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Abstract: In  this  paper,  a  sparse  nonuniform  rectangular  array
based on spatially spread electromagnetic vector sensor (SNRA-
SSEMVS)  is  introduced,  and a  method for  estimating  2D-direc-
tion of  arrival  (DOA) and polarization is devised. Firstly,  accord-
ing to the special structure of the sparse nonuniform rectangular
array (SNRA),  a set of  accurate but ambiguous direction-cosine
estimates can be obtained. Then the steering vector of spatially
spread electromagnetic vector sensor (SSEMVS) can be extrac-
ted from the array manifold to obtain the coarse but unambigu-
ous direction-cosine  estimates.  Finally,  the  disambiguation  ap-
proach  can  be  used  to  get  the  final  accurate  estimates  of  2D-
DOA  and  polarization.  Compared  with  some  existing  methods,
the SNRA configuration extends the spatial aperture and refines
the parameters estimation accuracy without adding any redund-
ant  antennas,  as  well  as  reduces  the  mutual  coupling  effect.
Moreover,  the  proposed  algorithm  resolves  multiple  sources
without  the  priori  knowledge  of  signal  information,  suffers  no
ambiguity in the estimation of the Poynting vector, and pairs the
x-axis direction cosine with the y-axis direction cosine automat-
ically. Simulation results are given to verify the effectiveness and
superiority of the proposed algorithm.

Keywords: sparse nonuniform  rectangular  array  (SNRA),  spa-
tially spread electromagnetic vector sensor (SSEMVS), direction-
cosine, polarization, mutual coupling.
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1. Introduction
The electromagnetic vector sensor array is superior to the
conventional scalar array [1,2] due to the polarization di-
versity,  which  can  maximumly  exploit  the  propagation
information  of  the  electromagnetic  wave  and  improves
the performance of the radar system. Direction of arrival
(DOA) and polarization parameters estimation is a key is-
sue  of  electromagnetic  vector  sensor  array  processing,

which has drawn an increasing attention in the past  dec-
ades. At  the  beginning,  the  DOA  and  polarization  para-
meters  estimation  algorithm is  only  the  extension  of  the
DOA estimation method based on the conventional scal-
ar  array.  For  example,  in  [3−5],  the  traditional  multiple
signal classification  (MUSIC)  algorithm  and  the  estima-
tion of  signal  parameters  via  rotational  invariance  tech-
nique (ESPRIT) algorithm are extended to parameters es-
timation  methods  for  the  electromagnetic  vector  sensor
array.  Recently,  some  particular  DOA  and  polarization
parameters  estimation  techniques  for  electromagnetic
vector sensor array have been developed. In [6−9], a vec-
tor-cross-product algorithm, which has low computation-
al complexity, was proposed. In [10,11], the polarization
smoothing algorithms were presented to cope with correl-
ated  sources.  In  [12−14],  various  parameters  estimation
algorithms  based  on  quaternion  algebra  were  developed,
which are more robust to array error.

However,  the  array  geometries  in  [6−14]  were  all
based  on  the  collocated  electromagnetic  vector  sensor,
which  will  introduce  serious  mutual  coupling  effect  and
sharply  decrease  the  parameters  estimation  performance.
To alleviate this problem, a spatially non-collocated elec-
tromagnetic vector sensor (SNC-EMVS) was proposed in
[15], whose components are distributed along two paral-
lel  lines,  which  can  reduce  the  mutual  coupling  effect.
However, it is strict with the location of antenna compon-
ents. To relax this condition, Li et al.  [16] put forward a
spatially spread electromagnetic vector sensor (SSEMVS)
array, and  a  joint  DOA  and  polarization  parameters  es-
timation  algorithm  was  presented.  However,  it  can  only
resolve five sources at most and has poor parameters es-
timation  performance.  To  solve  this  problem,  a  sparse
uniform  array  based  on  SNC-EMVS  was  proposed  in
[17], and a joint 2D-DOA and polarization parameters es-
timation  method  was  devised,  but  it  requires  parameters
pair matching operation, and has ambiguity in the estima-
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tion  of  the  Poynting  vector,  which  causes  unsatisfactory
parameters estimation  results.  Considering  the  nonuni-
form sparse array, Wang et al. [18] presented a DOA es-
timation method  for  the  nonuniform  scalar  L-shaped  ar-
ray,  which requires pair-matching operation and has low
parameters  estimation  accuracy.  Moreover,  it  cannot
measure  the  polarization  information.  On  account  of  the
shortcomings of the above methods, a sparse nonuniform
rectangular array  SSEMVS  (SNRA-SSEMVS)  is  pro-
posed in  this  paper,  and  an  algorithm is  devised  accord-
ingly.  The  proposed  method  avoids  suffering  ambiguity
in  the  estimation  of  direction  finding,  pairs  the  parame-
ters  automatically,  alleviates  the  mutual  coupling  effect
and improves the estimation accuracy without adding any
antennas. Moreover, the use of SSEMVS also relaxes the
condition of array configuration in [17].

The rest of the paper is organized as follows. Section 2
introduces  the  signal  model.  In  Section  3,  the  proposed
method  is  described  and  a  computational  complexity
comparison between the proposed method and the reduced
dimensional (RD)-MUSIC is presented. In Section 4, simu-
lations  are  conducted  to  validate  the  performance  of  our
method. Section 5 draws the conclusion.

2. The proposed signal model

2.1    SSEMVS array geometry

Pex Pey Pez Phx Phy Phz

The  SSEMVS  is  composed  of  three  orthogonal  dipoles
and  three  orthogonal  loops  that  are  spatially  spread  in
space as shown in Fig. 1. The position vectors of the three
orthogonal  oriented  dipole  antennas  and  loop  antennas
are , , , ,  and , respectively. The loca-
tions of  all  antennas  need  to  satisfy  the  following  rela-
tionship: 

Pey− Pez = −(Phy− Phz)
Pez− Pex = −(Phz− Phx)
Pex− Pey = −(Phy− Phz)

. (1)
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Fig. 1    Sketch of a single SSEMVS

ãThe array steering vector  of SSEMVS can be written
as

ã =
[ ẽ

h̃

]
=



ej 2π
λ

Pex .Ps

ej 2π
λ

Pey .Ps

ej 2π
λ

Pez .Ps

ej 2π
λ

Phx .Ps

ej 2π
λ

Phy .Ps

ej 2π
λ

Phz .Ps

︸      ︷︷      ︸
d(u,v)

⊙a =



ej 2π
λ

(Pex(1)sinθcosϕ+Pex(2)sinθ sinϕ+Pex(3)cosθ)

ej 2π
λ

(Pey(1)sinθcosϕ+Pey(2)sinθ sinϕ+Pey(3)cosθ)

ej 2π
λ

(Pez(1)sinθcosϕ+Pez(2)sinθ sinϕ+Pez(3)cosθ)

ej 2π
λ

(Phx(1)sinθcosϕ+Phx(2)sinθ sinϕ+Phx(3)cosθ)

ej 2π
λ

(Phy(1)sinθcosϕ+Phy(2)sinθ sinϕ+Phy(3)cosθ)

ej 2π
λ

(Phz(1)sinθcosϕ+Phz(2)sinθ sinϕ+Phz(3)cosθ)

︸                                         ︷︷                                         ︸
d(θ,ϕ)

⊙a, (2)

a =



cosϕcosθ −sinϕ
sinϕcosθ cosϕ
−sinθ 0
−sinϕ −cosϕcosθ
cosϕ −sinϕcosθ

0 sinθ

︸                              ︷︷                              ︸
def
= Θ(θ,ϕ)

[
sinγejη

cosγ

]
︸      ︷︷      ︸

def
= g(γ,η)

(3)

ẽ h̃
d(u,v)

λ Ps = [u,v,w]T

u = sinθcosϕ
v = sinθ sinϕ w = cosθ

x
y z θ ∈ [0,π]

ϕ ∈ [0,2π)

γ ∈
[
0,

π
2

]
η ∈ [−π,π)
⊙

Θ(θ,ϕ)
g(γ,η)

where  is the electric field vector,  is the magnetic field
vector,  is  the  spatial  steering  vector  of  SSEMVS,

 is the wavelength, and  is the unit Poynt-
ing  vector  of  the  incident  source  with ,

 and   respresenting  the  impinging
source's  direction-cosines  respectively  along  the  axis,
the  axis, and the  axis. Herein,  denotes the in-
cident source's elevation-angle,  symbolizes the

azimuth-angle,  refers to the auxiliary polariza-
tion  angle,  represents  the  polarization  phase
difference, and  symbolizes the element-wise multiplic-
ation between two vectors. Note that  depends only
on the arrival-angles, whereas  depends only on the
polarization parameters.

2.2    Structure of SNRA-SSEMVS

K
(m,n)

t

The SNRA composed of SSEMVS is depicted in Fig.  2,
where the black dot represents the SSEMVS array. Con-
sider  narrowband  and  independent  signal  sources
impinging on this  array,  the received data of the th
SSEMVS at time  can be expressed as

xm,n(t) =
K∑

k=1

ãk pm,n(θk,ϕk)sk(t)+ nm,n(t) (4)
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ãk k
(m,n) pm,n(θk,ϕk) = ej π

λ
[m(m−1)DX uk+n(n−1)DY vk]

x y
DX DY sk(t) k nm,n(t)

where  is  the  steering  vector  of  the th  signal  of  the
th  SSEMVS;  is

the  phase  shift  factor,  and  the  spacing  between  the  first
two  adjacent  SSEMVSs  along  the  axis  and  the  axis
are  and , respectively;  is the th signal; 
is  a  complex  Gaussian  white  noise  vector.  The  received
signal can be expressed as

x(t) =[
xT

1,1(t), · · · , xT
1,N(t), · · · , xT

M,1(t), · · · ; xT
M,N(t)

]
=

K∑
k=1

[
qx (uk)⊗ qy (vk)⊗ ãk

]
sk(t)+ n(t) =

K∑
k=1

bk sk(t)+ n(t) = A (uk,vk,γk,ηk) s(t)+ n(t) (5)

bk k
uk vk k

x y γk ηk

k
qx(uk) = [1,ej2πDX

uk
λ , · · · ,ejπM(M−1)DX

uk
λ ]T ∈

CM×1 x qy(vk) =
[1,ej2πDY

vk
λ , · · · ,ejπN(N−1)DY

vk
λ ]T ∈ CN×1

y s(t) = [s1(t), · · · , sK(t)]T ∈ CK×1

n(t) ∈ C6MN×1

where  represents the th source’s whole steering vec-
tor of the SNRA-SSEMVS,  and  denote the th sig-
nal’s direction cosines of  and  axes,  and  denote the

th signal’s auxiliary polarization angle and polarization
phase  difference. 

 is  the  steering  vector  on  the  axis,  
 is  the  steering  vector

on the  axis,   is  the signal
vector, and  is the additional Guassian white
noise. The array manifold can be represented as

A (uk,vk,γk,ηk) =[
qx (u1)⊗ qy (v1)⊗ ã1, · · · , qx (uK)⊗ qy (vK)⊗ ãK

] ∈C6MN×K

(6)

⊗
where the  superscript  T  represents  the  transpose  opera-
tion and  symbolizes the kronecker product.
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Fig. 2    Sketch of SNRA-SSEMVS
 

3. Algorithm description

Based on the array depicted in Section 2, a joint 2D-DOA
and  polarization  estimation  algorithm  is  proposed,  and
the procedure is shown in Fig. 3.
 

Collect two sets of data Z1=[Z (t1), ···, Z (tN)]
and Z2=[Z (t1+ΔT)], ···, Z (tN+ΔT)] that have
a constant time delay ΔT from the SNRA-

SSEMVS

Calculate the covariance matrix R1=Z1ZH and
R2=Z2Z2

H

Obtain two signal subspaces E1 and E2

by eigenvalue decomposition

Estimate the array mainfolds:
A=     (E1T1+E2T1ϕ−1)^ 1

2
(T is the right eigenvectors of E1+E2, and ϕ is the
diagnal matrix consists of K large eigenvalues)

Obtain the ambiguity estimates of the direction-
cosines uk   and vk

fine fine

Calculate the steering vector ak of the SSEMVS,
perform the modified vector-cross-poroduce

operation on ak, and the coarse estimates of the
direction-cosines uk          and vk          can be obtainedcourse course

~

~

Use uk           and vk          to disambiguate uk

and vk          , and get an estimate that is both fine
in estimation resolution and unambiguous

course course

course

fine

Evaluate the elevation angle θk and azimuth angle
 ϕk, then estimate the polarization parameters γk

and ηk 

^

^ ^

^

Fig. 3    Algorithm flowchart
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1
2
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vfine
k

âk Â
ucourse

k vcourse
k

In the proposed algorithm, the covariance matrix  can
be calculated firstly, and the signal sub-spaces  and 
can be  obtained  by  the  eigenvalue  decomposition  tech-

nique,  then  the  array  manifold 
can be estimated. Regard the whole nonuniform rectangu-
lar array as a set of line arrays parallel to the  axis, and
all the line arrays on the plane can be converted to a line
array  located  on  the  axis by  making  phase  compensa-
tion. According to the relationship among the elements on
the  axis,  the  ambiguous  direction-cosine  estimate 
can be  obtained.  In  a  similar  way,  the  ambiguous  direc-
tion-cosine estimate  can also be estimated. After ex-
tracting the steering vector  of the SSEMVS from , a
pair  of  coarse  direction-cosine  estimates  and  
can be  derived  by  the  modified  vector  cross-product  al-
gorithm. Next,  the  fine  and  unambiguous  direction  co-
sine estimates  can  be  obtained  by  using  the  disambigu-
ation  approach.  Finally,  the  high  accurate  estimation  of
2D-DOA and polarization angles can be achieved.
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3.1    Accurate but ambiguous direction cosine
estimates based on ESPRIT

k
6MN

bk s(tn, fk), n = 1, · · · ,L

Uni-vector-sensor ESPRIT [16] forms a temporal invari-
ance by two time-delayed sets of data collected from the
SNRA-SSEMVS, the th source impinging upon the ar-
ray  would  contribute  to  two  datasets.  One  is

, and the other can be expressed as
the following from:

bk s(tn+∆T, fk) = bk s(tn, fk)ej2π fk∆T (7)

bk ∆T
s(tn, fk)

where the steering vector  is defined as in (5),  is a
constant time delay, and  has the following form:

s(tn, fk) =
√

Pkej(2π fk tn+φk), k = 1,2, · · · ,K (8)

Pk fk φk

k
where , ,  and  are the  power,  frequency,  and  ran-
dom phase of the th source, respectively.

KWith  a  total  of  incident  sources  and  additive  zero-
mean  white  Gaussian  noise,  the  received  data  of  the
nonuniform rectangular array can be written as

Z(tn) =
[

A1
A2

]
s(tn)+ n(tn) =

K∑
k=1

[ bk s(tn)
bkej2π fk∆T s(tn)

]
+ n(tn). (9)

12MN ×LThen the entire  dataset can be expressed as

Z = [Z(t1),Z(t2), · · · ,Z(tL)] =
[

Z1
Z2

]
(10)

Z1 Z2 6MN ×L
{t1, · · · , tL} {t1+∆T, · · · , tL+∆T }

E1 E2

R1 = Z1ZH
1 R2 = Z2ZH

2

K
K ×K T Ei (i = 1,2)

where  and   are  the  datasets  sampled  at
 and  ,  respectively.  The

two  signal  subspaces  and   can  be  estimated  from
 and   by  selecting  the  eigenvectors

associated  with  the  largest  eigenvalues.  A  unique
 nonsingular matrix  exists and relates 

with the array manifold matrix as
E1 = A1T, (11)

E2 = A2T = A1ϕT (12)

ϕ = diag
(
ej2π f1∆T , · · · ,ej2π fK∆T )where .  Based  on  (12),  the

following equation holds:

ψ = E+1 E2 = T−1ϕT (13)

+ T
ψ ϕ

ψ

where  denotes the pseudo-inverse,  is the right eigen-
vector of , and the diagonal elements of  is composed
of the eigenvalues of . Thus, the array manifold can be
estimated as

Â =
1
2

(E1T−1+E2T−1ϕ−1). (14)

Moreover, the frequency estimation can be derived as

f̂k =
angle([ϕ]k)

2π∆T
. (15)

P̂k k
(m,n)

According to  the  estimation of  array  manifold,  a  mat-
rix  that includes the spatial  steering vector of the th
signal can be derived, with its th element being

P̂k(m,n) =mean
{
Â {[6(m−1)N +6(n−1)+1] :

[6(m−1)N +6n], k} ./ Â(1 : 6,k)
}
,

n = 1,2, · · · ,N;m = 1,2, · · · ,M;k = 1,2, · · · ,K. (16)

A[m : n,k]
m n k

A A./B
A B

where  represents a column vector composed of
elements from the th to the th row of the th column
of  the  matrix .  represents the  division  of  corres-
ponding elements of matrix  and matrix .

P̂kThen,  vectorize  the  matrix  and  make  a  transpose,
and the spatial steering vector can be derived as

b̂k = (rvec(P̂k))T =

1
ej2πDY vk/λ

...

ejπN(N−1)DY vk/λ

ej2πDX uk/λ

ej2π(DX uk+DY v)/λ

...

ej(2πDX uk+πN(N−1)DY vk)/λ

...

ejπM(M−1)DX uk/λ

...

ejπ[M(M−1)DX uk+2DY vk]/λ

ejπ[M(M−1)DX uk+N(N−1)DY vk]/λ



.
(17)

qyk y

y
qyk

In  order  to  get  the  estimation  of  the  spatial  steering
vector  along the  axis, the entire nonuniform rectan-
gular array  can  be  regarded  as  a  combination  of  line  ar-
rays parallel to the the  axis, then by making phase com-
pensation for each line array and making an average, 
can be obtained according to the following equations.

b1k(:,n) =
b̂k[(n−1)N +1 : nN]

b̂k((n−1)N +1)
, n = 1,2, · · · ,M (18)

qyk =
1
M

M∑
n=1

b1k(:,n) =



1
e

j2πDY vk
λ

e
j2π(DY +2DY )vk

λ

...

e
jπN(N−1)DY vk

λ


(19)

x qxk

Similarly,  the  entire  array can also  be  considered as  a
combination of line arrays parallel to the  axis, then 
can be estimated as
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b2k(:,m) =
b̂k[m+ (0 : M−1)N]

b̂k(m)
, m = 1,2, · · · ,N, (20)

qxk =
1
N

N∑
m=1

b2k(:,m) =



1
e

j2πDX uk
λ

e
j2π(DX+2DX )uk

λ

...

e
jπM(M−1)DX uk

λ


. (21)

vfine
k ufine

k

From (19) and (21), the accurate but ambiguous direc-
tion cosine estimates  and  can be obtained as fol-
lows:

byk1 = qyk(2 : N)./qyk(1 : N −1) =
ej2πDY vk/λ

ej2π2DY vk/λ

...

ej2π(N−1)DY vk/λ

 ,
(22)

byk2 = bxk1(2 : N −1)./bxk1(1 : N −2) =
ej2πDY vk/λ

...

ej2πDY vk/λ

 , (23)

bxk1 = qxk(2 : M)./qxk(1 : M−1) =
ej2πDX uk/λ

ej2π2DX uk/λ

...

ej2π(M−1)DX uk/λ

 ,
(24)

bxk2 = bxk1(2 : M−1)./bxk1(1 : M−2) =
ej2πDX uk/λ

...

ej2πDX uk/λ

 , (25)

ψyk =mean(arg(byk2)), (26)

ψy = diag(ψy1, · · · ,ψyK), (27)

vfine
k = ψyk

λ

2πDY
, k = 1,2, · · · ,K, (28)

ψxk =mean(arg(bxk2)), (29)

ψx = diag(ψx1, · · · ,ψxK), (30)

ufine
k = ψxk

λ

2πDX
, k = 1,2, · · · ,K. (31)

3.2    Coarse  direction  cosine  estimates  based  on  the
modified vector-cross-product algorithm

âk

Â

âk

It  can  be  seen  that  the  estimation  of  can  be  derived
from the first six rows of , and the estimation perform-
ance can be further improved by taking average of all the
steering vector  estimates  of  SSEMVS. Then the steering
vector of SSEMVS  can be estimated as

âk =
1

MN

M∑
m=1

N∑
n=1

Â {[6(m−1)N +6(n−1)+1] :

[6(m−1)N +6n]} [(ψy)∗]
n(n−1)

2 [(ψx)∗]
m(m−1)

2 ek (32)

A{i : j}
m n Â ∗

ek = [0, · · · ,0︸  ︷︷  ︸
k−1

,1,0, · · · ,0︸  ︷︷  ︸
K−k

]T,k = 1, · · · ,K

where  is a matrix consisting of elements from the
th to the th row of , the superscript  denotes the com-

plex  conjugation, .

It  was  claimed  in  [16]  that  different  directions of  the
incident signals can result in the same cross product vec-
tor when their unit Poynting vectors have the same modu-
lus  but  different  signs.  To  overcome  this  problem,  Li  et
al. [16] proposed a modified vector-cross-product algori-
thm to avoid suffering ambiguity in the estimation of the
unit  Poynting  vector.  In  the  following,  the  brief  proce-
dure is provided.

c
âk

Firstly,  the  normalized  cross  product  can be  calcu-
lated from  with the vector-cross-product algorithm as
follows:

c =
ẽ · h̃∗

∥ẽ∥.∥h̃∗∥
= Ps⊙ [ejgx Ps ejgy Ps ejgz Ps ]T (33)

where 
gx = −

2π
λ

(Pey− Phz)

gy = −
2π
λ

(Pez− Phx)

gz = −
2π
λ

(Pex − Phy)

.

Ps

gx gy gz G

c

 is  the  unit  Poynting  vector  of  the  incident  source,
, ,  and  are  called  parameters  of  the  SSEMVS.

Owing to the ambiguous estimation of direction cosine in
[15] and [17], the entry-wise modulus of  can be used to
construct eight  unit  Poynting  vectors,  which  can  be  ex-
pressed as

Ps1 =

 |[c]1|
|[c]2|
|[c]3|

 , Ps2 =

 −|[c]1|
−|[c]2|
−|[c]3|

 ,
Ps3 =

 |[c]1|
−|[c]2|
−|[c]3|

 , Ps4 =

 −|[c]1|
|[c]2|
−|[c]3|

 ,
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Ps5 =

 −|[c]1|
−|[c]2|
|[c]3|

 , Ps6 =

 |[c]1|
|[c]2|
−|[c]3|

 ,
Ps7 =

 |[c]1|
−|[c]2|
|[c]3|

 , Ps8 =

 −|[c]1|
|[c]2|
|[c]3|

 . (34)

P̃s

Then  substitute  all  of  these  vectors  into  (32)  and
choose the one with the least fitting error as the final es-
timation of the Poynting vector . Therefore, the coarse
direction cosine estimates can be obtained as

ucoarse
k =

[
P̃s

]
1

vcoarse
k =

[
P̃s

]
2

wcoarse
k =

[
P̃s

]
3

. (35)

3.3    Yield of closed-form DOA and polarization
estimates with high accuracy

By using the disambiguation approach [15], the final  es-
timation of direction cosine can be achieved as

ûk = ufine
k + m̂λ/DX

m̂ = argm min |ucourse
k −ufine

k −mλ/DX |
⌈(−1−ufine

k )DX/λ⌉ ⩽ m ⩽ ⌊(1−ufine
k )DX/λ⌋

v̂k = vfine
k + n̂λ/DY

n̂ = argn min |vcourse
k − vfine

k −nλ/DY |
⌈(−1− vfine

k )DY/λ⌉ ⩽ n ⩽ ⌊(1− vfine
k )DY/λ⌋

(36)

⌈α⌉
α ⌊α⌋
α

where  refers  to  the  smallest  integer  that  is  not  less
than , and  refers to the largest integer that does not
exceed .

With  the  estimation  of  direction-cosine,  the  elevation
and  azimuth  angles  can  be  calculated  subsequently.  The
following eight cases are discussed with the difference of
Poynting vectors.

ûk > 0, v̂k > 0, ŵk > 0 k = 1,2, · · · ,K(i) If , 

θ̂k = arcsin
(√

û2
k + v̂2

k

)
ϕ̂k = arctan

(
v̂k

ûk

)
(37)

ûk < 0, v̂k < 0, ŵk < 0 k = 1,2, · · · ,K(ii) If , 

θ̂k = π− arcsin
(√

û2
k + v̂2

k

)
ϕ̂k = arctan

(
v̂k

ûk

)
(38)

ûk < 0, v̂k < 0, ŵk > 0 k = 1,2, · · · ,K(iii) If , 

θ̂k = arcsin
(√

û2
k + v̂2

k

)
ϕ̂k = π+ arctan

(
v̂k

ûk

)
(39)

ûk < 0, v̂k > 0, ŵk > 0 k = 1,2, · · · ,K(iv) If , 

θ̂k = π− arcsin
(√

û2
k + v̂2

k

)
ϕ̂k = π+ arctan

(
v̂k

ûk

)
(40)

ûk > 0, v̂k < 0, ŵk < 0 k = 1,2, · · · ,K(v) If , 

θ̂k = π− arcsin
(√

û2
k + v̂2

k

)
ϕ̂k = arctan

(
v̂k

ûk

)
(41)

ûk < 0, v̂k > 0, ŵk > 0 k = 1,2, · · · ,K(vi) If , 

θ̂k = arcsin
(√

û2
k + v̂2

k

)
ϕ̂k = π+ arctan

(
v̂k

ûk

)
(42)

ûk > 0, v̂k < 0, ŵk > 0 k = 1,2, · · · ,K(vii) If , 

θ̂k = arcsin
(√

û2
k + v̂2

k

)
ϕ̂k = arctan

(
v̂k

ûk

)
(43)

ûk > 0, v̂k > 0, ŵk < 0 k = 1,2, · · · ,K(viii) If , 

θ̂k = π− arcsin
(√

û2
k + v̂2

k

)
ϕ̂k = arctan

(
v̂k

ûk

)
(44)

Also from (3),

ĝ (γk,ηk) =[
ΘH

(̂
θk, ϕ̂k

)
Θ

(̂
θk, ϕ̂k

)]−1
·ΘH

(̂
θk, ϕ̂k

) [̂
ak ⊙ d∗

(̂
uk, v̂k

)]
. (45)

As a  result,  the  corresponding polarization parameters
can be estimated as

γ̂k = arctan
( [

ĝ (γk,ηk)
]

1[
ĝ (γk,ηk)

]
2

)
, (46)

η̂k = ∠
[ [

ĝ (γk,ηk)
]

1[
ĝ (γk,ηk)

]
2

]
(47)

∠where  denotes the angle of the ensuring entity.

3.4    Computational complexity analysis

The  main  computational  complexity  of  the  proposed
method includes: (i) calculation of array covariance mat-
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O{(12MN)2L}
O{(12MN)3}

O{[2 ·6MNK2+K3]+4 ·6MNK2+K3}

O{3MN ·6K2}
O

{
(12MN)2L+ (12MN)3+

2K3+54MNK2}

rix  with  flops,  (ii)  eigen  decomposition
operation  to  obtain  signal  subspaces  with 
flops,  (iii)  estimation  of  the  array  manifolds  with

 flops, (iv)  estima-
tion  of  the  array  manifold  for  SSEMVS  array  with

 flops.  Overall,  the  computational  load  of
the  proposed  algorithm  is 

.

∆θ ∆ϕ

Table 1 shows the computational complexity comparis-
on of  the  reduced  dimensional  polarimetric  MUSIC  al-
gorithm (RD-MUSIC) and the proposed algorithm, where

 is  the  search  range  of  elevation  angle,  and  is  the
search  range  of  azimuth  angle.  It  can  be  seen  that  the
computational  complexity  of  the  proposed  algorithm  is
relatively lower.
 

 
 

Table 1    Computational complexity of the proposed algorithm and RD-MUSIC

Algorithm Computational complexity

The proposed algorithm O{(12MN)2L+ (12MN)3 +2K3 +54MNK2}

RD-MUSIC
O {[(180/∆θ) · (360/∆ϕ) · (MN +MN ·12+6MN(12MN −K)+

2(12MN −K) ·6MN +24MN + 23
)]
+3MN ·6K2 + (12MN)2L+

(12MN)3 + [2 ·6MNK2 +K3]+4 ·6MNK2 + K3
}

 

4. Simulation results

G = [gx gy gz]T

In this section, several simulations are conducted to vali-
date  the  performance  of  the  proposed  algorithm.  In  the
following  simulations,  the  configuration  of  SSEMVS  is
shown in Fig. 4. Stars refer to dipole antennas, circles de-
note  the  loop  antennas.  The  corresponding  parameters

 is of the following form:

G =

 0 1 0
0 0 1
1 0 0

 2π
λ
.

  

4

4

−4

3

3
−3

2

2−2

1

1

−1
0
0

0

Fig. 4    Geometry illustrations of SSEMVS

4.1    Four-dimensional parameters
estimation and pairing

5×6 M = 5
N = 6

L = 500 K = 7

It  is  assumed  that  the  size  of  the  SNRA  is , 
and .  The SNR is set  as 20 dB, and the number of
snapshots is . We consider  targets,

(θ1,ϕ1,γ1,η1, f1) = (10◦,35◦,70◦,30◦,0.1 Hz),

(θ2,ϕ2,γ2,η2, f2) = (20◦,65◦,60◦,120◦,0.2 Hz),

(θ3,ϕ3,γ3,η3, f3) = (80◦,55◦,50◦,60◦,0.3 Hz),

(θ4,ϕ4,γ4,η4, f4) = (40◦,15◦,40◦,110◦,0.4 Hz),

(θ5,ϕ5,γ5,η5, f5) = (50◦,85◦,30◦,80◦,0.5 Hz),

(θ6,ϕ6,γ6,η6, f6) = (60◦,45◦,20◦,140◦,0.6 Hz),

(θ7,ϕ7,γ7,η7, f7) = (70◦,25◦,10◦,40◦,0.7 Hz).

A total of 100 Monte Carlo simulations are conducted
and the results are shown in Fig. 5. It can be seen that the
DOA and polarization angles are well estimated and cor-
rectly paired. 
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Fig.  5      Four-dimensional  parameters  estimations  of  the  proposed
algorithm

4.2    Parameters estimation performance versus SNR

M = 5 N = 6 DX = 4λ DY = 8λSuppose , , , ,  and  suppose

there are two sources with

(θ1,ϕ1,γ1,η1, f1) = (−35◦,42◦,45◦,−90◦,0.1 Hz)

and

(θ2,ϕ2,γ2,η2, f2) = (43◦,−35◦,45◦,90◦,0.126 5 Hz),

L = 500 ∆T =
1

2 f2
, , and  the  simulation  results  are  ob-

tained by 1 000 Monte Carlo experiments. The root mean
squared error (RMSE) can be used to measure the estima-
tion performance, which is defined as

RMSE =

√√√
1

1 000K

K∑
k=1

1 000∑
j=1

(
αk − α̃k, j

)2 (48)

α̃k, j αk k
j

where  is the estimated  in which  denotes the tar-
get  number  and  denotes  the  trail  number. Fig.  6 com-
pares  the  RMSEs  versus  signal  to  noise  ratio  (SNR)  of
the proposed algorithm with the RD-MUSIC.
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Fig. 6    RMSEs versus SNR of parameters estimation
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It can be seen that the parameters estimation perform-
ance  of  the  proposed  algorithm  is  superior  to  the
RD-MUSIC  in  [17]  and  can  approach  to  the  Cramér-
Rao bounds  (CRBs)  more  effectively.  It  is  worth  men-
tioning  that  the  parameters  estimation  performance  of
the RD-MUSIC is unsatisfactory when the SNR is lower
than  5dB.  However,  for  our  proposed  method,  it  can
provide  a  high  parameters  estimation  accuracy  even  at
low SNRs.

4.3    Parameters  estimation  performance  versus  the
number of data samples

The SNR is fixed at 20 dB, and the other settings are the
same as those in Section 4.2. When the number of snap-
shots varies from 200 to 1 200, the RMSEs of parameter
estimations are shown in Fig. 7. Again, it is seen that the
proposed algorithm still has obvious advantages over the
RD-MUSIC for all available snapshots and approaches to
the related CRBs more effectively.
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Fig. 7    RMSEs versus snapshots of parameters estimation

 
4.4    Parameters  estimation  performance  of  different

array structures

DX = DY

In this  section,  the  CRBs  of  the  proposed  array  is  com-
pared  with  three  different  array  configurations  presented
in  [16−18],  respectively. Fig.  8 plots  the  RMSEs  versus

, the  SNR  is  fixed  as  20  dB,  and  other  simula-
tion conditions are the same as those in Section 4.2. Fig. 9
describes  the  RMSEs  versus  SNR,  and  other  settings
are  fixed  as  those  in  Section  4.2.  As  it  can  be  seen,  the

2D-DOA  estimation  performance  gets  better  when  the
inter-sensor spacing gets larger, while the RMSEs of the
polarization parameters  estimation remain the same with
the increase of intersensor spacing. From Fig. 8 and Fig. 9,
we can also see that the proposed algorithm has obvious
advantages over the other methods. The reason is that the
sparse  nonuniform  array  configuration  extends  the  array
aperture and  hence  refines  the  parameter  estimation  ac-
curacy. 
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Fig. 8    CRBs of the four-dimensional parameters estimation versus intersensor spacing of L-shaped array, SNC-EMVS, and the proposed
array
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Fig. 9    CRBs of four-dimensional parameters estimations versus SNR of SSEMVS, L-shape array, SNC-EMVS, and the proposed array

 
Moreover, compared to the method in [17], the mutual

coupling  effect  and  hardware  cost  can  also  be  reduced.
The  reason  for  the  unsatistactory  parameters  estimation
performance  in  [17]  is  that  there  exists  ambiguity  in  the
estimation of the unit Poynting vector, which leads to the
incorrect estimation of 2D-DOA and polarization angles.

5. Conclusions
In this paper, a method has been developed for 2D-DOA
and  polarization  estimation  in  the  SNRA  composed  of
SSEMVS.  Compared  with  some  existing  methods,  the
proposed one  avoids  suffering  ambiguity  in  the  estima-
tion of direction finding, improves the parameters estima-
tion  accuracy  without  adding  any  redundant  antennas,
and reduces  the  mutual  coupling effect.  Moreover,  com-
pared to RD-MUSIC, the proposed method has relatively
lower computational complexity. In addition, the 2D-DOA
and polarization angles can also be paired automatically.
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