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Abstract: To  solve  the  problem  of  time  difference  of  arrival
(TDOA) positioning and tracking of targets by the unmanned ae-
rial vehicles (UAV) swarm in future air combat, this paper adopts
the TDOA positioning method and uses time difference sensors
of  the  UAV  swarm  to  locate  target  radiation  sources.  Firstly,  a
TDOA model  for  the  target  is  set  up  for  the  UAV  swarm under
the condition that the error variance varies with the received sig-
nal-to-noise ratio.  The  accuracy  of  the  positioning  error  is  ana-
lyzed by geometric dilution of precision (GDOP).  The D-optima-
lity criterion of the positioning model is theoretically derived. The
target  is  positioned and settled,  and the maximum value of  the
Fisher information  matrix  determinant  is  used  as  the  optimiza-
tion  objective  function  to  optimize  the  track  of  the  UAV  in  real
time. Simulation  results  show  that  the  track  optimization  im-
proves the positioning accuracy and stability of the UAV swarm
to the target.
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1. Introduction
American  scholars  John  Aquila  and  David  Longfield
once  pointed  out  in  their  monographs  “Swarm  and  the
Future of Conflict” that in the future battlefield, “swarm
war”  will  become the  fourth  war  in  human history  after
“melee  war”,  “assembly  war”  and  “mobile  war”  [1,2].
Faced with  a  highly  confrontational,  uncertain  and  dy-
namic  battlefield  environment,  the  unmanned  aerial
vehicles  (UAV)  combat  style  has  gradually  developed
from single platform operation to multi-platform “swarm”
operation [3]. In future operations, the primary task of the
UAV swarm is to solve the perception problem in obser-

vation,  orientation,  decision,  action  (OODA)  ring.  In
radar-based situation  awareness,  passive  location  equip-
ment  benefits  from its  small  size,  light  weight,  low pro-
bability of  being  found  by  the  enemy,  and  is  more  suit-
able for task loading of current UAV swarm.

According to the location system, the passive location
system can be divided into the angle of arrival (AOA) [4–
6],  time  of  arrival  (TOA)  [7−9], time  difference  of  ar-
rival  (TDOA)  [10−12]  and  the  received  single  strength
(RSS) [13–15], etc. Among them, the TDOA positioning
is widely used because it does not require strict time syn-
chronization between the  target  and the  positioning base
station, and the positioning accuracy is high. The TDOA
positioning is also called hyperbolic positioning. Its core
is to solve the nonlinear positioning equations. The main
methods include the iterative method,  the search method
and  the  analytical  method.  Among  them,  the  iterative
method  [16]  includes  the  Gauss-Newton  method  [17]
and Newton Raphson method.  Its  basic idea  is  to  obtain
the  estimated  value  through  the  Taylor  expansion  of  the
estimated parameter, and then use the least square to esti-
mate the correction, and then repeat the iteration. The basic
idea of  the  search  method  is  to  traverse  the  target  func-
tion  corresponding  to  the  value  of  the  estimated  value,
and  obtain  the  optimal  value  satisfying  the  constraint
through the search,  which is  the final  estimated value of
the estimated value. The solution method is mainly based
on intelligent algorithms [18], such as the particle swarm
algorithm, the  ant  colony  algorithm,  and  the  genetic  al-
gorithm.  The  characteristic  of  the  analytical  method  is
that  the  analytical  expression  of  the  target  parameters  to
be estimated is derived by simultaneous nonlinear obser-
vation  equations  and  approximate  pseudo  linearization,
mainly  including  the  Chan  algorithm  [19],  the  spherical
intersection (SX) method [20], and the spherical interpola-
tion  (SI)  method  [21].  In  this  paper,  when  solving  the
TDOA equation,  considering  the  need  of  real-time plan-
ning  of  the  UAV’s  track,  the  Chan  algorithm with  high
positioning accuracy and fast calculation speed is adopted.
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According  to  the  number  of  location  base  stations,
passive location can be divided into single station passive
location  and  multi-station  passive  location  [22−24].  For
the  multi-station  passive  location,  the  research  of  the
fixed  base  station  for  static  target  location  and  the  fixed
base station  for  moving  target  location  is  relatively  ma-
ture,  and  the  layout  of  the  location  base  station  will
greatly affect the final positioning accuracy. Therefore, it
is extremely important to improve the positioning accur-
acy of moving targets by real-time planning of the UAV’s
track  according  to  the  moving  state  of  the  targets  to
achieve a reasonable layout. Frew and Semper et al. gave
the  path  planning  of  UAV  with  different  positioning
methods  [25,26],  the  core  of  which  was  to  establish  the
optimal criteria for target positioning. Frew et al. [25] used
the signal  strength  of  the  target  radiation  source  to  con-
trol  the  movement  of  the  UAV,  and  Semper  et  al.[26]
used the position dilution of precision (PDOP) as the cri-
terion to  control  the speed and direction of  the UAV. In
[27], the path planning method was preliminarily studied
when there was only one base station moving in the pro-
cess of TDOA positioning.

The main contribution of  this  paper  is  to  establish the
TDOA  localization  model  of  distance-dependent  noise,
which  is  different  from  the  general  TDOA  localization
model in which the receiver noise is Gaussian noise, and
the  model  in  this  paper  is  closer  to  the  actual  situation.
Secondly,  by  solving  the  Fisher  information  matrix  [28]
of  various  angles  of  TDOA  in  the  next  time,  the  angle
corresponding  to  the  maximum  determinant  is  taken  as
the flight direction of each UAV in the next time, and the
flight path of the UAV swarm is planned in real time.

2. Problem modeling

2.1    TDOA localization model

p(x,y) ∈ R2 n
Q = [q1, q2, · · · , qn] ∈ R2×n n ⩾ 2

q1

It is assumed that the target radiation source in the space
is located at , and the positions of  position-
ing  base  stations  are , ,
where  is  the  reference  base  station.  There  is  no  time
synchronization  between  the  target  and  the  UAV  base
station, while the time between the UAV base stations is
synchronous. There  are  the  following  positioning  equa-
tions:

t = t0+ω (1)

t = [t21, t31, · · · , ti1, · · · , tn1]T t0 =
[
t0

21
, t0

31
, · · · , t0

i1
, · · · ,

t0
n1

]T

ti1

i

where , 
is  the  real  value  of  the  time  difference  excluding

noise,  is the  time  difference  between  the  signal  arriv-
ing at the th base station and the reference base station.

ω=[ ω21, ω31, · · · , ωn1 ]T =
−1 1 0 · · · 0
−1 0 1 · · · 0
...
...
...
. . .

...
−1 0 0 · · · 1



ω1
ω2

...
ωn


(2)

ωi

σ2

where  follows  an  independent  Gaussian  distribution
with a mean value of 0 and a variance of , the covari-
ance matrix of the noise vector can be obtained as

Ω=σ2 (I+Φ) (3)

I (n−1)× (n−1) Φwhere  is the identity matrix of , and  is
a matrix of all ones.

t Q
TDOA positioning  is  to  use  the  obtained  time  differ-

ence matrix  and base station coordinates  to locate the
target radiation source.

2.2    Distance-dependent noise model

σ2

The true value of TOA measurement error variance is not
a  fixed  value,  but  is  related  to  the  signal  parameters  of
each  receiver  [29,30]. Considering  the  influence  of  sig-
nal  frequency,  bandwidth,  signal-to-noise  ratio  (SNR),
etc, the error variance  of the TOA measurement can be
expressed [31−33] as

σ2
i ⩾

α2

SNRi ·B2
(4)

SNRi

i α

i

where B is the signal bandwidth,  is the (SNR) of the
th  UAV, and  is  some constant.  In  the  case  where  the

received signal  bandwidth is  constant,  the received mea-
surement error is related to the SNR of the received sig-
nal. When the radiated power and the frequency are con-
stant,  the  SNR  is  mainly  determined  by  the  distance
between the  receiver  and  the  target.  Therefore,  the  vari-
ation  relationship  between  the  error  and  the  distance  of
the th receiver can be expressed as

σ2
i (s) =


β

SNR0
· s

2
i

s2
0

, si > s0

β

SNR0
, si ⩽ s0

(5)

s0

SNR0

si > s0 σ
2
i (s)

si si ⩽ s0

where  is the distance lower bound corresponding to the
minimum  error  variance  of  the  TOA,  and  is  the
corresponding  SNR.  When ,  is  proportional
to ;  when ,  the  magnitude  of  the  error  no  longer
varies with distance.

3. Positioning accuracy analysis
The positioning accuracy is usually measured by the geo-
metric  dilution  of  precision  (GDOP).  The  smaller  the
GDOP  value,  the  higher  the  positioning  accuracy.  The
GDOP of the four-station passive TDOA positioning [34] is
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GDOP =
√
δ2

x +δ
2
y +δ

2
z (6)

δ2
x δ

2
y δ

2
z

x y z
where , ,  represent  the  standard  deviations  of  the
positioning in the , ,  directions.

∆ri = ri− r1Differentiate both sides of  and simplify

d(∆ri) = (cix − c1x)dx+
(
ciy− c1y

)
dy+

(ciz− c1z)dz+ (ki− k1) (7)

∆ri i = 2,3,4where  represents the distance difference, ,{
r2

i = (x− xi)2+ (y− yi)2+ (z− zi)2

r2
1 = (x− x1)2+ (y− y1)2+ (z− z1)2



cix =
∂ri

∂x
= − ∂ri

∂xi
=

x− xi

ri

ciy =
∂ri

∂y
= −∂ri

∂yi
=

y− yi

ri

ciz =
∂ri

∂z
= −∂ri

∂zi
=

z− zi

ri

ki = cixdxi+ ciydyi+ cizdzi

. (8)

Written in vector form:

d∆R = CdR+dS (9)

d∆R = [d∆r2,d∆r3,d∆r4]T

dR=
[
dx,dy,dz

]T

dS=[k2− k1,k3− k1,k4− k1]T

where  is  the  error  introduced
by the measurement of the difference in TOA at each sta-
tion,  is  the  position  error  of  the

requested  radiation  source, 
is the error introduced by each station site measurement,

C =



x− x2

r2
− x− x1

r1

y− y2

r2
− y− y1

r1

z− z2

r2
− z− z1

r1

x− x3

r3
− x− x1

r1

y− y3

r3
− y− y1

r1

z− z3

r3
− z− z1

r1

x− x4

r4
− x− x1

r1

y− y4

r4
− y− y1

r1

z− z4

r4
− z− z1

r1


is the correlation coefficient matrix between the site loca-
tion and the target.

Use  the  least  square  method  to  solve  the  positioning
error value:

dR =
(
CTC

)−1
CT (d∆R−dS) . (10)

B =
(
CTC

)−1CT=
[
bi j

]
3×3Let , (10) can be expressed as

dR = B (d∆R−dS) . (11)

d∆R dR

dS

It  can be known from the above formula that the time
error  and  the  positioning  error  of  the  radiation
source,  the  position  of  the  radiation  source  relative  to
each station, and the site error  are related [35].

The  time  difference  used  in  the  above  formula  is  the
time difference between the arrival of the radiation source
at each auxiliary station and the main station. Therefore,
the  time  measurement  error  includes  the  measurement
amount of the main station, and the time difference mea-
surement error between the stations is related. Assuming
that the station measurement error is constant throughout
the  process  and  the  station  measurement  errors  at  each
station  are  independent  of  each  other,  the  covariance  of
the positioning errors is

PdR = E
{
dR ·dRT

}
=

B
{
E
{
d∆R ·d∆RT

}
+E

{
dS ·dST

}}
BT, (12)

E
{
dR ·dRT

}
=


δ2
∆r2

η23δ∆r2δ∆r3 η24δ∆r2δ∆r3

η23δ∆r2δ∆r3 δ2
∆r3

η34δ∆r2δ∆r3

η24δ∆r2δ∆r3 η34δ∆r2δ∆r3 δ2
∆r4

 , (13)

E
{
dS ·dST} =


C2

2xδ
2
x2
+C2

2yδ
2
y2
+C2

2zδ
2
z2

0 0
0 C2

3xδ
2
x3
+C2

3yδ
2
y3
+C2

3zδ
2
z3

0
0 0 C2

4xδ
2
x4
+C2

4yδ
2
y4
+C2

4zδ
2
z4

+
(
C2

1xδ
2
x1
+C2

1yδ
2
y1
+C2

1zδ
2
z1

) 
1 1 1
1 1 1
1 1 1

 ,
(14)

δ2
∆ri

i
ηi j

where  is  the  standard  deviation  of  the  measurement
error  of  the  distance  difference  between  the th  station
and  the  master  station,  and  is the  correlation  coeffi-

∆ri ∆r jcient between  and :

ηi j =
cov

(
∆ri,∆r j

)
δ∆ri
δ∆r j

. (15)
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δ2
xi
δ2

yi
δ2
zi

δ2
xi
=δ2

yi
=δ2

zi
=δ2

s

c2
ix+ c2

iy+ c2
iz = 1

, ，  are  the  standard  deviations  of  the  compo-
nents of the site error. Since the engineering information
of the site location is given by global positioning system
(GPS) in actual engineering, it can be considered that the
components are the same, and  is obtained,
because  is substituted into (14).

E
{
dR ·dRT

}
=


2δ2

s δ2
s δ2

s

δ2
s 2δ2

s δ2
s

δ2
s δ2

s 2δ2
s

 (16)

[
δ2

i j

]
3×3
= E

{
d∆R ·d∆RT}+E

{
dS ·dST}Let .  Substituting

(10) and (13) into the above formula gives

δ2
i j =

{
δ2
∆ri
+2δ2

s , i = j

ηi jδ∆ri
+δ2

s , i , j
(17)

i, j = 1,2,3where .
PdR =

∣∣∣Pi j

∣∣∣
3×3

Let ,

Pi j =

3∑
k=1

3∑
l=1

bikb jlδ
2
kl, i, j = 1,2,3. (18)

x y z
From this, the variances of the positioning errors in the

,  and  directions are

δ2
x = P11

3∑
k=1

3∑
l=1

c1kb1lδ
2
kl

δ2
y = P22

3∑
k=1

3∑
l=1

c2kb2lδ
2
kl

δ2
z = P33

3∑
k=1

3∑
l=1

c3kb3lδ
2
kl

(19)

GDOP =
√
δ2

x +δ
2
y +δ

2
z =

√√√ 3∑
i=1

3∑
j=1

(c1kc1l+ c2kc2l+ c3kc3l)δ2
kl . (20)

Typical station layout methods include Y-type, T-type,
and diamond Fig. 1 shows the schematic diagram of dif-
ferent station lagout methods. Factors such as the baseline
length,  measurement  error,  and  site  error  of  the  station

layout  also  affect  the  positioning  accuracy.  To  improve
the  positioning  accuracy  of  the  target,  it  is  the  key  to
choose the optimal layout scheme. The three typical  sta-
tion layout methods are analyzed below.

 
 

UAV2

UAV1

UAV4UAV3
UAV1

UAV4

UAV3UAV2 UAV1

UAV4

UAV3UAV2

Fig. 1    Station layout
 

Different layout methods correspond to different posi-
tioning errors. The coordinates of the four layouts of the
diamond,  T  and  Y  are  shown  in Table  1, Table  2 and
Table  3. Table  1 is  the  layout  of  the  base  station  with  a
baseline length of 10 km. Table 2 shows the coordinates
of the four stations with a baseline length of 20 km, and
Table 3 shows the coordinates of the four stations with a

baseline length of 30 km. Set the test accuracy to 5 ns.
After the simulation, the positioning error GDOP maps

as  shown  in Figs.  2−4 are  obtained. Fig.  2(a), Fig.  3(a)
and Fig.  4(a) correspond  to  the  simulation  results  of
Table  1. Fig.  2(b), Fig.  3(b) and Fig.  4(b) correspond to
the simulation results of Table 2. Fig. 2(c), Fig. 3(c) and
Fig. 4(c) correspond to the simulation results of Table 3.

 

Table 1    Coordinates of the station with a baseline length of 10 km km

Cloth stand
shape

Master station
coordinate

Auxiliary station 1
coordinate

Auxiliary station 2
coordinate

Auxiliary station 3
coordinate

Diamond （100,100,100.1） （100,110,100） （91.34,105,100） （108.66,105,100）

T-type （100,100,100.1） （90,100,100） （110,100,100） （100,90,100）

Y-type （100,100,100.1） （91.34,105,100） （108.66,105,100） （100,90,100）
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Analyzing the positioning results, we can draw the fol-
lowing conclusions:

(i)  The positioning accuracy has a  positive correlation

with  the  baseline  length.  The  longer  the  baseline  length,
the higher the positioning accuracy. The main reason for
this phenomenon is that with the same station layout and

 

Table 2    Coordinates of the station with a baseline length of 20 km km

Cloth stand
shape

Master station
coordinate

Auxiliary station 1
coordinate

Auxiliary station 2
coordinate

Auxiliary station 3
coordinate

Diamond （100,100,100.1） （100,120,100） （82.68,110,100） （117.32,110,100）

T-type （100,100,100.1） （80,100,100） （120,100,100） （100,80,100）

Y-type （100,100,100.1） （82.68,110,100） （117.32,110,100） （100,80,100）

 

Table 3    Coordinates of the station with a baseline length of 30 km km

Cloth stand
shape

Master station
coordinate

Auxiliary station 1
coordinate

Auxiliary station 2
coordinate

Auxiliary station 3
coordinate

Diamond （100,100,100.1） （100,130,100） （74.02,115,100） （125.98,115,100）

T-type （100,100,100.1） （70,100,100） （130,100,100） （100,70,100）

Y-type （100,100,100.1） （74.02,115,100） （125.98,115,100） （100,70,100）
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Fig. 2    Diamond cloth station positioning error
 

(c) 30 km(b) 20 km(a) 10 km
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Fig. 3    T-type station positioning error
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Fig. 4    Y-type station positioning error
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target  position,  a  poor baseline length can obtain a  large
time difference measurement value. When the time mea-
surement  error  is  the  same,  the  ratio  between  the  time
measurement  error  and  the  measurement  value  becomes
smaller,  which  indirectly  improves  the  time  difference
measurement  accuracy,  and  the  positioning  accuracy  is
correspondingly improved.

(ii)  The positioning accuracy is  related to  the  location
of  the  site  and  the  target.  The  further  away  the  target  is
from the main station, the lower the positioning accuracy.

(iii)  The  positioning  accuracy  under  the  diamond-
shaped  cloth  station  is  lower  than  that  of  the  other  two
kinds of cloth station methods, and the positioning accu-
racy in the x-axis direction is lower than that in the y-axis
direction.

(iv) Under  the  T-type station,  the  distribution of  posi-
tioning  accuracy  is  more  uniform  when  the  baseline
length is 10 km. As the baseline length increases, the posi-
tioning accuracy in the y-axis direction is better than that
in the x-axis direction.

(v) The positioning accuracy under the Y-type distribu-
tion station is higher than the other two distribution meth-
ods,  and the distribution of positioning accuracy is  more
uniform,  which  is  suitable  for  performing  global  search
tasks.

4. Track optimization
TDOA positioning accuracy is  mainly  related to  the  fol-
lowing factors: the geometric position between the target
radiation source and each UAV base station, the site error
TDOA  measurement  error,  etc.,  among  which  the  geo-
metric  position  relationship  between  the  target  radiation
source  and  each  UAV  base  station  has  a  larger  impact
on positioning accuracy [36]. Therefore, for the position-
ing and tracking of moving targets, the real-time planning
of  the  movement  track  of  the  UAV base  station  appears
to be particularly important.

4.1    D-optimality criteria

p=
[
x,y

]T

qi =
[
xi,yi

]T

i

The  D-optimality  criterion  [37]  is  used  to  minimize  the
area  of  the  confidence  region  corresponding  to  the  esti-
mated parameters.  Compared  with  the  A-optimality  cri-
terion [38], the D-optimality criterion directly maximizes
the  determinant  of  the  Fisher  information  matrix  [39].
Therefore,  the  stability  of  D-optimality  criterion  is  the
best,  and  it  is  not  easy  to  be  affected  by  the  change  of
objective function parameters and non-linear transforma-
tion,  and  the  process  of  analysis  and  solution  is  simple.
Fig. 5 shows the geometrical schematic diagram of posi-
tioning. In the figure,  is the position of the tar-
get radiation source, and  is the position of the
th  base  station.  To  simplify  the  problem,  it  is  assumed

li αi

i

that  the  reference  base  station  is  located  at  the  origin  of
the  rectangular  coordinate  system,  and   are  respec-
tively the distance and the azimuth from the th base sta-
tion to the reference base station.
  

qi

li

αi

ri

r

y

x

Fig. 5    Positioning geometric relationship
 

xi = li cosαi yi = li sinαi

Therefore,  there  is  the  following  relationship:
, ,

t0
i1 =

1
c

(ri− r) =

1
c

(√
(x− li cosαi)2+ (y− li sinαi)2−

√
x2+ y2

)
(21)

where c is the velocity of electromagnetic wave propaga-
tion. The following conclusions can be drawn:

∂to
i1

∂x
=

1
c

[
−li cosαi

ri
+ x

(
1
ri
− 1

r

)]
∂to

i1

∂y
=

1
c

[
−li sinαi

ri
+ y

(
1
ri
− 1

r

)] . (22)

ri ≈ rWhen  locating  a  far-field  target,  there  is , there-
fore[40], 

∂to
i1

∂x
= − li cosαi

cr
∂to

i1

∂y
= − li sinαi

cr

. (23)

The Fisher information matrix of the target position error
can be obtained from (1) as

J = GTΩ−1G =
[
∂t0

∂x
,
∂t0

∂y

]T

Ω−1

[
∂t0

∂x
,
∂t0

∂y

]
. (24)

From (3):

Ω−1 =
1

(n+1)σ2
[(n+1) I−Φ] . (25)

J=
 J11 J12

J21 J22

 J11 J12 J21 J22Let , where , ,  and  are as follows:

J11 =
1

(n+1)σ2

1
c2r2

(n+1)
n∑

i=1

l2
i cos2αi−

 n∑
i=1

li cosαi

2
(26)
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J12 = J21 =
1

(n+1)σ2

1
c2r2

(n+1)
n∑

i=1

l2
i cosαisin2αi− n∑

i=1

li sinαi

 n∑
i=1

li cosαi

 (27)

J22 =
1

(n+1)σ2

1
c2r2

(n+1)
n∑

i=1

l2
i sin2αi−

 n∑
i=1

li sinαi

2 .
(28)

Therefore, the objective function of D-optimality is

argmax det (J) = J11 J22− J12 J21. (29)

4.2    Track optimization

θmax

2θmax

The  derivation  process  of  the  D-optimality  criterion  is
given in Section 4.1.  The optimal trajectory of the UAV
is  the  maximum  value  of  the  Fisher  matrix  determinant
that moves the UAV toward the next moment. However,
in practical  applications,  considering the maximum turn-
ing  angle  of  the  UAV  and  the  speed  of  movement,
the conditions for the optimal configuration of the target
positioning cannot be achieved in a short time. Therefore,
at each track node, a sector is given with an angle range
of  to  traverse  all  the  angles  of  the  sector  and filter
out the angle corresponding to the maximum value of the
Fisher information matrix determinant, which is the head-
ing of the UAV at the next moment. Fig. 6 shows the sch-
ematic  diagram of  flight  path  planning for  UVA swarm.
 

q2(k+2)
q2(k+1)

q1(k+1) q1(k+2)

q2(k)

q1(k)

q3(k+1)

q3(k+2)

q3(k)

p(k)

≤θmax

≤θmax

≤θmax

Fig. 6    Schematic diagram of flight path planning for UAV cluster
 

To  sum  up,  the  data  processing  flow  of  UAV  track
planning based on D-optimality is as follows.

k
Qk = [q1 (k) , q2 (k) , · · · , qn (k)]T

tk

Step 1　 Give the position coordinates  of each UAV
at the time , the time differ-
ence positioning measurement value ;

σ2Step 2　 Solve the distance-dependent noise ;

p̂k

Step 3　  Use the Chan algorithm to solve the estima-
ted  position  of  the  target  through  two  weighted  least
squares;
Step 4　  Calculate  the  Fisher  information matrix  and

solve the objective function;
Step 5　  Obtain the optimal angle of the UAV flying

at the next moment.
Fig. 7 shows the positroning and track planning process.

 
 

UAV position Qk

TDOA measurement tk

Distance-dependent noise σ2

Solve the objective function
arg max det (J)

Flight angle at the
next moment

UAV arrives at next
track node Qk+1

Solve the estimated location
pk by chan algorithmˆ

D-optimality

Fig. 7    Positioning and track planning process
 

5. Simulation

q1(1)=[0,−8 000,0,−5 000]T

q2 (1) = [0, −7 500,0, −5 000]T q3 (1) = [0,−7 500,0,
−6 000]T q4 (1) = [0,−7 000,0,−6 000]T

vu = 70 m/s θmax = 10◦

T = 1s SNR0 = 30 dB
[0,0,0,0]T

Assume that four UAVs are used to locate the target. The
initial state of the UAV is  km,

 km, 
km, km, and  the

initial  time  is  to  fly  along  the y -axis.  The  fixed  flight
speed , the maximum turning angle 
km, the sampling interval , and . The
real  position  of  the  stationary  target  is ,  100

Monte-Carlo simulations  are  performed,  and  the  follow-
ing results are obtained.

5.1    Stationary target

Fig.  8  (a) is  the  UAV  path  and  positioning  results  opti-
mized by the D-optimality criterion, Fig. 8 (b) is the path
and positioning results of the UAV flying in a fixed path,
Fig. 8 (c) is the optimized path and positioning under the
fixed  path  error  comparison,  and Fig.  8  (d) is  the  angle
change  of  each  UAV  under  the  optimized  path.  From
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Fig.  8  (a) and  Fig.  8  (d),  it  can  be  seen  that  UAV2 and
UAV3  always  fly  towards  the  target  when  they  are  far
away from the target, and when they are closer to the tar-
get,  the  flight  angle  changes  greatly  in  order  to  arrange
the  station  reasonably.  UAV1  and  UAV4  fly  to  both

sides. Comparing with Fig. 8 (a) and Fig. 8 (b), the posi-
tioning  results  under  the  fixed  configuration  flight  are
more dispersed. Therefore, in Fig. 8 (c), under the optim-
ized  path,  the  positioning  error  is  lower  than  that  in  the
fixed configuration, and the convergence speed is faster.

 
 

(c) Positioning error comparison (d) Evolution of angle changes

(a) Optimal path (b) Fixed path
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Fig. 8    Positioning result of stationary target
 

5.2    Moving target

[
0,50

√
3,0,50

√
3
]T

vt = 50 m/s vt0 = 3 m/s
a = 3 m/s2

The motion state of the target is divided into the uniform
straight line, the uniformly accelerating straight line, and
the  uniformly  turning  motion.  The  initial  positions  are

 km, the target’s uniform flying speed
,  the  initial  speed ,  acceleration

 during  uniform  acceleration,  and  the  state
transition matrix for uniform turning is

Fk =



1
sin(ωT )
ω

0 − (1− cos(ωT ))
ω

0 cos(ωT ) 0 −sin(ωT )

0
(1− cos(ωT ))

ω
1

sin(ωT )
ω

0 sin(ωT ) 0 cos(ωT )


,

ω=0.5where .

5.2.1    Target at constant speed
As shown in Fig. 9 (a) and Fig. 9 (d), each UAV tries to
fly away from each other as far as possible. After a rough
judgment of the target position, UAV2 and UAV3 begin
to  fly  in  the  direction  of  the  target,  shorten  the  distance
with  the  target  and  improve  the  positioning  accuracy.
UAV1 and UAV3 are scattered in a direction perpendicu-
lar to  UAV2  and  UAV4.  This  phenomenon  occurs  be-
cause the longer the baseline of the station, the higher the
accuracy  of  positioning.  Comparing  the  distribution  of
the positioning results in Fig. 9 (a) and Fig. 9 (b),  it  can
be concluded that the optimized positioning of the target
for  the  uniformly-linear  motion  of  the  target  is  mainly
distributed  around  the  actual  position  of  the  target.  Re-
sults are more scattered. Fig. 9 (c) compares the position-
ing errors of the two paths.

It can be concluded that the positioning error of the op-
timized path is always lower than that of the fixed path. 
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(a) Optimal path
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(b) Fixed path
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(d) Evolution of angle changes
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Fig. 9    Positioning results under uniform motion

5.2.2    Target accelerating uniformly
Fig. 10 (a) and Fig. 10 (d) reflect the changes in the flight
path  and  angle  of  the  UAV  to  a  uniformly  accelerated
moving target under D-optimality. Compared with Fig. 8,
the UAV always disperses in a direction away from each
other. The angle change at the initial moment is also lar-
ger.  As  the  positioning  time  passes,  the  angle  change
gradually  becomes  smaller.  This  is  because  the  distance
between the target and the UAV is relatively large when
the target is performing uniformly accelerated linear mo-
tion. As a result of positioning, a longer baseline length is

needed between the  UAV base  stations  to  accurately  lo-
cate the target.  Because it  is  assumed that the UAVs are
flying in the y-axis direction at the initial moment, UAV3
is limited by the maximum turning angle and cannot im-
mediately turn to the angle of scattered flying with other
UAVs. Therefore, a larger arc is used to adjust the flight
direction. Fig. 10 (c) clearly reflects the positioning error
of  the  UAV  in  two  paths  of  the  flight.  When  the  target
performs uniformly accelerated linear motion, the error of
the optimized path  is  also  lower  than the  positioning er-
ror of the fixed path.
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5.2.3    Target turning at a constant speed
When  the  target  makes  a  uniform  turning  movement,
compared with  the  previous  two  types  of  target  move-
ment, the distance between the UAV and the target does
not always increase. UAV2 and UAV3 are flying toward
the target, and the distance to the target is reduced. UAV1
and  UAV4  fly  to  both  sides,  increasing  the  baseline
length of the UAV deployment station and improving the
positioning accuracy. It can be obtained from Fig. 11 (c)
that  the  positioning  error  and  convergence  speed  under
the  optimized  path  are  lower  than  the  positioning  error

under  the  fixed  path  flight.  When flying  under  the  fixed
path, the  positioning  error  first  decreases  and  then  in-
creases slightly. This is because when the target makes a
uniform  turning  movement,  the  target  is  flying  towards
the  UAV  for  a  period  of  time,  the  distance  between  the
UAV and  the  target  decreases,  and  the  positioning  error
increases  as  the  target  flies  away  from  the  UAV.
However,  the positioning error  under  the optimized path
has been relatively stable, and it is not easily affected by
the target motion state.
 

 
 

(a) Optimized by the D-optimality oriterion
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(b) Flying in a fixed path
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Fig. 11    Positioning results under a uniform turning motion
 

 

(d) Evolution of angle changes
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Fig. 10    Positioning results under uniform acceleration
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6. Conclutions
In this paper, UAV swarm is used to locate and track the
moving targets. A TDOA positioning model and a model
of  the  variation  of  the  error  variance  with  the  received
SNR are established, and the positioning accuracy of time
difference positioning is analyzed by using GDOP. The D-
optimality  criterion under  this  model  is  derived theoreti-
cally. The Chan algorithm is used to locate the target, and
the maximum value of the Fisher information matrix de-
terminant  is  used  as  the  objective  function  to  carry  out
real-time planning of the trajectory of the UAV. Simula-
tion  analysis  shows  that  the  positioning  accuracy  of  the
target  can  be  effectively  improved  by  planning  the  path
of the UAV swarm, and the target’s positioning accuracy
after the optimized path is higher than the fixed path un-
der the three motion states set.  The positioning accuracy
indicates that the path optimized by the D-optimality cri-
terion is more adaptive to change in the target position.

This paper  mainly  considers  one-step  path  optimiza-
tion. If  multiple paths are used to predict  the path in ad-
vance,  it  will  have  a  better  positioning  effect,  but  at  the
same time, it  will  increase the computational complexity
and increase the path optimization time, which is a chal-
lenge to real-time performance. Subsequent work will fo-
cus on reducing the computational complexity and achie-
ving multi-step path prediction.
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