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Abstract: The noise robustness and parameter estimation per-
formance of the classical three-dimensional estimating signal
parameter via rotational invariance techniques (3D-ESPRIT) al-
gorithm are poor when the parameters of the geometric theory of
the diffraction (GTD) model are estimated at low signal-to-noise
ratio (SNR). To solve this problem, a modified 3D-ESPRIT al-
gorithm is proposed. The modified algorithm improves the para-
meter estimation accuracy by proposing a novel spatial smooth-
ing technique. Firstly, we make cross-correlation of the auto-cor-
relation matrices; then by averaging the cross-correlation
matrices of the forward and backward spatial smoothing, we can
obtain a novel equivalent spatial smoothing matrix. The formula
of the modified algorithm is derived and the performance of this
improved method is also analyzed. Then we compare root-mean-
square-errors (RMSEs) of different parameters and the locating
accuracy obtained by different algorithms. Furthermore, radar
cross section (RCS) of radar targets is extrapolated. Simulation
results verify the effectiveness and superiority of the modified 3D-
ESPRIT algorithm.
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tering center, geometric theory of diffraction (GTD) model, radar
cross section (RCS) extrapolation.
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1. Introduction

The geometrical theory of diffraction (GTD) model [1] is
a classical scattering center model to describe the electro-
magnetic characteristics of radar targets at high frequen-
cies. In the past decades, the GTD model has wide applic-
ations in many military fields, such as targets recognition
[2—7], radar cross section (RCS) extrapolation [8—10],
and three-dimensional (3D) reconstruction [11—14]. Hence,
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building a high-precise GTD model is vitally important
for radar targets electromagnetic characteristics analysis.
Obviously, accurate estimated parameters have become
the key to constructing a high-precision GTD model.
Therefore, researchers have applied many algorithms to
extract the GTD model parameters from back-scattering
data of radar targets, such as the estimating signal para-
meter via rotational invariance techniques (ESPRIT) al-
gorithm [15-18], the multiple signal classification
(MUSIC) algorithm [19-22], the matrix enhancement
and matrix pencil (MEMP) algorithm [23—25] and so on.
While the parameter estimation performance of the ESP-
RIT algorithm is poor at low signal-to-noise ratio (SNR).
Though the MUSIC algorithm performs better than the
ESPRIT algorithm at low SNR conditions, it needs spec-
tral peak searching, which burdens a heavy computation.
The MEMP algorithm mismatches the closed parameters
and hence it needs a parameter matching process.

In this paper, to estimate the GTD model parameters in
a higher accuracy at low SNR as well as to avoid mis-
matched parameters, a modified 3D-ESPRIT algorithm is
presented. Firstly, we add a novel correlation matrix into
the traditional forward-backward spatial smoothing and
obtain a new total covaraince matrix. Then by squaring
the total covariance matrix, we can get the final covari-
ance matrix. Finally, based on the final covariance and
spatial spectrum estimation algorithm, we can extract the
GTD model parameters. The proposed algorithm fully
uses the back-scattering data of radar targets as well as
broadens the differences between eigenvalues of signals
and eigenvalues of noises simultaneously. Simulation re-
sults verify the effectiveness and superiority of our pro-
posed algorithm.

This paper is organized as follows: Section 2 intro-
duces the 3D-GTD model. Section 3 presents the pro-
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posed modified 3D-ESPRIT algorithm to estimate the
GTD model parameters. Section 4 provides the simula-
tions and the computational analysis. Finally, Section 5
concludes this paper.

2. The 3D-GTD scattering center model

As a classical scattering center model, the GTD model
can describe the electromagnetic characteristics of radar
targets. At high frequencies, the GTD model of tar-
gets [12] can be expressed as

E(fm’em‘pk) = ZAI(JJ‘_‘];:

yisin fcos @ +z;sin @)/c]+w(fin,6,,¢1) (1

) exp[—4mj f,.(x;cos Hcos o+

where E(f,,6,,¢;) denotes the back-scattering data of
radar targets, / denotes the total scattering centers, / de-
notes the total scattering centers, , x;, y;, z; denote the
scattering intensity, scattering type, transversal position
parameter, longitudinal position parameter, and vertical
position parameter of the ith scattering center respecti-
vely. ¢ =3x 10® m/s represents the propagation speed of
electromagnetic waves and w(f,,,6,,¢;) denotes the Gaus-
sian white noise.

Ju = fo+mAf

where f), Af, m represent the initial frequency, the fre-
quency step and the frequency index respectively. Simi-
larly,

6, =6,+nAo,
O = o+ kA,

where 6, and ¢, are the initial azimuth angle and the ini-
tial pitching angle respectively, nAf and kA are the rel-
ative small radar rotation angles. The scattering type
parameters «; of typical scattering structures are shown in
Table 1 [12].

Table 1 ¢; values of typical scattering structures
Typical scattering structure Value
Flat plate at broad-side, dihedral 1
Singly curved surface reflection 0.5
Point scattering, doubly curved surface 0
Edge diffraction -0.5
Corner diffraction -1

As the operating frequency of selected radar satisfies
Af/fy < 1, we can take the following approximation:

(Sl f)" = A +mAf[fo)" =~ A+ aiAf/fo)".  (2)

Substituting (2) into (1) and transforming the obtained
formula to Cartesian coordinates, then using the resam-

1207

pling technique we can get the electromagnetic data of
radar targets:

E(fmsem‘pk) =
1
Z BIPTIP;IIPI; + w(fm’ 9,,, QDk)’
i=1

m=0,---,M-1;n=0,--- N-1;k=0,--- ,K—1 (3)

where
;A4S Anf, Anf,
B,:Aiexp(J——] f'oxi—J ho i) ﬁOZi), “)
2 c c c
A —4mjAf.x,
Pxi:(1+ai ﬂ)exp(M)’ (5)
Jo C
—4mjAfyi
Pyi=eXp(—' , (©)
c
—4AmiA Lz
P, = exp(LfJ'), )
c
Afi=Af, fo=l
Af.= x(sinﬂ—sin@)
yo 2 2/ - ®)
Afz:fox(sin%—sin%)

Fig.1 represents the 3D frequency domain data range.
The cube in Fig. 1 contains the interpolated data points at
equal intervals. . represents the intermediate frequence
between f; to f,,.

(~f. sin % ,—f. sin %)

-S>

1
(. sin %, £, sin %)

Fig. 1 3D frequency domain data range

Based on (5)—(8), we can estimate x;, y;, z; and ; by

_ —angle(P,)xc¢
Xi = 47TAf,( ) (9)
—angle(P,;) X ¢
= — 10
Y AnAf, (19)
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—angle(P,) X ¢
= 5 11
“ dnAf (b

a; = (IPul=Dfo/Af. (12)

3. The proposed algorithm

In this paper, we use the improved 3D-ESPRIT algori-
thm to estimate the 3D-GTD model parameters. And the
extraction processes can be shown as follows.

Step 1 First we perform the spatial smoothing on x
direction and a Hankel matrix pencil X, can be obtained

by

X; X oo X,
X? X; XXM—P-H
A (13)
X;—] X;’ X;/I—l
where
x(m,0) x(m,1) x(m,K—1L)
x(m,1) x(m,2) x(m K—L+1)
X = s
x(m,L-1) x(m,L) x(m,K-1)
(14)
x(m,k) =
E(m,0,k) E(m,1,k) E(m,N - Q,k)
E(m,1,k) E(m,2,k) Em,N—-Q+1,k)
E(m,0-1,k) E(m,Q,k) E(m,N—1,k)
(15)

Denote three matrix pencil parameters P, Q and
L[15], where Pe[I+1,M—-1+1], Qe[I+1,N-I+1],
Le[l+1,K-1+1]. M,N,K,I represent the numbers of
frequency steps, azimuth angle steps, pitching angle steps
and scattering centers respectively.

Step 2 Then a permutation matrix J of size PQLX
PQL is defined as

=)
—_ O
)

J= o : (16)

POLXPQL

Based on J and original scattered data X, a new ma-
trix E,,,;, which possesses the covariance information of
the original scattered data X, can be obtained by
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Ecunj = J : Xx (17)

Step 3 Then we can obtain three covariance matrices
as follows:

RXXXX = XxX)ljs (18)

RE“,,,,E“,,,, = E('wleinj’ (19)
_ H

RXrE(,,,” - XxEmnj’ (20)

where (~)H denotes the Hermite transpose.

Step 4 By averaging the three covariance matrices
obtained in (18)—(20), a novel total covariance matrix R
leads to

Rxx +Rg, i, +RxE,,

. @1

Step 5 As R is a Hermitten matrix and thus it satis-
fies R=R" . By squaring the matrix R, the final covari-
ance matrix R; can be obtained as

R, =RRY =R". (22)
Then we have
;=47
1 1 23
{Ali =A; ( )

where A;; and Aj; are the eigenvalue and the eigenvector
of R, respectively, A;and A; are the eigenvalue and the
eigenvector of R respectively, i =1,2,---,1.

From (23), we can observe that the eigenvalues of R,
are equal to two times of R. Therefore, by constructing
the final covariance matrix R, the differences between
the noise eigenvalues and the signal eigenvalues can be
broadened. The variance of estimated parameters is de-
rived as (24) and it is the motivation why we square the
total covariance matrix R as well.

2

1
21;1\11{2 Lo A

n — (0 2— 7i)2
E((¢-¢))= TP — (24)
dG H
i=I+1 dZ l

where E{(é—g’-‘)z} represents the variance of the estima-
ted parameters, £ and ¢ represent the estimated parame-
ter and the original parameter respectively, o and y; de-
note the eigenvalues of noises and eigenvalues of signals
respectively, v; =y, I — X* represents the eigenmatrix of
vi, I represents a [P X QX L] X [Px QX L] identit matrix,
P,Q,L,M,N, and K have been defined in (15).

It can be noticed from (24) that E{(£—-¢&)*} will be
smaller as o and y,, differs a lot with each other. In this
way, more accurate scattering center parameters can be
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obtained. Therefore, constructing R can broaden the dif-
ferences between o and y,,, as well as estimate the GTD
model parameters more accurately.

Step 6 Then the singular value decomposition of the
novel constructed covariance matrix R, leads to

R] :UXSDxSVg'-'-UxNDxN‘/xHN (25)

where Us, D and Vg contain the / principal compo-
nents, the singular values and the singular vectors related
to the signal subspace of x direction. While U,y, D,y and
V. contain the remaining components.

Step 7 Construct a matrix F, as follows:

F.=U.Us (26)

where (-)" denotes the generalized inverse. U , denotes
the first (P —1)QL rows of the matrix Uy, l_/}s denotes the
last (P —1)QL rows of the matrix U,.

Step 8 Based on [15], we can derive the permutation
matrices E,, and E,, as

o L P
E,=) > Y EZ'®EL BN, 27)

g=1 I=1 p=1

L P Q
E.=) Y ) EL'oE;CoES”, (28)

=1 p=1 g=1

where symbol ® denotes Kronecker product, EZ* is a
matrix of size QX L with 1 for (g,l) elements and 0 else-
where, Ef;” is a matrix of size 1. x P with 1 for (I, p) ele-
ments and 0 elsewhere, E}  is a matrix of size Px Q with
1 for (p,q) elements and 0 elsewhere. Then according to
the relations among x direction, y direction and z direc-
tion, we can get the following equations:

l]ys = Exy l]xS’ (29)
l]zs = Eyzl]}'S’ (30)

where U,, contains the / principal components related to
the signal subspace of y direction, and U, contains the /
principal components related to the signal subspace of z di-
rection.

Based on obtained matrices U,, and U,,, we can calcu-
late F, and F, as

F-U T, @D

Fz = gjs UzS . (32)

Step 9 Calculate the principal eigenvectors of F,, F,
and F:

F,+(1-B)F,/2+(1-B)F./2=T"'DT

¥, =TF.T"
W, =TF,T" )
Y =TF.T"

where (')7l denotes the inverse, and 0 <8< 1 isa con-
stant. Then the elements, which are on the main diagonal
of ¥,, ¥, and ¥, consist of P,;, P,; and P:
P.= diag(¥,)
{Pﬁ: diag(¥,) (34)
P;=diag(¥,)

wherei=1,2,...,1.

Obviously, the parameters «;, x;, ¥;, z; can be estima-
ted by (34) and (9)—(12).

Then the intensity parameter A can be extracted by the
least square method as

A = (G"G)'G"E, (35)
where

G= [a.,---,al], (36)

a; =[a(0,0,0),---,a,(M-1,0,0),4,(0,1,0),---,
ai(M_ 19 170)5“' 9ai(M_ 15N_ 1’0)9

ai(ovosl)y"'»ai(M_l’N_13K_1)]T7 (37)
a; —4mi
a;(m,n, k) :j(&) exp[ Wil (x;cos ,cos @+
fo C
yisin 6, cos ¢, +z;sin ¢)], (38)

Ek = [E(f(‘)’ 90, ‘700), e ,E(fM71’007 wo)’ai(_ﬁ)v 91,470), Tt
ai(fu-1,01,00), " ai(fu-1,0n-1,%0),
a;i(fo,600,01)+ »@i(fr-1,On-1,0x-1)]s 39

where ( -)T denotes the transpose.

The key idea of our proposed algorithm is from (16)—
(24). By constructing the conjugated form of original
back-scattering data, we raise the utilization of original
data. Then we combine the auto-correlation matrices and
the cross-correlation matrix by averaging them. Finally,
we square the covariance matrix to broaden the differ-
ences between eigenvalues of noise and eigenvalues of
signals. Theoretical analysis verifies that our proposed al-
gorithm can improve the accuracy of GTD model para-
meters. The summary of our proposed algorithm is shown
as follows:

Input: back-scattering data E(f,,,6,, )

Output: parameters of 3D-GTD model {A;,a;,x;,y:,2i}

Step 1 Construct a Hankel matrix pencil X,.

Step 2 Construct the conjugated matrix of X, na-
mely E.,;, and compute covariance matrices Ry y,,
Ry, k., and Ry g, .
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Step 3 Compute the average matrix.

44444444444444

Step 4 Square the matrix R and obtain the final co-
variance matrix R;.

Step 5 Perform subspace decomposition to get U,
and then construct matrices U ; and U.

Step 6 Derive the permutation matrices E,, and E,.,
and obtain matrices U,, = E,,Usand U, = E,,Us.

Step 7 Calculate eigenvalue matrices as F, = Q;sﬁys
and F,= Q:Sﬁ,s, then obtain

F,.+(1-p)F,/2+(1-B)F./2=T"'DT,
¥, =TFT",W,=TF,T",\W.=TF.T"".

diag(¥,), P,=diag(¥,), P

zi

Step 8 Obtain P,=
diag(W.)(i=1,2,---,1).
Step 9 Compute parameters of the 3D-GTD model as

_ —angle(P,) Xc¢

_ —angle(P,;) Xc
YT Ay,

_ —angle(P;)Xc
i = W,
o (PA=Df

i AF

and

A; = diag(A) = diag((G"G)'G"E,).

4. Cramer-Rao bound (CRB) analysis

In this section, we derive the closed-form expression of
the deterministic CRB of GTD scattering center model
parameters. To simplify the derivation, we first consider
reducing the 3D-GTD model to the 1D-GTD model. The
1D-GTD model can be expressed as

E(f) = ZA,- exp(_j4:ﬁri)(l + mﬁof) )

—idmAfr
(%%

W(fu) =
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where r;, @;, A; represent the position parameter, the scat-
tering intensity and the scattering type of the ith scatter-
ing center, respectively. And the other factors are defined
as same as (1). Here a; = A; - exp(—jdn fyr;/c) =age; + jam =
la;| € and @;= —4nAfr;/c.

Hence all parameters in (40) to be estimated can be ex-
pressed as follows:

— 2 FT T T T T
g - [ o aRe alm é'P é’m ]
where o denotes the variance of the white noise, ¢, =
[aRels- > ARerl, é‘,?lm = [aim1, - - Qi ] {;Tvz [p1s...s01],
{T [wb .. ,'ZU[].

While the relative operating bandwidth of radar satis-

NA B
f = — < 1, then the following approxima-
oo f

tion can be obtained:

(1+mi—j)a,—exp(a ln(m%))zexp(ai-m%). (42)

Therefore the 1D-GTD model can be approximated as

(41)

fies y =

the damped exponentials (DE) model:

Eve(fy) = ) Aiexp(maiAf/ fo) exp(—4mi fri/ )+

1
W(fu) = YAV + ol f,) 3)
where
v = p;-exp(—4mj f,ri/c),
pi = exp(ma;Af/] fo).

Zhou has verified that the CRB of the DE model and
the GTD scattering center model is substitutable by theore-
tical derivation and simulation experiments [26]. There-
fore, in this section we only derive the CRB of the DE
model to replace the estimated limit performance of para-
meters of the GTD scattering center model.

w(f,,) is Gaussian white noise, then the CRB matrix of

the DE model can be written as
4

exp o
N 01><4l
! mAf\" _ CRBy: = , , (44)
Daf1+ exp(~jmm) +w(f)  (40) 0. TF
Py 0 4Ix1 7
Re{E+ EBA;'BE} -Im{E+EBA;'BE} —Re(EBAA'P} Im{EBAA™'}
| In{E+ EBA;'BE} Re{E+EBA;'BE} -Im{(EBAA'P) —Re{EBAA™') )
—Re{PA'A"BE) Im{PA'A"BE) Re{PA~'P) —Im{P4~") '
“Im{4~' A"BE) —Re{4' A"BE) Im{4~' P} Re{d™'}
where 0 denotes the zero matrix, 4 =A"A4,A, A= diag(a,,as,"--,a;), 4,=B,—BEB, B,=V'N?V, B=
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VHNV) V = [V|,V2,"' ’Vl]a Vi = Vll" [17‘)1'7'” 7V§V71]T'
{—(N—l)/2, N is odd
—-N/2+1, Niseven

N-1 N-1
N=diag(—T,...,T

P= diag(p]apb"'7pl)

According to (44) and (45), we can observe that it is
complicated to identify the CRB of the DE model para-
meters. While for most of the wide-band radar, it satis-
fies with Af/ f, < 1, which is equivalent to p; ~ 1. There-
fore, by simplifying the CRB matrix in (44), we can ob-
tain the CRB of the DE model parameters as follows:

2

CRB,_ =CRB, =~ ;—N (46)
2
CRBq ~ 6|;'N3, (47)
a;
60°p;
CRB, N (48)

Based on (43), we have the exact relation between the
DE model parameters and the GTD model parameters:

c
=- -y, 49
= amar @ (49)
;= Z_jf -In p;, (50)
A; = a;-exp(janfori/c). (51
According to (46)—(51), we obtain
2

c 60 3 1
12l— == =, 52
var{r;} (4nAf) WfN° 2% SNR, (52)

i\ 60°p? 6
. > —_— . = . 53
var{a,} (Af |a,-|2N3 ’)’2 -SNR, ( )
2

var{|A;|} > N’ (54)

where SNR; denotes the peak SNR of the ith scattering
N |ai|2

o?

By extending the 1D-GTD model to the 3D-GTD mo-
del, we have

center and it satisfies SNR; ~

3

Tl = 0.} = 5. >—,
var{x;} = var{y;} = var{Z;} 37SNR,

(55)

. 6
var{q;} > m, (56)
var{A;} > ! (57)
77 2SNR;’
MNKIA,
SNR;; ~ # (58)
o

where o represents the variance of the white Gaussian
noise.

5. Simulation experiments

To assess the parameter estimation performance of the
modified 3D-ESPRIT algorithm, we first compare the
root-mean-square-error (RMSE) among the classical 3D-
ESPRIT algorithm, the algorithm in [15] and the modi-
fied algorithm proposed in this paper. Afterwards, we
compare the positioning accuracy of the three algorithms.
Finally, we apply the parameters estimated by the three
algorithms to the 3D-GTD model, which can extrapolate
the RCS in the frequency domain versus SNR. All simu-
lations are performed by Matlab 2017A.

Suppose the radar target consists of four scattering cen-
ters and the values of parameters are shown in Table 2.
We set the initial frequency f; as 10 GHz. The frequency
step Af is 16 MHz, the frequency index M is 11, the ini-
tial azimuth angle 6, is 90°, the angular step A6 is 0.01°,
the frequency index N is 11, the initial pitching angle ¢,
is 90°, the angular step Ag is 0.01°, the frequency index
K is 11, and the paring parameter S is 0.5.

Table 2 Parameters of the four scattering centers

Scattering center Xx;/m yi/m a; A;
Scattering center 1 1.212 1.100 1.000 6.000
Scattering center 2 1.453 1.253 0.500 5.000
Scattering center 3 1.634 1.802 0 4.000
Scattering center 4 1.823 2.522 1.000 3.000

We add two dimensional Gaussian white noise to the
back-scattering data. The SNR is defined as follows:

M N K
2.2, Ismn. P
SNR = 10lg ";;1 nN:I pasy

< )
Z Z lw(m, n, k)I*

m=1 n=1 k=1

m=0,1,---,M;n=0,1,-- ,N;k=0,1,--- ., K (59)

where
§(m7n’k) = E(fm’ 6}1’ (pk)_w(m’n’ k) (60)

Define the RMSE of the GTD model parameter estima-
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tion from D Monte Carlo trials as

RMSE(s) = (61)

where ¢;, ¢ and D represent the estimated parameters of
the ith run of the simulation, the true value, and the total
trials of Monte Carlo at each SNR respectively.

5.1 Simulation settings

Example 1 RMSE versus SNR

In the first simulation, we investigate the performance
of the modified algorithm with respect to the SNR. Based
on the four scattering centers shown in Table 2, the ma-
trix beam parameters P, Q , and L are set as 6, SNR va-
ries from 0 dB to 30 dB with interval 2 dB, and 200
Monte Carlo trials are performed at every fixed SNR.
Here we only compare the mean RMSE of the four scatter-
ing center parameters. The results are shown in Fig. 2—
Fig. 6.
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Example 2 Positioning accuracy analysis

In this example, we verify the positioning accuracy of
the proposed algorithm. The simulation conditions are the
same as that of Example 1 except that we set SNR as 0 dB
and 10 dB. The positioning accuracy of different algo-
rithms at two different values of SNR is shown in Fig.7
and Fig.8.
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Example 3 RCS extrapolation accuracy analysis

In this example, we verify the performance of the pro-
posed algorithm by the comparisons of the RCS extrapola-
tion accuracy. The simulation conditions are the same
with those of Example 2. Based on the estimated para-
meters and the relations between electric field and RCS at
far fields shown in (62), the RCS of radar targets can be
extrapolated in the angular domain. Here we use the back-
scattering data of 10 GHz to 10.16 GHz at 8 = ¢=90° to
extrapolate the back-scattering data of 10 GHz to 11.6 GHz
at 0 = ¢=90°. The RCS extrapolation accuracy of differ-
ent algorithms at two different values of SNR is shown in
Fig.9 and Fig.10.

(RCS) = lim 4nR* T (62)
o = lim4nR* —

T
where E* and E' represent the scattering electric field and
the incident electric field respectively, R represents the

far field distance.

RCS/dBsm

-60
10.0 10.5 11.0 11.5 12.0
Frequency/GHz
—— : Theoretical RCS; —— : Classical 3D-ESPRIT;

—=—: Improved algorithm.

Fig. 9 Comparison between RCS frequency fitting and extrapola-
tion at 90° azimuth and pitching angle (SNR=0 dB)

RCS/dBsm

10.0 10.5 11.0 11.5 12.0
Frequency/GHz

—— : Theoretical RCS; —— : Classical 3D-ESPRIT;
—=—: Improved algorithm.

Fig.10 Comparisons between RCS frequency fitting and extrapola-
tion at 90° azimuth and pitching angle (SNR=10 dB)

Example 4 Computational complexity analysis

The main increase of computational complexity is con-
structing the novel covariance matrix. Hence we merely
compare the computational burden of constructing the co-
variance matrix, which is shown in Table 3.

Table 3 Comparison of computational burden among different al-

gorithms
— T -
Algorithm Computationa l.Jurden o cpnstructmg
covarlance matrix
3D-ESPRIT P2Q?I*(M-P+1)(N-Q+1)(K-L+1)
3D-MUSIC P2OPL2M-P+1)(N-Q+1)K—-L+1)
Proposed 23— P4 YN =0+ 1)K =L+ 1)+2PQL+1
method QL BM~-P+DHIN=Q+ (K ~L+1)+2POL+1]

5.2 Discussion and analysis

As shown in Fig.2—Fig.6, the RMSE of the GTD model
parameters decreases as SNR increases, which verifies
the validity of the proposed algorithm. Furthermore, the
mean RMSE curve of the proposed algorithm is lower
than that of the classical 3D-ESPRIT algorithm, the clas-
sical 3D-MUSIC algorithm and the MEMP algorithm,
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which indicates the proposed algorithm has a better para-
meter estimation performance and noise robustness than
the other three algorithms for different SNRs.

Additionally, Fig.7 and Fig.8 show that the positioning
accuracy of the proposed algorithm is higher than that of
the other two algorithms. Similarly, we can observe from
Fig.9 and Fig.10 that the reconstructed RCS of the pro-
posed method has a better fitting degree with the theore-
tical RCS than that of the other two methods. The two
simulation results verify the superiority and effectiveness
of the proposed algorithm from two different aspects.
From Table 3 it is noticed that the proposed algorithm
burdens a heavier computational complexity than the other
two algorithms.

6. Conclusions

A modified 3D-ESPRIT algorithm with a better parame-
ter estimation performance and more stable noise robust-
ness ability is developed in this paper. The modified algo-
rithm proposes a novel spatial smoothing method and
squares the total covariance matrix, which can broaden
the differences between eigenvalues of signals and eigen-
values of noises. Simulation results verify the superiority
and effectiveness of the proposed algorithm. Further-
more, simulation results indicate that the parameter esti-
mation performance and noise robustness of the modi-
fied algorithm are better than that of the classical 3D-ES-
PRIT algorithm, the classical 3D-MUSIC algorithm and
the MEMP algorithm.
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