1  000 m,  100 m)  and
moves with velocities of (20 m/s, 0 m/s, 0 m/s) for 20 s,
then  acceleration  along  the -axis  increases  to  5  m/s2

within 15 s.  After constant acceleration (CA) motion for
10 s, the acceleration along the -axis decreases to 0 m/s2

within  15  s,  then  the  target  resumes  constant  velocity
(CV)  motion.  The  acceleration  turbulences  along  each
axis are 0.1 m/s2. The measurement accuracy is  m
for  range,  for  bearing  and  elevation,  and

 m/s for range rate. Simulation time span is 130 s.
In  DUSQ-IMM,  the  initial  probability  of  each  model  is
set  to  be  0.5,  and  the  probability  transfer  matrix  is

. The weight of the position and pseudo measu-

rement  model  probability  are  set  to  be  0.5.  The  position
and velocity RMSEs of DUSQ-IMM are shown in Fig. 13
and Fig.  14.  It  can be  seen that  DUSQ-IMM can realize
effective target tracking in this scene.
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The proposed algorithm is compared with MIE-BLUE
in  [27]  in  terms  of  averaged  RMSE  and  the  results  are
shown in Table 2. It can be seen that the averaged RMSE
of  DUSQ-IMM is  significantly  lower  than  the  results  of
the  algorithm  proposed  in  [27].  The  reason  is  that  the
Doppler measurement is utilized in DUSQ-IMM and the
tracking accuracy  can  be  greatly  improved  by  this  addi-
tional  Doppler  information.  The  model  probabilities  in
DUSQ-IMM are updated from the Kalman filter form of
the BLUE and the sequential filter, so the accuracy of the
updated  model  probability  is  higher.  The  updated  model
probabilities are shown in Fig. 15, where NCA stands for
nearly constant acceleration.
  

Table 2    Comparison of averaged RMSEs

Parameter DUSQ-IMM MIE-BLUE [27]

Position/m 6.704 8 7.40

Velocity/(m/s) 1.894 1 3.60
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The model probability of CV in DUSQ-IMM is larger
than that of CA in the absence of the maneuver, when the

target maneuvering and the model probability of CA can
increase  immediately  to  match  the  target  motion  mode.
Consequently, it can accurately estimate the target accel-
eration.  Therefore,  the  proposed  approach  DUSQ-IMM
can realize effective maneuvering target tracking.

7. Conclusions
For  target  tracking  in  the  Doppler  radar,  a  new tracking
algorithm  named  DUSQ  is  presented.  In  this  approach,
the  position  and  pseudo  measurements  are  sequentially
processed,  where  the  position  measurement  filter  BLUE
is considered as a kind of CMKF with special converted
measurements  and  error  covariance,  and  the  sequential
filter based on the pseudo measurement is used to handle
the  Doppler  measurement  further.  The  involved  pseudo
measurement conversion  is  based  on  the  predicted  in-
formation to  avoid  the  drawback  based  on  the  measure-
ment information.  Through  simulation  results,  the  pro-
posed  algorithm  is  noticeably  superior  to  other  methods
and  its  extended  algorithm DUSQ-IMM can  realize  ma-
neuvering target  tracking.  Therefore,  DUSQ  and  its  ex-
tension  are  effective  algorithms  for  Doppler  radar  target
tracking.
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