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Abstract: Time  series  analysis  is  a  key  technology  for  medical
diagnosis, weather forecasting and financial prediction systems.
However,  missing  data  frequently  occur  during  data  recording,
posing a great challenge to data mining tasks. In this study, we
propose a  novel  time  series  data  representation-based  denois-
ing autoencoder (DAE)  for  the reconstruction of  missing values.
Two data representation methods,  namely,  recurrence plot  (RP)
and Gramian angular field (GAF),  are used to transform the raw
time series to a 2D matrix for establishing the temporal correla-
tions between different time intervals and extracting the structu-
ral patterns from the time series. Then an improved DAE is pro-
posed to reconstruct the missing values from the 2D representa-
tion  of  time  series.  A  comprehensive  comparison  is  conducted
amongst  the  different  representations  on  standard  datasets.
Results show  that  the  2D  representations  have  a  lower  recon-
struction error than the raw time series, and the RP representa-
tion provides  the  best  outcome.  This  work  provides  useful  in-
sights  into  the  better  reconstruction  of  missing  values  in  time
series  analysis  to  considerably  improve  the  reliability  of  time-
varying system.
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noising autoencoder (DAE), reconstruction.

DOI: 10.23919/JSEE.2020.000081

1. Introduction
Chronological sequences  of  observations,  which  are  re-
ferred  to  as  time  series,  are  widely  found  in  biology,
medicine, finance, astronomy and engineering [1]. A time
series  contains  rich  information  about  dynamic  systems
that can provide essential knowledge for decision makers.
Time  series  analysis  has  been  increasingly  used  in  data
mining tasks,  such  as  classification,  prediction,  cluster-
ing,  anomaly  detection  and  segmentation  [2].  However,
missing values are problems frequently encountered dur-
ing data observation because of technical fault or human

errors,  thereby  immensely  increasing  the  uncertainty  of
classification  or  prediction  results.  Improper  processing
of missing values also increases the computing time and
complexity of  the  follow-up  algorithm.  The  data  com-
pleteness of  time series with missing values is  crucial  to
be solved and should be carefully performed without dis-
turbing the time series’ statistical properties.

Existing  handling  methods  for  missing  values  [3−7]
can be mainly classified into two categories, namely, de-
letion and imputation. The deletion method is simply con-
ducted by deleting the missing data,  resulting in the loss
of useful information. The imputation method, which in-
cludes  statistical  and  learning  methods,  is  a  procedure
that  replaces  the  missing  values  by  some  certain  values.
Different imputation methods have different performance
in completing missing values. Statistical methods, such as
mean imputation, are effective in small amounts of miss-
ing values. However, the drawback of this method is the
high  bias  caused  by  the  newly  imputed  values  that  are
similar with the observed data. Several other methods, re-
ferred as  learning  methods,  e.g.  genetic  algorithm,  sup-
port vector machine, expectation maximisation algorithm
and multi-layer perceptron, have been developed to over-
come  this  problem.  The  multi-objective  genetic  algori-
thm imputation proposed by Lobato et al. [8] is relatively
easy  to  implement  and  adapt  to  different  domains.  The
disadvantage of this method is that the fitness calculation
may  demand  high  computation  time.  The  expectation-
maximisation  algorithm  proposed  in  [9]  performs  well
on  large  fraction  of  missing  data  and  small  samples.
However,  the  parameters  need  to  be  initialised  and  their
selection has a vital effect to the convergence. As a clas-
sic  neural  network,  multilayer  perceptron  is  widely  used
to  model  the  complex  relationships  between  data  and  in
time series imputation [10].

Recently, deep  neural  networks,  especially  convolu-
tional  neural  networks  (CNNs),  have  achieved  impres-
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sive  results  in  various  domains  [11−14]  and  many  deep
learning based methods for missing data imputation have
been proposed [15−19]. The most popular ones are gene-
rative adversarial  nets  (GANs)  and  denoising  autoen-
coders (DAEs). Yoon [15] proposed a novel GAN frame-
work for missing data imputation. However, the network
modelling is complicated and the training is difficult. The
GAN-based  methods  often  require  complete  data  during
training. Different from GANs, DAEs are designed to re-
cover the  outputs  from  noisy  inputs  through  unsuper-
vised  learning  [20−22],  which  makes  it  suitable  for  data
without  labels.  Missing  data  is  a  special  case  of  noisy
input,  making  DAEs  ideal  as  an  imputation  model.
However,  missing data  can depend on interactions/latent
representations that are unobservable in the input dataset
space. Silva et al.  [23,24] and Wang et al.  [25] reformu-
lated  the  time  series  as  the  image  for  time  series
classification,  thereby  providing  a  useful  perspective  for
the processing of missing values.

In  this  research,  we  propose  an  overcomplete  DAE
framework using the 2D representation combined with a
DAE as  a  solution  to  address  the  abovementioned  prob-
lem. Missing information can be accurately recovered by
projecting the  input  data  into  a  high-dimensional  sub-
space.  The  main  contributions  of  this  work  are  summa-
rised in three points.

Firstly,  an  effective  2D  time  series  representation
method is adopted to transform the raw time series into a
2D  matrix.  The  latent  relationships  between  each  time
stamp can be explicitly represented by projecting the 1D
time series into the 2D image.

Secondly, we propose a 2D representation-based DAE
to  tackle  the  missing  values  in  the  time  series,  for  fully
utilising  the  correlations  between  observations  in  the
learning process of DAE.

Finally,  extensive  evaluations  are  performed  to  vali-
date  that  the  proposed  framework  can  achieve  a  signifi-
cant  improvement  in  missing  value  estimation  and  time
series classification.

The  remainder  of  this  paper  is  organised  as  follows.
Section  2  describes  the  proposed  methodology  in  detail.
Section 3  presents  the  experiments  and results,  and Sec-
tion 4 provides the discussion. Section 5 summarises the
conclusions of this study.

2. 2D representation-based DAE for time
series reconstruction

In  Subsections  2.1  and  2.2,  we  describe  the  concepts  of
two  time  series  data  representations,  namely,  recurrence
plots  (RPs)  [26]  and  Gramian  angular  field  (GAF)  [25].
The details of the proposed method are presented in Sub-

section 2.3.

2.1    RPs

xi ∈ Rm

m

Representing the time series as RPs is proposed by Mar-
wan  et  al.  [27, 28 ].  Considering  that  time  series  reflects
the dynamical characteristics of a system that generates it,
RPs  are  a  suitable  tool  for  analyzing  the  recurrences  of
the states of a dynamic system and for measuring the re-
currences  of  a  trajectory  in  the  phase  space,
where  is  the  dimension  of  the  phase  space  trajectory,
which can be formulated as

Ri, j = θ(ε− ||xi− x j||), i, j = 1, · · · ,N, (1)

θ(x) =
{ 1, x ⩾ 0

0, x < 0,
(2)

xi ε

θ(x)
where N  is  the  number  of  measured  points ,  is  a
threshold distance,  is the Heaviside function, and ||·||
is  a  norm.  The R -matrix  contains  textures,  which  are
single  dots,  diagonal  lines  and  vertical  and  horizontal
lines, and typology information, which is characterised as
homogeneous, periodic, drift and disrupted. For instance,
fading to the upper left and lower right corners indicates
that the process contains a trend or a drift, or vertical and
horizontal  lines/clusters  show  that  some  states  remain
constant  or  slowly  change  for  some  time,  which  can  be
interpreted as laminar states [29].

m = 3
τ = 10

Fig.  1 shows the  RP representations  for  the  two  data-
sets obtained from the University of California, Riverside
(UCR) time series archive [30], which is a public dataset
for time series analysis and includes time series sets from
different  application  domains. Fig.  1(a) and  Fig.  1(b)
present the raw time series “ECG200” and “Coffee” re-
spectively. Fig. 1(c) and Fig. 1(d) illustrate the scaled col-
our  image  visualisation  of  the R -matrix, which  is  calcu-
lated  on  the  basis  of  the  closeness  of  the  states  in  the
phase space, using phase space, dimension  and em-
bedding time delay .

 

(a) ECG200
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2.2    GAF

X = {x1, x2, · · · , xn}

GAFs,  including  Gramian  angular  summation  field
(GASF)  and  Gramian  angular  difference  field  (GADF),
are techniques used to transform the time series into a 2D
matrix  [25].  Given  a  time  series  of  n
point observations,  the first  step for GAF transformation
is to rescale the value into the interval [−1, 1], which can
be expressed as

x̃i =
(xi−max X)+ (xi−min X)

max X−min X
. (3)

X̃ ti

The second step is to represent the rescaled time series
 in the polar coordinates using (4), where  is the time

stamp, and N is a constant factor regularising the span of
the polar coordinate system. ϕ = arccos(x̃i), −1 ⩽ x̃i ⩽ 1; x̃i ∈ X̃

r =
ti

N
, ti ∈ N (4)

Fig. 2 illustrates the “Coffee” time series represented in
different coordinates,  including  Cartesian  and  polar  co-
ordinate systems.
 
  

(a) Cartesian coordinate system

(b) Polar coordinate system
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Fig. 2    “Coffee” time series represented in different coordinates
 

In the  polar  coordinate  system,  the  temporal  correla-
tion between  different  time  intervals  can  be  easily  ex-
ploited  by  considering  the  trigonometric  sum/difference
between each point. GASF and GADF are defined as fol-
lows:

GASF =


cos(ϕ1+ϕ1) · · · cos(ϕ1+ϕn)
cos(ϕ2+ϕ1) · · · cos(ϕ2+ϕn)

...
. . .

...
cos(ϕn+ϕ1) · · · cos(ϕn+ϕn)

=
X̃′ · X̃−

√
I− X̃2′ ·

√
I− X̃2, (5)

GADF =


sin(ϕ1−ϕ1) · · · sin(ϕ1−ϕn)
sin(ϕ2−ϕ1) · · · sin(ϕ2−ϕn)

...
. . .

...
sin(ϕn−ϕ1) · · · sin(ϕn−ϕn)

=
X̃ ·
√

I− X̃2′− X̃′ ·
√

I− X̃2, (6)

< x,y >= x · y−
√

1− x2 ·
√

1− y2 < x,y >= y ·
√

1− x2−
x ·
√

1− y2

| < x̃n, x̃n > |

where I is the unit row vector. Defining the inner product
 and 

, GASF and GADF can be expressed as quasi-
Gramian matrices .

As shown in (7), the GAF matrix is actually a symme-

 

(b) Coffee
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(c) RP representation of ECG200
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(d) RP representation of Coffee

Fig. 1    RP representations of time series

TAO Huamin et al.: Reconstruction of time series with missing value using 2D representation-based denoising autoencoder 1089



tric  matrix  of  the  inner  product.  GADF  is  similar  to
GASF, except that the former is constructed by using the
trigonometric  difference  of  the  inverse  sine.  Therefore,
we only consider GASF in this study.

GASF =


< x̃1, x̃1 > · · · < x̃1, x̃n >
< x̃2, x̃1 > · · · < x̃2, x̃n >

...
. . .

...
< x̃n, x̃1 > · · · < x̃n, x̃n >

 (7)

Fig.  3 shows  the  GASF  representations  for  the  two

datasets from the UCR time series archive. Fig. 3(a) and
Fig.  3(b) present  the  raw  time  series  “ECG200 ”  and
“Coffee ”  respectively. Fig.  3(c) and  Fig.  3(d) illustrate
the corresponding GASF representations.

{Gii} = {cos(2ϕii)}From  the  main  diagonal  of  GASF, ,
we  can  easily  reconstruct  the  original  time  series  using
the following equation:

cos ϕ =

√
cos(2ϕ)+1

2
, ϕ ∈

[
0,

π
2

]
. (8)

 
 

(a) ECG200 (b) Coffee

(c) GASF representation of ECG200 (d) GASF representation of Coffee
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Fig. 3    GASF representations of time series
 

2.3    2D representation-based DAE

A DAE is widely used for image denoising and recovery,
and  usually  consists  of  an  encoder  and  a  decoder  [31].
Unlike  autoencoders,  the  DAE  receives  the  corrupted
data  as  input  and  outputs  the  completed  data.  It  can  be
trained  to  learn  high-level  representation  of  the  feature
space in an unsupervised manner.

x̃ x
RDx

RDz RDz RDx

Given input  and damaged input , the encoder maps
from  an  input  domain  to  a  hidden  representation  in

,  and the  decoder  maps from  back to . There-
fore, the encoding and decoding functions can be defined
as { z = ϕ (x;θE)

y = ψ (z;θD) (9)

x ∈ RDx z ∈ RDz y ∈ RDx

ϕ (·)
ψ (·)

where ,  and  denote a sample from
the input space, its hidden representation and reconstruc-
ted  representation,  respectively.  Encoder  and de-
coder  are usually implemented by stacked dense lay-

θE θD

x̃ y

ers  of  neurons  with  the  sigmoid  activation  function.  In
this  study,  we  replace  the  dense  layers  by  convolutional
layers. Compared with the fully connected layer, the con-
volutional encoder and decoder can effectively reduce the
parameters  and  computation  costs.  and   are  the
trainable parameters of the encoder and the decoder, res-
pectively.  DAEs  are  trained  to  minimise  the  variance
between input  and its reconstruction .  Given that the
objective  is  to  reconstruct  the  missing  values,  the  mean
squared  error  (MSE)  is  adopted  as  the  loss  function,
which is represented as

E(θ) =
1
N
· ∥x̃− y∥2. (10)

After training, the network can be applied to unknown
data denoising and recovery.

The  proposed  framework  for  the  recovery  of  time
series with missing values is shown in Fig. 4. Firstly, we
transform the  raw  time  series  into  2D  matrices,  namely,
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RP  and  GASF  representations.  Secondly,  the  2D  repre-
sentations are used as the input of the DAE, which learns
middle  representation  through  the  encoder  and  outputs
the reconstructed 2D representation through the decoder.
The encoder contains two convolution and two max pool-
ing  layers,  and  the  decoder  has  an  architecture  that  is

symmetric to the encoder. Finally, we reconstruct the ori-
ginal time series from the 2D representations to compare
the imputation  performance.  For  the  GASF  representa-
tion, we can reconstruct the recovered time series by ex-
tracting the main diagonal.
 

 
 

Middle
representation

DAE

Reconstructed
GASF/RP

representation

Time series
with missing

values

Damaged
GASF/RP

representation

C
N
N

C
N
N

Reconstructed
time series

Fig. 4    Framework for recovery of time series with missing values
 

We downsample the 2D representation to the same size
because  different  types  of  time  series  have  different
lengths. The input of the encoder is a 64×64 matrix. The
number  of  kernels  of  the  first  and  second  convolutional
layers  are  16  and  32,  respectively.  Each  convolutional
layer  has  a  3×3  receptive  field  with  a  stride  fixed  to  1
pixel.  Each  max  pooling  layer  has  a  2×2  receptive  field
with a stride fixed to 2 pixels. The decoder operates in re-
verse direction. The output has the same size with the in-
put. The  adaptive  moment  estimation  optimisation  al-
gorithm [32] is applied to train the DAE models by mini-
mising  the  MSE  of  the  inputs  and  reconstructions.  The
batch  size  is  20,  the  initial  learning  rate  is  0.01,  and  the
learning rate  reduces  when the  MSE remains  unchanged
for 10 iterations.  The decay rate is  0.1,  and each experi-
ment runs for 10 times.

3. Experimental results
3.1    Results of missing value estimation

To demonstrate  the  effectiveness  of  the  2D  representa-
tion on missing value imputation,  we select  the standard
DAE with raw time series data as the input to recover the
missing values  for  comparison.  The  performance  of  dif-
ferent methods is evaluated on the datasets from the UCR
time series classification archive.

Table  1 provides  the  detailed  information  about  each
dataset  used  in  this  study,  including  the  number  of
classes, the time series length and the size of training/vali-
dation/test set. The datasets division in Table 1 is set for
the  classification  tasks  in  Subsection  3.3.  We  train  the
DAE using  “ECG200 ”  and  test  it  on  the  remaining  se-
quences. Different  types  of  datasets  are  chosen  for  test-

ing,  including  “Face  all ”,  “Swedish  leaf”,  “OSU leaf”,
“Wafer”, “50 words” and “Coffee”. The damaged inputs
are generated by randomly setting 20% of the original se-
quences amongst  specific  time  series  to  zero.  The  pro-
posed method is implemented on TensorFlow and run on
NVIDIA GeForce GTX 1 080 Ti graphic card.
 
 

Table 1    Summary of datasets

Dataset Class Length Training/Validation/Test

ECG200 2 96 100/50/50

Face all 14 131 560/845/845

Swedish leaf 15 128 500/313/312

OSU leaf 6 427 200/121/121

Wafer 2 152 1 000/3 082/3 082

50 words 50 270 450/272/273

Coffee 2 287 28/14/14

 
Fig.  5 shows  the  reconstruction  of  “ECG200 ”  time

series using the standard DAE. The first, second and third
rows denote the raw time series, time series with missing
values  and  reconstructed  time  series,  respectively.  The
standard DAE recovers  the  general  tendency of  the  time
series,  and  most  of  the  missing  values  are  imputed.
However, the local fluctuations are smoothed.

Fig. 6 and Fig. 7 illustrate the reconstruction of GASF
and RP  representations  of  “ECG200 ”  using  DAE,  re-
spectively.  All  the  2D  matrices  are  presented  in  colour
maps.  The  first,  second  and  third  rows  denote  the
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GASF/RP  representations  of  the  raw  time  series,  time
series with missing values and reconstructed time series,

respectively. They can accurately reconstruct the missing
values to a certain degree.

 
 

(a) Raw time series

(b) Time series with missing values

(c) The reconstructed time series

Fig. 5    Reconstruction of “ECG200” time series
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(a) GASF representations of raw time series

(b) GASF representations of time series with missing values

(c) The reconstructed GASF representations

Fig. 6    Reconstruction of GASF representations of “ECG200”
 

We  compute  the  MSE  of  the  recovered  and  raw  time
series  of  each  method  to  compare  the  imputation  accu-
racy of three different representations. Given that RP and
GASF  representations  can  be  compared  at  the  2D  level,
we only reconstruct the time series from the restored GASF
matrix for comparison with the raw time series. We also
compare  our  proposed  method  with  other  reconstruction
methods including mean and auto-regression (AR). Mean

imputation  replaces  the  missing  values  with  the  mean
value of the adjacent observations. AR imputation uses the
auto-regression model (p = 3) to fill in missing values. The
results are displayed in Table 2 and Table 3. The GASF time
series in Table 2 denotes the time series restored from the
GASF matrix.  The GASF and RP time series in Table 3
represent  the  comparison  of  the  2D representations.  The
low reconstruction errors are displayed in bold. 
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(b) RP representations of time series with missing values

(c) The reconstructed RP representations
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Fig. 7    Reconstruction of RP representations of “ECG200”
 
 

Table 2    Comparison on MSE of different reconstruction methods

Dataset
MSE

Raw time series GASF time series Mean AR

ECG200 0.000 5 0.000 3 0.018 6 0.031 4

Face all 0.000 7 0.001 7 0.029 9 0.059 2

Swedish leaf 0.001 8 0.000 9 0.014 3 0.040 3

OSU leaf 0.001 0 0.000 6 0.018 8 0.026 9

Wafer 0.000 2 0.002 4 0.031 3 0.031 4

50 words 0.001 9 0.001 1 0.018 5 0.052 3

Coffee 0.057 9 0.004 0 0.013 1 0.006 1
 
 

Table  3      MSE  of  reconstruction  based  on  GASF  representations
and RP representations

Dataset
MSE

GASF RP

ECG200 0.004 8 0.003 7

Face all 0.013 4 0.022 1

Swedish leaf 0.009 8 0.009 2

OSU leaf 0.007 7 0.012 1

Wafer 0.024 0 0.006 9

50 words 0.010 1 0.010 8

Coffee 0.033 6 0.023 4
 

As  shown  in Table  2, the  GASF  representation  per-
forms better than the raw sequences on most of the data-
sets,  except  for  “Face  all”  and  “Wafer”.  The  mean  and
AR methods have the largest  MSE in missing values re-
construction due to the insufficiency information used in
prediction.

As  shown  in Table  3,  the  RP  representation  performs
better than the GASF representation. The 2D representa-

tions  have  better  performance  in  recovering  missing  va-
lues  than  the  raw  time  series,  and  the  RP  representation
shows  a  slightly  better  performance  than  the  GASF  re-
presentation.  This  finding  indicates  the  efficiency  of  the
proposed method.

3.2    Influence of different missing data ratios

Increasing missing data ratios deteriorates reconstruction
performance.  To verify  the  influence  of  varying  missing
data ratio on the proposed method, we introduce missing
values in three UCR time series datasets with missing ra-
tios set to 20%, 30%, 40%, 50%, 60%, 70% and 80% us-
ing  different  representation  methods.  The  three  datasets
are  “ECG200 ”,  “50  words ”  and  “Swedish  leaf  ”.  We
trained the model using the “ECG200” dataset and tested
it  on  “50  words ”  and  “Swedish  leaf ”  datasets.  MSE  is
adopted as the evaluation criterion for the comparison of
reconstruction errors of different representation methods.
The results are shown in Fig. 8 and Fig. 9. Similar to the
previous  section,  we  compare  the  three  methods  in  two

TAO Huamin et al.: Reconstruction of time series with missing value using 2D representation-based denoising autoencoder 1093



dimensions,  namely,  1D  and  2D. Fig.  8 displays the  re-
construction  errors  of  the  raw  and  GASF-restored  time
series under different missing ratios.  The MSEs increase
with the  increase  in  the  missing  ratio.  However,  the  re-
construction  performance  of  the  GASF-restored  time
series is  relatively  stable,  while  the  reconstruction  per-
formance of the method based on raw time series deterio-

rated considerably. Fig.  9 displays the  reconstruction er-
rors of the GASF and RP representations in 2D under dif-
ferent  missing  ratios.  The  results  of  two  datasets  show
that the reconstruction performance of RP representation
is  more  superior  than  GASF  representation,  thereby  de-
monstrating the effectiveness of the proposed method un-
der varying missing ratios.
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Fig. 8    Reconstruction error comparison of raw time series and GASF time series on two UCR datasets with varying missing data ratio
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Fig. 9    Reconstruction error comparison of GASF and RP representation on two UCR datasets with varying missing data ratio
 

3.3    Results of time series classification

To  validate  the  efficiency  of  the  2D  representation,  we
use the CNN proposed in [14] as a classifier to test the in-
fluence  of  different  representation  methods  before  and
after the imputation of missing values on time series clas-
sification. Table  4 shows  the  classification  accuracy  of
different methods  on  the  UCR time  series.  1D-CNN de-
notes  the  CNN  classifier  based  on  the  reconstructed  1D
time  series.  1D-CNN-0.2  denotes  the  CNN  classifier
based  on  the  time  series  with  a  missing  ratio  of  20%.
GASF-CNN denotes the CNN classifier based on the re-

constructed  GASF.  GASF-CNN-0.2  denotes  the  CNN
classifier  based  on  the  GASF  representation  of  the  time
series with a missing ratio of 20%.  RP-CNN denotes the
CNN classifier based on the reconstructed RP. RP-CNN-
0.2 denotes the CNN classifier based on the RP representa-
tion of the time series with a missing ratio of 20%. Con-
sidering  that  different  types  of  time  series  in  the  UCR
archive have different lengths, we downsample the size of
the GASF/RP matrix to a fixed value, which is denoted in
the bracket of Table 4. The optimal results are displayed
in bold. 
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Table 4    Classification accuracy of different methods on part of UCR time series

Dataset 1D-CNN 1D-CNN-0.2 GASF-CNN GASF-CNN-0.2 RP-CNN RP-CNN-0.2

Swedish leaf 0.913 4 0.330 1 0.923 0(64) 0.900 6(64) 0.942 3(32) 0.916 6(32)

Face all 0.830 7 0.801 1 0.757 3(64) 0.738 4(64) 0.757 0(64) 0.738 4(64)

ECG200 0.859 9 0.840 0 0.920 0(20) 0.910 0(20) 0.930 0(20) 0.890 0(20)

Wafer 0.994 4 0.993 8 0.994 4(64) 0.990 9(64) 0.997 4(20) 0.995 0(20)

OSU leaf 0.454 5 0.446 2 0.590 0(64) 0.545 4(64) 0.595 0(64) 0.573 0(64)

Coffee 1.000 1.000 1.000(64) 1.000(64) 1.000(64) 1.000(64)
 

As shown in Table 4, the classification accuracy is sig-
nificantly  improved  after  the  imputation  of  missing  va-
lues, and RP-CNN exhibits the best performance on most
of the datasets. For the “Coffee” dataset, all methods per-
form  well  mainly  because  of  the  simple  pattern  of  the
data.  The  classification  performance  of  “Swedish  leaf ”
dataset  remarkably  deteriorates  by  using  1D-CNN.  The
performance is  relatively  stable  using  2D-CNN.  There-
fore, reconstructing the missing data before classification
can effectively  improve the  stability  of  the  classification
algorithm. The  result  is  consistent  with  the  abovemen-
tioned  conclusion,  demonstrating  the  superiority  of  the
proposed method.

4. Discussion
The results in the previous section demonstrate the effecti-
veness of the 2D representations. The better performance
of  the  2D  representations  on  the  imputation  of  missing
values compared with raw time series can be explained as
follows.  On  the  one  hand,  the  transformations  of  time
series into 2D matrices are equivalent to a kernel trick. It
achieves data augmentation by increasing the dimensiona-
lity of the raw time series.  On the other hand, 2D repre-
sentations can  preserve  the  temporal  and  spatial  correla-
tions. The  DAE  can  utilise  rich  information  for  predic-
tion by  considering  the  temporal  and  spatial  dependen-
cies amongst the missing values and other time intervals.
Thus, the 2D representation has more stable performance
than the raw time series.

The RP and GASF representations are similar because
they consider the temporal and spatial dependencies. The
main difference is  that  the RP matrix  preserves  the rela-
tive  temporal  relations,  whereas  the  GASF matrix  repre-
sented in polar coordinates preserves the absolute tempo-
ral relations. The relative relations are robust to the trans-
lation variance  of  inputs.  Therefore,  the  RP  representa-
tion is  more  stable  than  the  GASF  representation  in  re-
constructing the missing values.

However,  we  only  consider  the  effectiveness  of  the
method for  univariate  time  series.  The  analysis  of  mul-
tivariate time series is  more complicated,  which requires
a further study.

5. Conclusions
In this study, we propose a 2D representation-based DAE
framework to analyze the time series with missing values.
The performance  is  evaluated  through  extensive  experi-
ments.  The  results  show  that  using  2D  representations
significantly  improves  the  imputation  and  classification
performance than the  raw time series,  and the  RP repre-
sentation  is  more  robust  than  the  GASF  representation.
Unlike  previous  missing  value  imputation  methods,  2D
representation-based  DAE  can  utilise  both  temporal  and
spatial  dependencies  of  the  time  series  in  predicting  the
missing values.  In  future  work,  we  will  apply  the  pro-
posed method in more specific time series tasks, such as
medical  diagnosis  and  weather  forecasting,  to  improve
the reliability of decision-making systems.
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