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Abstract: Fast computation of the landing footprint of a space-to-
ground vehicle is a basic requirement for the deployment of parking
orbits, as well as for enabling decision makers to develop real-time
programs of transfer trajectories. In order to address the usually
slow computational time for the determination of the landing foot-

print of a space-to-ground vehicle under finite thrust, this work
proposes a method that uses polynomial equations to describe
the boundaries of the landing footprint and uses back propagation
(BP) neural networks to quickly determine the landing footprint of

the space-to-ground vehicle. First, given orbital parameters and a
manoeuvre moment, the solution model of the landing footprint of
a space-to-ground vehicle under finite thrust is established. Sec-
ond, given arbitrary orbital parameters and an arbitrary manoeuvre
moment, a fast computational model for the landing footprint of a

space-to-ground vehicle based on BP neural networks is provided.
Finally, the simulation results demonstrate that under the premise
of ensuring accuracy, the proposed method can quickly determine
the landing footprint of a space-to-ground vehicle with arbitrary or-
bital parameters and arbitrary manoeuvre moments. The proposed

fast computational method for determining a landing footprint lays
a foundation for the parking-orbit configuration and supports the
design of real-time transfer trajectories.
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1. Introduction

Spacecraft such as return satellites, manned spacecraft,
space shuttles, and space-to-ground kinetic weapons, ma-
noeuvring from their orbits to the earth surface are uni-
formly referred to as space-to-ground vehicles [1 – 3]. The
landing footprint of the vehicle is an important indicator
for assessing the ability of the space-to-ground vehicles.
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The fast computation of the landing footprint can lay a
solid foundation for the work of a large number of repeated
and real-time computations for the landing footprint, such
as the parking-orbit configuration of the space-to-ground
vehicle and the real-time programs of transfer trajectories
developed by decision-makers. A typical space-to-ground
transfer trajectory consists of a transition trajectory seg-
ment and a re-entry trajectory segment. Depending on the
drag and lift of the spacecraft in the re-entry segment,
the re-entry trajectories are classified as ballistic, semi-
ballistic, or gliding [4,5].

The landing footprint consists of landing points on the
boundaries. Each of the landing points is the result ob-
tained by solving the transfer trajectory. Therefore, the op-
timization of the transfer trajectory is the basis of deter-
mination of the landing footprint. In the existing literature,
direct methods [6,7], indirect methods [8,9], and hybrid
methods [10 – 12] are used to study the optimization of
transfer trajectories of different types of space-to-ground
vehicles. The hybrid methods, one of which is adopted in
this paper to optimize the transfer trajectory, combine the
advantages of the direct and indirect methods.

Some methods have been proposed to study the land-
ing footprint of a space-to-ground vehicle in the existing
literature. Saraf et al. [13] proposed an analytical method
for calculating the landing footprint based on the guidance
mode of the space shuttle. Li et al. [14] proposed a method
that uses scheduling of the drag profile to the normalized
energy between the upper and lower bounds. This leads to
finding the near and far edges of the landing zone. Hu et al.
[15] used a genetic algorithm (GA) to compute the land-
ing footprint. The existing literature on the landing foot-
print consists of solving for the plurality of points on the
boundaries of the landing footprint, and then connecting
these points on the boundary to determine the landing foot-
print. However, such methods are too long time consuming
to efficiently solve the transfer trajectory of the space-to-
ground vehicle under finite thrust, and to determine the
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landing footprint. In order to shorten the computational
time, this work departs from the traditional methods of
determining the landing footprint by connecting boundary
points, and proposes a fast method, which uses polynomial
equations to describe the boundaries of the landing foot-
print. Moreover, back propagation (BP) neural networks
are used to quickly achieve a nonlinear mapping of the
boundary of the landing footprint with arbitrary orbital pa-
rameters and arbitrary manoeuvre moments.

The research content of this paper is as follows: First,
a solution model for the landing footprint of a space-to-
ground vehicle under finite thrust is established. Second,
given arbitrary orbital parameters and an arbitrary manoeu-
vre moment, a fast computational model for determining
the landing footprint of the space-based vehicle based on
BP neural networks is provided. Finally, the effectiveness
of the method is demonstrated through simulation.

2. Computation of the landing footprints

In this work, the equations of motion are described in the
coordinate system fixed to the earth. The determination of
the landing footprint is performed with the longitude as the
x-coordinate and the latitude as the y-coordinate. Given or-
bital parameters and a manoeuvre moment, the outlines of
the solution model are as follows:

(i) Determine the minimum longitude or latitude of all
landing points;

(ii) Determine the maximum longitude or latitude of all
landing points;

(iii) Choose many points between the minimum and
the maximum longitude or latitude in (i) and (ii), and de-
termine the boundary points corresponding to the chosen
points;

(iv) Connect all of the points obtained in (i), (ii) and (iii)
to determine the landing footprint of the space-to-ground
vehicle.

The transfer trajectories are required to compute the
minimum longitude or latitude and the maximum longitude
or latitude of all of the landing points, ae well as the bound-
ary points between the minimum and the maximum longi-
tude or latitude. The procedure for using a mixed method
to solve the transfer trajectory problem is described by the
following: Take the longitudes or latitudes of the landing
points of (i), (ii) and (iii) as the optimization index. The
transfer trajectory optimization problem is then converted
into a two-point boundary value problem using Pontrya-
gin’s minimum principle [16 – 18]. The initial values of the
adjoint variables and the values of the partial state variables
are adjusted by means of a GA [19 – 21], and the transfer
trajectory and the landing footprint are then obtained.

2.1 Motion differential equations in the earth-fixed
coordinate system

The differential equations [22,23] of motion are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dV
dt

=
T cosα cosβ −X

m
− gr sin γ − gΦ cos γ sinψ + ω2

er cosΦ(sin γ cosΦ − cos γ sinΦ cosψ)

dγ
dt

=
T sinα+ Y

mV
+
V cos γ
r

− gr cos γ
V

+
gΦ sin γ sinψ

V
+ 2ωe cosΦ sinψ+

ω2
er cosΦ
V

(cos γ cosΦ − sin γ sinΦ cosψ)

dψ
dt

=
T cosα sinβ − Z

mV cos γ
− V cos γ cosψ tanΦ

r
− gΦ cosψ

V cos γ
− 2ωe(cosΦ cosψ tan γ − sinΦ)+

ω2
er

V cos γ
sinψ sinΦ cosΦ

dr
dt

= V sin γ

dΘ
dt

=
V cos γ cosψ
r cosΦ

dΦ
dt

=
V cos γ sinψ

r

dm
dt

= − T

V e

(1)

where V is the dimensionless velocity, γ is the velocity in-
clination angle, ψ is the course angle (the angle between
the projection of the velocity vector on the local horizontal

plane and the latitude tangent), r is the dimensionless geo-
centric distance, Θ is the longitude, Φ is the latitude, T is
the engine thrust, V e is the gas jet velocity,m is the dimen-
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sionless spacecraft quality, t is the dimensionless time, X
is the dimensionless drag, Y is the dimensionless lift, Z is
the dimensionless lateral force, α is the angle of attack, β
is the sideslip angle, ωe is the dimensionless earth rotation
angular rate, gr and gΦ are the dimensionless gravitational
components when only the first three terms of the spheri-
cal harmonic expansion are considered. In the transition
trajectory segment, the values of X, Y and Z are zero.
In the re-entry trajectory segment, the value of T is zero
and the atmospheric model is the US standard atmosphere
(1976).

The equations for the dimensionless parameters are as
follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V =
V

Vref

r =
r

rref

T =
T

mrefgref

V e =
Ve
Vref

m =
m

mref

t =
t

tref

X =
X

mrefgref

Y =
Y

mrefgref

Z =
Z

mrefgref
ωe = ωetref

gr =
1
r2

[1 − 3J2

2r2
(3 sin2 Φ − 1)]

gΦ =
3J2 sin 2Φ

2r4

(2)

where J2 is the coefficient of the second order princi-
pal spherical harmonic function and the value of J2 is
1.082 63e–3. rref , mref , Vref , tref and gref are given by
the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rref = r
mref = m0

Vref =
√

μ

rref

tref =
rref
Vref

gref =
μ

r2ref

(3)

where μ is the gravitation constant and the value of μ is
3.986 005e+14 m3/s2.m0 is the initial mass of the vehicle
and RE is the radius of the earth [24]:

RE = a[0.998 320 047 + 0.001 683 494 cos(2Φ)−
0.000 003 549 cos(4Φ) + 0.000 000 008 cos(6Φ)]. (4)

The parameters used to describe the orbit of a space-to-
ground vehicle in space are the orbital radius a, the flat-
tening e, the orbital inclination i, the ascending node right
ascension Ω , the perigee angle ω and the true anomaly f .
The relationship between the orbit parameters and the mo-
tion parameters in the absolute coordinate system is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

VI =

√
μ(1 + 2e cos f + e2)

a(1 − e2)

γI = arctan
e sin f

1 + e cos f
ΨI = arctan[tan i cos(ω + f)]
ΘI = Ω + arctan[tan(ω + f) cos i]
ΦI = arcsin[sin(ω + f) sin i]

rI =
a(1 − e2)
1 + e cos f

f = arcsin
sinΦI
sin i

− ω

(5)

where VI , γI , ΨI , rI , ΘI and ΦI are the velocity, the ve-
locity inclination angle, the course angle, the geocentric
distance, the longitude and the latitude in the absolute co-
ordinate system, respectively.

The relation between the motion parameters in the ab-
solute coordinate system and the motion parameters in the
earth-fixed coordinate system are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V =
√
VI − 2ωerIVI cos γI cosψI cosΦI + (ωerI cosΦI)2

tanγ =
VI sin γI√

(VI cos γI)2 − 2ωerIVI cos γI cosψI cosΦI + (ωerI cosΦI)2

tanψ =
VI cos γI sinψI

VI cos γI cosψI − ωerI cosΦI
r = rI
Θ = ΘI − Γ − ωet
Φ = ΦI

. (6)
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2.2 Computational steps of the landing footprints

The optimization indexes of research ideas (i), (ii) and (iii)
are given by

min J1 =

⎧⎪⎨
⎪⎩

|Θb − Θm|, 0◦ � i � 45◦ or
135◦ � i � 180◦

|Φb − Φm|, 45◦ < i < 135◦
(7)

min J2 =

⎧⎪⎨
⎪⎩

−|Θb − Θm|, 0◦ � i � 45◦ or
135◦ � i � 180◦

−|Φb − Φm|, 45◦ < i < 135◦
(8)

min J3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Φb, 0◦ � i � 45◦ or 135◦ � i � 180◦

−Φb, 0◦ � i � 45◦ or 135◦ � i � 180◦

−Θb, 45◦ < i < 135◦

Θb, 45◦ < i < 135◦

(9)

where J1, J2 and J3 are optimization indexes correspond-
ing to research ideas (i), (ii) and (iii), respectively. Θm and
Φm are the longitude and the latitude of the manoeuvre
point. The variables Θb and Φb are the longitude and the
latitude of the landing point.

According to the Pontryagin’s minimum principle, the
Hamiltonian function is given by

H =

λV V̇ + λγ γ̇ + λψψ̇ + λr ṙ + λΘ Θ̇ + λΦΦ̇ + λmṁ.

(10)

From (10), the covariate variables satisfy the differential
equations in (11). It should be noted that only the transi-
tion trajectory with the thrust control is considered and the
thrust is constant in the computational model of the landing
footprints. ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dλV
dt

=
∂H

∂V

dλγ
dt

=
∂H

∂γ

dλψ
dt

=
∂H

∂ψ

dλr
dt

=
∂H

∂r

dλΘ

dt
=
∂H

∂Θ
dλΦ

dt
=
∂H

∂Φ
dλm
dt

=
∂H

∂m

(11)

where the expressions of grr, g
r
Φ , gΦr and gΦΦ are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

grr = −2gr
r

+
3J2

r5
(
3 sin2 Φ − 1

)
grΦ = −6J2 sin 2Φ

r5

gΦr = −9J2 sin 2Φ
2r4

gΦΦ =
3J2 cos 2Φ

r4

. (12)

From the sufficient conditions of optimality and (8), the
optimal thrust directions are obtained by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂H

∂α
= 0 = −λV

T sinα cosβ
m

+

λγ
T cosα
mV

− λψ
T sinα sinβ
mV cos γ

∂H

∂β
= 0 = −λV

T cosα sinβ
m

+

λψ
T cosα cosβ
mV cos γ

(13)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
α = arctan

sgn(λV ) · λγ cos γ√
(λV V cos γ)2 + λ2

ψ

β = arctan
λψ

λV V cos γ

(14)

where sgn( ) is the sign function.
The transition trajectory satisfies the initial boundary

conditions: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V (t0) − V 0 = 0
γ(t0) − γ0 = 0
r(t0) − r0 = 0
ψ(t0) − ψ0 = 0
Θ(t0) − Θ0 = 0
Φ(t0) − Φ0 = 0
m(t0) −m0 = 0

(15)

where V 0, γ0, ψ0, r0, Θ0, Φ0 and m0 are the dimen-
sionless velocity, the velocity inclination angle, the course
angle, the dimensionless geocentric distance, the longi-
tude, the latitude, and the dimensionless mass of space-to-
ground vehicles at the dimensionless manoeuvre time t0,
respectively.

The transition trajectory satisfies the terminal boundary
constraints: ⎧⎪⎨

⎪⎩
V (ta) − V a = 0
γ(ta) − γa = 0
r(ta) − ra = 0

(16)

where V a, γa and ra are the dimensionless speed, the ve-
locity inclination angle and the geocentric distance at the
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terminal of the transition trajectory respectively; ta is the
dimensionless time at the terminal point of the transition
trajectory.

Therefore, the cross-section conditions are given by⎧⎪⎪⎨
⎪⎪⎩
λψ(ta) = 0
λΘ (ta) = 0
λΦ(ta) = 0
λm(ta) = 0

. (17)

When the optimization index J3 is calculated, the re-
entry trajectory satisfies the constraints:{

Θ(tb) = Θb, 0◦ � i � 45◦ or 135◦ � i � 180◦

Φ(tb) = Φb, 45◦ < i < 135◦

(18)

where Θb and Φb are the longitude and latitude of the land-
ing point at the dimensionless time tb, respectively.

Because the optimization indexes do not include time,

H(t0) = H(t) = H(ta) = 0. (19)

In order to achieve the optimization indexes under the
given constraints, 11 or 12 parameters are taken as op-
timization variables including the initial values of seven
adjoint variables λV (t0), λγ(t0), λψ(t0), λr(t0), λΘ (t0),
λΦ(t0) and λm(t0), the values of four state variables V a,
γa, ra and ta or the values of five state variables V a, γa,
ra, ta and Φb(Θb). Since the initial value of an adjoint vari-
able can be obtained from (10) and (19) and λΘ (t0) ≡ 0,
only nine or ten variables need to be optimized. A fourth
order Runge-Kutta method [25,26] is used to compute the
starts from (1) and (6) and the Adams predictor-corrector
method is adopted to compute the remaining integral equa-
tions. The implementation steps of the GA are as follows:

Step 1 When optimization indexes J1 and J2 are cal-
culated, λV (t0), λγ(t0), λψ(t0), λr(t0), λΘ (t0), λm(t0),
V a, γa and ta are encoded. When optimization index J3

is calculated, λV (t0), λγ(t0), λψ(t0), λr(t0), λΘ (t0),
λm(t0), V a, γa, ta and Φb(Θb) are encoded. Twenty chro-
mosomes are generated randomly as the initial population.
The crossover probability Pc, the mutation probability Pm
and the maximum number of iterationsN are set.

Step 2 The fitness function is shown in (7), (8) and (9).
When a chromosome is determined, (11) is integrated to
get the optimal thrust directions under the constraints (15)
to (19). And (1) is then integrated to obtain the transfer tra-
jectory. The fitness values of all the chromosomes in the
current generation are computed.

Step 3 The chromosomes are selected using roulette
wheel selection. Some genes on two different chromo-
somes reciprocally cross according to the crossover proba-

bility and others mutate according to the mutation proba-
bility. The execution of selection, crossover and mutation
leads to the next generation population.

Step 4 Steps 2 and 3 are executed until the GA con-
verges with ε = 10−6 or the maximum number of itera-
tionsN is reached.

The hybrid method gives the transfer trajectories and
landing footprints at a given manoeuvre point.

3. The proposed fast computational method of
landing footprints

BP neural networks have the advantages of strong learning
ability, good nonlinear mapping ability and good fault to-
lerance [27 – 29]. They consist of two sub-networks: the
signal forward propagation network and the error BP net-
work. The signal forward propagation network operates in
such a way that the output results are obtained after the
input parameters are processed layer by layer in the neu-
ral network. The error BP network operates in such a way
that the output values are transmitted to the network in the
opposite direction to modify the weight and threshold va-
lues between the neurons of the entire network, until the
requirements of the output results are met. The signal for-
ward propagation and error BP are called the BP neural
networks training process.

In this section, the input and output parameters of the BP
neural network are determined and then used to provide a
model based on BP neural networks for the fast computa-
tion of landing footprints. Finally, a computational model
of relative errors is given.

3.1 Determination of input and output parameters

The determination of the input and output parameters is
the premise of the BP neural networks training. Polyno-
mial equations (fitting curves) are adopted to describe the
boundaries of the landing footprint, transforming the prob-
lem of determining the landing footprint into a problem of
finding the coefficients of the polynomial equations. Given
a manoeuvre moment of the space-to-ground vehicle, a
polynomial equation can be used to approximately express
the landing footprint. However, the landing footprint varies
with manoeuvre moments. Thus, the BP neural networks
can effectively solve the problem of an irregular change in
landing footprints.

Fig. 1 shows the boundary of the landing footprints un-
der the conditions 0◦ � i � 45◦ or 135◦ � i � 180◦,
where i is the orbital inclination. Fig. 2 shows the bound-
ary of the landing footprints under the conditions 45◦ <

i < 135◦. In order to achieve a one-to-one correspon-
dence between the horizontal and vertical coordinates by
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means of polynomial equations, the coordinates should be
interchanged under the conditions 45◦ < i < 135◦. The
boundary is divided into a boundary on the high latitude
(longitude) side and a boundary on the low latitude (longi-
tude) side as shown in Fig. 1 and Fig. 2. The least squares
method [30,31] is used to obtain the four fitting boundary
curves in Fig. 1 and Fig. 2. These curves are viewed as the
boundary of the landing footprints. The coefficients of the
fitting curves are taken as the output parameters of the BP
neural network. Polynomial equations of 4◦ are used in the
least squares fitting method.

Fig. 1 Sketch diagram of the landing footprints when 0◦ ��� i ���
45◦ or 135◦ ��� i ��� 180◦

Fig. 2 Sketch diagram of landing footprints when 45◦ < i <

135◦

When 0◦ � i � 45◦ or 135◦ � i � 180◦, we get

y = mm1
1x

4 +mm2
1x

3 +mm3
1x

2 +mm4
1x+mm5

1 (20)

and

y = mm1
2x

4 +mm2
2x

3 +mm3
2x

2 +mm4
2x+mm5

2 (21)

where x is the longitude and y is the latitude; the values
mm1

1, mm
2
1, mm

3
1, mm

4
1 and mm5

1 are the fitting coeffi-
cients of the boundary curve on the high latitude side; and

the values mm1
2, mm

2
2, mm

3
2, mm

4
2 and mm5

2 are the fit-
ting coefficients of the boundary curve on the low latitude
side.

Similarly, when 45◦ < i < 135◦, we get

x = nn1
1y

4 + nn2
1y

3 + nn3
1y

2 + nn4
1y + nn5

1 (22)

and

x = nn1
2y

4 + nn2
2y

3 + nn3
2y

2 + nn4
2y + nn5

2. (23)

where the values nn1
1, nn

2
1, nn

3
1, nn

4
1 and nn5

1 are the fit-
ting coefficients of the boundary curve on the high longi-
tude side; and the values nn1

2, nn
2
2, nn

3
2, nn

4
2 and nn5

2 are
the fitting coefficients of the boundary curve on the low
longitude side.

Once (20), (21), (22) and (23) are determined, the co-
efficients of x4, x3, x2, x and x0 are taken as the output
parameters of the BP neural network under the conditions
0◦ � i � 45◦ or 135◦ � i � 180◦. We define m1

1, m
2
1,

m3
1, m

4
1 and m5

1 as the output parameters of the boundary
curve on the high latitude side, and m1

2, m
2
2, m

3
2, m

4
2 and

m5
2 as the output parameters of the boundary curve on the

low latitude side. Similarly the coefficients of y4, y3, y2, y
and y0 are taken as the output parameters under the condi-
tions of 45◦ < i < 135◦. The polynomial equations with
the coefficients obtained from the BP neural network are
shown in (24), (25), (26) and (27).

When 0◦ � i � 45◦ or 135◦ � i � 180◦,

y = m1
1x

4 +m2
1x

3 +m3
1x

2 +m4
1x+m5

1 (24)

and

y = m1
2x

4 +m2
2x

3 +m3
2x

2 +m4
2x+m5

2. (25)

When 45◦ < i < 135◦,

x = n1
1y

4 + n2
1y

3 + n3
1y

2 + n4
1y + n5

1 (26)

and
x = n1

2y
4 + n2

2y
3 + n3

2y
2 + n4

2y + n5
2. (27)

The factors affecting the landing footprint are the orbital
parameters and the manoeuvre moment. Viewing the earth
as a homogeneous ellipsoid and considering the periodicity
characteristic of the space-to-ground vehicle, the determi-
nation of the landing footprint in one period can represent
the landing footprint at an arbitrary manoeuvre moment.
The period T is given by

T = 2π

√
a3

μ
. (28)
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The manoeuvre moment tm is in the range [k ·
2π

√
a3/μ, (k + 1) · 2π

√
a3/μ], where k is an arbitrary

non-negative integer. The input parameters of the BP neu-
ral network are the orbital radius a, the flattening e, the
orbital inclination i, the ascending node right ascension Ω ,
the perigee angle ω, the true anomaly f and the manoeuvre
moment tm.

The input parameters need to be normalized as follows:

D =
D −Dmin

Dmax −Dmin
(29)

where D = [a, e, i,Ω , ω, f, tm], D, Dmin and Dmax are
the normalized, minimum and maximum values of the in-
put parameter, respectively.

3.2 Construction of the BP neural network model

We provide four BP neural network models, each of which
consists of a three-layer network: input layer, output layer
and hidden layer as shown in Fig. 3 – Fig. 6.

Fig. 3 No.1 BP neural network model

Fig. 4 No.2 BP neural network model

Fig. 5 No.3 BP neural network model

Fig. 6 No.4 BP neural network model

The differences of these four BP neural network models
are the output parameters and the training data. The in-
put layer of the four BP neural network models has seven
nodes. The input parameters of the BP neural network are
the orbital radius a, the flattening e, the orbital inclination
i, the ascending node right ascension Ω , the perigee an-
gle ω, the true anomaly f and the manoeuvre moment tm.
The four BP neural network models have five nodes in the
output layer. The output parameters of the No.1 BP neural
network model are m1

1, m
2
1, m

3
1, m

4
1 and m5

1; the output
parameters of the No.2 BP neural network model are m1

2,
m2

2,m
3
2,m

4
2 andm5

2; the output parameters of the No.3 BP
neural network model are n1

1, n
2
1, n

3
1, n

4
1 and n5

1; the output
parameters of the No.4 BP neural network model are n1

2,
n2

2, n
3
2, n

4
2 and n5

2. The number of hidden layer nodes of
the four neural network models is

l =
√
p+ q + s (30)

where p is the number of nodes in the input layer, q is
the number of nodes in the output layer, and s is a natural
number between 0 and 10. The training data of the four BP
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neural network model are the actual footprints successively
obtained under conditions of (24), (25), (26) and (27).

The signal forward propagation means that the signal
received by the input layer is transmitted layer by layer
until the output layer results are generated. The relevant
mathematical expressions for signal forward propagation
are shown in (31) – (34).

The input signal neti of the number i node of the hidden
layer is given by

neti =
p∑
j=1

wijxj + θi (31)

where wij is the weight from the number j node of the
input layer to the number i node of the hidden layer, xj
is the input parameter of the number j node of the input
layer, and θi is the threshold of the number i node of the
hidden layer.

The output signal oi of the number i node of the hidden
layer is given by

oi = φ(neti) = φ

⎛
⎝ p∑
j=1

wijxj + θi

⎞
⎠ (32)

where φ( ) is the Sigmoid function, an activation function
commonly used in BP neural networks.

The input signal netk of the number k node of the output
layer is given by

netk =
l∑
i=1

tkioi + ak =

l∑
i=1

⎡
⎣tkiφ

⎛
⎝ p∑
j=1

wijxj + θi

⎞
⎠

⎤
⎦ + uk (33)

where tki is the weight from the number i node of the hid-
den layer to the number k node of the output layer, and uk
is the threshold of the number k node of the output layer.

The output signal ok of the number k node of the output
layer is given by

ok = ψ(netk) =

ψ

⎛
⎝ l∑
i=1

⎡
⎣tkiφ

⎛
⎝ p∑
j=1

wijxj + θi

⎞
⎠

⎤
⎦ + uk

⎞
⎠ (34)

where ψ( ) is the Purelin function [32], another activation
function commonly used in BP neural networks.

BP of the error means that the error computed from the
output layer is back propagated to the hidden layer. The
weight values wij and tki and threshold values θi and uk
are then adjusted using the gradient descent method related
to the errors of the nodes in the hidden layer and the output

layer. This process is iterated until the output of the modi-
fied network is close to the expected value. The mathemati-
cal expressions related to error BP are shown in (35) – (39).

For P training samples, the quadratic error criterion
function EP of the BP neural network is

EP =
1
2

P∑
p=1

l∑
k=1

(T pk − opk) (35)

where T pk is the true value of the pth sample at the kth node
in the output layer; and oPk is the corresponding value as
computed by the BP neural network model.

The adjustment of the weight value Δwij in the hidden
layer is performed by using

Δwij = η

P∑
p=1

l∑
k=1

(T pk − opk)·ψ′(netk)·tki·φ′(neti)·∂neti
∂wij

.

(36)

The adjustment of the threshold value Δθi in the hidden
layer is performed by using

Δθi = η

P∑
p=1

l∑
k=1

(T pk − opk)·ψ′(netk)·tki ·φ′(neti). (37)

The adjustment of the weight value Δtki in the output
layer is implemented by using

Δtki = η

P∑
p=1

l∑
k=1

(T pk − opk) · ψ′(netk) · ∂netk
∂tki

. (38)

The adjustment of the threshold value Δuk in the output
layer is implemented by using

Δuk = η
P∑
p=1

l∑
k=1

(T pk − opk) · ψ′(netk). (39)

In (36) – (39), the parameter η is the learning rate.
The training error of the BP neural network propagates

forward through the signal, and the BP of the error be-
comes iteratively smaller and smaller until stable weights
and thresholds are obtained.

3.3 Computation of relative error

The relative error refers to the error between the landing
footprint obtained by the fast computational method based
on the BP neural network and the landing footprint ob-
tained by the least squares method.

Fig. 7 shows the fitting boundary curves and the bound-
ary curves obtained by the BP neural network. Fig. 8 shows
the area of the landing footprints enclosed by the fitted
curve. The regions S1, S2, S3 and S4 are the areas of the
non-overlapping landing footprints enclosed by the fitting
curves and the BP neural network.
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Fig. 7 Fitting boundary curves and the boundary curves obtained
by the BP neural network

Fig. 8 Area of the landing footprints enclosed by the fitted curve

The relative error ΔS is calculated by using the follow-
ing formula:

ΔS =
S1 + S2 + S2 + S4

S
. (40)

When 0◦ � i � 45◦ or 135◦ � i � 180◦, S refers to the
area enclosed by the fitting curves of the (20) and (21), and
the range of x is obtained by using (7) and (8). After com-
bining (20), (21), (24) and (25) to obtain the intersections
of four curves, S1, S2, S3 and S4 are obtained by comput-
ing the area enclosed by four curves with the longitudinal
range between any two intersections.

When 45◦ < i < 135◦, S refers to the area enclosed by
the fitting curves of the (22) and (23), and the range of x
is obtained by the (7) and (8). After combining (22), (23),
(26) and (27) to obtain the intersections of four curves, S1,
S2, S3 and S4 are obtained by computing the area enclosed
by four curves with latitudinal range between any two in-
tersections.

In Fig. 7, four regions S1, S2, S3 and S4 are taken as
the numerators of (40), and there areK regions that can be
used as molecules, S1, S2, . . . , Sk.

4. Simulations and analyses of results

4.1 Simulations

The values of the parameters of the space-to-ground vehi-
cle simulations are as follows: the mass of the vehicle is
500 kg, the engine thrust is 100 N, the gas jet velocity is
3 000 m/s, the shape of the vehicle is an axisymmetric cone
and the characteristic area of the vehicle is 0.02 m2. The or-
bital radius a is in the range [6 700 km, 11 000 km], the

flattening e is in the range [0,1), the value of the orbital in-
clination i is in the range [0◦, 180◦], the right ascension of
ascending node Ω is in the range [0◦, 360◦], the argument
of the perigee ω is in the range [0◦, 360◦], the true anomaly
f is in the range [0◦, 360◦]. Each of the six parameters a, e,
Ω , ω, f and tm takes three random values within their re-
spective range. The parameter i takes four random values,
two in the range of 0◦ � i � 45◦ or 135◦ � i � 180◦ and
the other two in the range of 45◦ < i < 135◦. The values
(2 916 = 36×4 groups) are used as training data of the BP
neural network. The population size is 20, the maximum
number of iterations N is 50, the crossover probability Pc
is 0.85 and the mutation probability Pm is 0.1. In order to
verify the effectiveness of the proposedmethod, ten experi-
ments are designed with parameters shown in Table 1. In
the ten experiments, the total number of landing points on
the boundary of each of the landing footprints is 60.

Table 1 Ten experiments

No. a/km e i/(◦) ω/(◦) Ω/(◦) f/(◦) tm/s

1 9 406 0.234 450 29.321 224.038 307.947 135.862 4 605.5
2 7 159 0.000 325 98.084 76.415 185.381 283.332 4 486.3
3 9 337 0.000 265 52.006 171.286 350.025 188.701 4 509.2
4 7 838 0.001 419 101.618 87.162 293.441 282.681 4 466.1
5 7 717 0.054 058 99.013 1 56.362 347.918 308.882 4 486.0
6 7 654 0.002 862 90.045 245.644 85.205 113.968 4 524.4
7 8 328 0.201 675 82.382 262.455 29.931 44.341 4 438.5
8 9 511 0.213 250 28.126 34.617 152.421 325.392 4 459.4
9 9 431 0.016 526 64.422 302.102 337.357 56.304 4 483.6
10 10 024 0.321 619 56.927 231.699 218.468 128.371 4 518.3

The learning rate of the four BP neural network mo-
dels is 0.01, the maximum number of iterations is 2 000,
the training error is 0.001, and the number of hidden layer
nodes is ten. If the relative error is smaller than 2%, it is
considered that the usage requirements are met.

Twenty-four blade servers are used for the simulations,
and each of the blade servers has 10 blades. The program
is performed using visual studio 2012. The main steps of
the program are as follows:

Step 1 The training data of each space-to-ground ve-
hicle is computed. At first, the minimum longitude or lati-
tude and the maximum longitude or latitude of all of the
landing points at one manoeuvre moment are computed by
using two blades. Then, 58 blades are used to compute 58
landing points between the minimum longitude or latitude
landing point and the maximum longitude or latitude land-
ing point. Then, 60 manoeuvre moments are uniformly se-
lected in one orbit period and the landing footprints at these
manoeuvre moments are computed. This step corresponds
to the theory in Section 2.

Step 2 The boundary curve and its coefficients are ob-
tained by least squares fitting. This step is described in de-
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tail in Section 3.1.

Step 3 BP neural network training. This step is de-
scribed in Sections 3.2 – 3.3.

Step 4 Test the effectiveness of the proposed method.

Methods proposed by Li et al. [14] and Hu et al.
[15] are used to compare to the proposed method. The
parameters of the simulation are taken from [14,15].

4.2 Analyses of results

Fig. 9 – Fig. 18 show the boundaries of, the fitting bound-
ary curves of and the boundary curves of each landing foot-
print as obtained by the BP neural networks in the ten sets
of testing experiments. As can be seen from Fig. 9 – Fig.
18, the boundary curves obtained by the BP neural net-
work, the fitting boundary curves and the boundaries of
the landing footprints are basically the same.

Fig. 9 Landing footprint of No.1 experiment

Fig. 10 Landing footprint of No.2 experiment

Fig. 11 Landing footprint of No.3 experiment

Fig. 12 Landing footprint of No.4 experiment

Fig. 13 Landing footprint of No.5 experiment
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Fig. 14 Landing footprint of No.6 experiment

Fig. 15 Landing footprint of No.7 experiment

Fig. 16 Landing footprint of No.8 experiment

Fig. 17 Landing footprint of No.9 experiment

Fig. 18 Landing footprint of No.10 experiment

Table 2 and Table 3 give the coefficients of the fit-
ting boundary curves obtained by using the least squares
method, including mm1

1, mm
2
1, mm

3
1, mm

4
1 and mm5

1

(boundary curves on the high latitude side); mm1
2, mm

2
2,

mm3
2, mm

4
2 and mm5

2 (boundary curves on the low lati-
tude side); nn1

1, nn
2
1, nn

3
1, nn

4
1 and nn5

1 (boundary curves
on the high longitude side); nn1

2, nn
2
2, nn

3
2, nn

4
2 and nn5

2

(boundary curves on the low longitude side). Table 4 and
Table 5 give the coefficients of the boundary curves ob-
tained by the BP neural network, including m1

1, m
2
1, m

3
1,

m4
1 and m5

1 (boundary curves on the high latitude side);
m1

2,m
2
2,m

3
2,m

4
2 andm5

2 (boundary curves on the low lati-
tude side); n1

1, n
2
1, n

3
1, n

4
1 and n5

1 (boundary curves on
the high longitude side); n1

2, n
2
2, n

3
2, n

4
2 and n5

2 (boundary
curves on the low longitude side). From Table 2 to Table 5,
we can see that the errors between coefficients of the fitting
boundary curves obtained by the least squares method and
those obtained by the BP neural network are smaller than
the training error of 0.001.
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Table 2 Coefficients of fitting curves (high latitude or longitude side)

Number m1
1(n1

1) m2
1(n2

1) m3
1(n3

1) m4
1(n4

1) m5
1(n5

1)

1 –3.194 444 e–6 1.233 779 e–3 –1.919 443 e–1 1.514 211 e+1 –3.883 817 e+2
2 –8.256 123 e–5 2.024 390 e–2 –1.619 387 5.305 329 e+1 –6.151 001 e+2
3 –4.012 587 e–6 1.495 236 e–3 –2.784 367 e–1 2.249 619 e+1 –6.293 869 e+2
4 –5.772 980 e–5 1.255 224 e–2 –1.005 445 2.842 024 e+1 –1.540 246 e+2
5 –1.519 489 e–4 2.663 004 e–2 1.478 789 4.130 832 e+1 –3.109 007 e+2
6 –4.037 333 e–5 8.784 321 e–3 –7.144 400 e–1 2.549 818 e+1 –2.075 674 e+2
7 –1.397 543 e–4 3.408 221 e–2 –2.787 432 9.969 876 e+1 –1.309 384 e+3
8 –4.214 520 e–6 1.114 532 e–3 –1.340 298 e–1 8.091 355 –1.224 080 e+2
9 –2.331 988 e–4 3.725 921 e–2 –3.201 335 1.244 620 e+2 –1.789 788 e+3
10 –3.090 332 e–4 3.844 785 e–2 3.145 540 9 1.084 894 e+2 –1.384 916 e+3

Table 3 Coefficients of fitting curves (low latitude or longitude side)

Number m1
2(n1

2) m2
2(n2

2) m3
2(n3

2) m4
2(n4

2) m5
2(n5

2)

1 6.441 445 e–7 –2.563 355 e–4 2.536 902 e–2 –1.817 822 e–1 –2.005 818 e+1
2 3.573 245 e–4 –3.856 786 e–2 3.328 224 –1.309 137 e+2 1.941 689 e+e3
3 8.439 678 e–7 –3.980 074 e–4 3.934 290 e–2 –8.826 228 e–1 –1.826 913 e+1
4 2.699 356 e–5 6.645 901 e–3 5.467 708 e–1 2.391 602 e+1 5.170 087 e+2
5 –3.102 356 e–5 4.248 810 e–3 2.511 124 e–1 6.101 356 5.977 024 e+1
6 –4.884 679 e–6 1.253 366 e–3 –9.820 098 e–2 3.268 925 8.756 833 e+1
7 –7.493 214 e–6 5.948 623 e–4 1.142 389 e–1 –1.444 100 e+1 3.714 782 e+2
8 2.332 990 e–7 –3.002 315 e–4 4.742 596 e–3 9.270 998 e–1 –1.701 552 e+1
9 –5.454 633 e–5 7.603 279 e–3 –6.165 638 e–1 1.584 644 e+1 –5.327 344 e+1
10 –3.295 180 e–5 1.211 239 e–2 –8.845 530 e–1 2.358 660 e+1 –1.759 743 e+2

Table 4 Results (high latitude or longitude side) obtained by the BP neural networks

Number m1
1(n1

1) m2
1(n2

1) m3
1(n3

1) m4
1(n4

1) m5
1(n5

1)

1 –2.364 762 e–6 1.093 990 e–3 –1.919 619 e–1 1.514 202 e+1 –3.883 818 e+2
2 –9.386 719 e–5 2.053 956 e–2 –1.619 389 5.305 330 e+1 –6.151 000 e+2
3 –3.243 843 e–6 1.545 236 e–3 –2.784 475 e–1 2.249 620 e+1 –6.293 869 e+2
4 –7.052 381 e–5 1.415 389 e–2 –1.005 241 2.842 022 e+1 –1.540 246 e+2
5 –1.409 326 e–4 2.343 824 e–2 1.478 954 4.130 829 e+1 –3.109 008 e+2
6 –4.277 951 e–5 8.904 313 e–3 –7.144 316 e–1 2.549 826 e+1 –2.075 673 e+2
7 –1.492 619 e–4 3.358 251 e–2 –2.787 314 9.969 881 e+1 –1.309 385 e+3
8 –2.874 275 e–6 1.004 532 e–3 –1.340 367 e–1 8.091 336 –1.224 080 e+2
9 –1.491 477 e–4 3.585 920 e–2 –3.201 586 1.244 616 e+2 –1.789 787 e+3
10 –1.840 043 e–4 3.954 786 e–2 3.145 550 4 1.084 895 e+2 –1.384 915 e+3

Table 5 Results (low latitude or longitude side) obtained by the BP neural networks

Number m1
2(n1

2) m2
2(n2

2) m3
2(n3

2) m4
2(n4

2) m5
2(n5

2)

1 7.261 776 e–7 –2.546 767 e–4 2.542 910 e–2 –1.817 815 e–1 –2.005 819 e+1
2 1.683 400 e–4 –3.843 956 e–2 3.328 331 –1.309 139 e+2 1.941 689 e+e3
3 9.789 098 e–7 –3.551 292 e–4 3.932 091 e–2 –8.826 921 e–1 –1.826 912 e+1
4 3.519 243 e–5 6.694 692 e–3 5.467 192 e–1 2.391 697 e+1 5.170 088 e+2
5 –2.993 518 e–5 4.384 012 e–3 2.510 960 e–1 6.101 730 5.977 056 e+1
6 –5.956 112 e–6 1.193 456 e–3 –9.824 865 e–2 3.268 925 8.756 860 e+1
7 –8.504 437 e–6 6.485 160 e–4 1.147 097 e–1 –1.444 156 e+1 3.714 789 e+2
8 7.390 693 e–7 –1.630 918 e–4 4.747 751 e–3 9.270 948 e–1 –1.701 510 e+1
9 –3.333 035 e–5 7.864 112 e–3 –6.164 476 e–1 1.584 621 e+1 –5.327 374 e+1
10 –5.666 975 e–5 1.208 691 e–2 –8.844 547 e–1 2.358 612 e+1 –1.759 747 e+2

Table 6 shows that the relative errors ΔS are smaller
than 2%, which meet the usage requirements.

Table 7 is a comparison of the different computational
times. The variables ta, tb and tc are the computational
time required for computing all of the landing points of

each set of experiments, the average computational time
for one landing point and the computational time for the
landing footprint based on the BP neural network, respec-
tively. As can be seen from Table 7, tc is less than 0.10/000
of ta, and tc is less than 0.2 0/000 of tb.
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Table 6 Relative errors in ten experiments

Number S/(◦2) K ΔS/(◦2) δ/%

1 3 895.231 2 61.365 1.575
2 405.332 4 6.225 1.536
3 3 698.298 3 33.946 0.918
4 824.369 4 5.364 0.651
5 305.251 3 3.001 0.983
6 442.264 5 2.003 0.453
7 399.257 4 5.221 1.308
8 3 591.945 3 10.399 0.290
9 610.239 5 3.987 0.653
10 701.885 4 1.986 0.283

Table 7 Comparison of the computational time

Number ta/s tb/s tc/s
tc

ta
/(0/000)

tc

tb
/(0/000)

1 1 020.442 501.781 0.009 0.088 0.179
2 1 062.002 522.388 0.009 0.085 0.172
3 1 040.661 495.365 0.009 0.086 0.182
4 998.730 489.668 0.009 0.090 0.184
5 1 082.793 526.398 0.009 0.083 0.171
6 1 081.976 504.412 0.009 0.083 0.178
7 1 040.666 511.162 0.009 0.086 0.176
8 998.471 480.114 0.009 0.090 0.187
9 1 078.563 529.652 0.009 0.083 0.170
10 1 000.211 478.200 0.009 0.089 0.188

Table 8 shows the relative errors of the proposed
method, the method in [14] and the method in [15]. ΔS1

and ΔS2 are the relative errors obtained by the methods
proposed in [14] and in [15], respectively. We can see from
Table 8 that the relative errors in each experiment obtained
by methods proposed in [14] and in [15] are bigger than
the proposed method in this paper.

Table 8 Relative errors of three methods

Number ΔS/(◦2) ΔS1/(◦2) ΔS2/(◦2)

1 61.365 90.220 80.365
2 6.225 41.613 25.935
3 33.946 52.902 43.023
4 5.364 60.003 42.594
5 3.001 25.623 28.330
6 2.003 39.565 31.020
7 5.221 28.001 18.674
8 10.399 22.000 24.336
9 3.987 36.297 15.236
10 1.986 15.336 19.902

Table 9 shows the computational time of the proposed
method, the method in [14] and the method in [15]. The
parameters td and te are the computational time for the
landing footprints based on methods proposed in [14] and
[15], respectively. As can be seen from Table 9, the com-
putational time in each experiment obtained by methods
proposed in [14] and [15] are longer than the proposed
method.

Table 9 Computational time of three methods

Number tc/s td/s te/s

1 0.009 11.781 92.365
2 0.009 10.229 98.334
3 0.009 11.005 129.005
4 0.009 11.209 102.650
5 0.009 10.556 109.728
6 0.009 12.001 97.443
7 0.009 11.225 96.005
8 0.009 11.300 103.820
9 0.009 11.023 108.000
10 0.009 11.058 119.326

Above all, the simulation results demonstrate that the
proposed method can efficiently determine the landing
footprints of space-to-ground vehicles with arbitrary or-
bital parameters and arbitrary manoeuver moment under
the premise of ensuring accuracy.

5. Conclusions and future research

A BP neural network for determining the coefficients of
the fitting boundary curves, which realizes fast computa-
tion of the landing footprint of a space-to-ground vehicle is
proposed. The simulation results demonstrate that the pro-
posed method can determine landing footprints in 0.01 s
while ensuring a relative error within 2%. The proposed
method lays a foundation for the deployment of parking
orbits and for decision makers to develop real-time pro-
grams of transfer trajectories, which enriches the relevant
theories of space engineering.

There are still some shortcomings in this paper. For ex-
ample, it is important to try to decrease the number of hard-
ware devices used to compute the training data. Addition-
ally, finding a way to solve the transfer trajectories under
finite thrust should be further studied. Moreover, the poly-
nomial equations used to describe the boundaries of land-
ing footprints by BP neural networks can be further gene-
ralized by using alternatives such as piecewise polynomial
functions (splines) as fitting curves.
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