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Abstract: Robotic systems are expected to play an increasingly
important role in future space activities. The robotic on-orbital ser-
vice, whose key is the capturing technology, becomes a research
hot spot in recent years. This paper studies the dynamics modeling
and impedance control of a multi-arm free-flying space robotic sys-
tem capturing a non-cooperative target. Firstly, a control-oriented
dynamics model is essential in control algorithm design and code
realization. Unlike a numerical algorithm, an analytical approach
is suggested. Using a general and a quasi-coordinate Lagrangian
formulation, the kinematics and dynamics equations are derived.
Then, an impedance control algorithm is developed which allows
coordinated control of the multiple manipulators to capture a target.
Through enforcing a reference impedance, end-effectors behave
like a mass-damper-spring system fixed in inertial space in re-
action to any contact force between the capture hands and the
target. Meanwhile, the position and the attitude of the base are
maintained stably by using gas jet thrusters to work against the
manipulators’ reaction. Finally, a simulation by using a space robot
with two manipulators and a free-floating non-cooperative target is
illustrated to verify the effectiveness of the proposed method.
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1. Introduction

With the merit of enhanced efficiency and reduced risk for
astronauts, robotic on-orbit servicing will play an increas-
ingly important role in future space activities, such as satel-
lite repairing, spacecraft docking, refueling and orbital de-
bris removal [1,2]. One of the most important phases of
such satellite servicing operations by a space robot is the
contact phase. During the contact between the end-effector
and the grasping point, there is a risk that the target and the
robot can be pushed away from each other by the contact
force. A variety of capture schemes have been proposed,
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such as space net robot [3], tethered space robot [4 – 6] or
rigid space robot with the manipulator [7]. Because rigid
capture has the advantage of stability, maneuverability and
operability, it is still the main solution in engineering. On-
orbit demonstrations for cooperative target capture via the
rigid manipulator have been carried out, such as Engineer-
ing Test Satellite-VII (ETS-VII) [8] and Orbital Express
[9]. In fact, a malfunctional satellite or an orbital object
usually does not have special docking mechanism, and
may have a tumbling or spinning motion. Robotic servic-
ing of such a non-cooperative target is still an open re-
search area facing many technical challenges. Comparing
with a single-arm space robot, a multi-arm robotic system
has much more dexterity, and can provide better contact
stability to complete capture tasks. Dynamics and motion
control of the multi-arm robotic system have been widely
studied by various researchers [10 – 14]. However, coordi-
nation and control of the spacecraft and its multiple manip-
ulators during the capture stage or manipulation of objects
has not attracted adequate attention.

Regarding the base spacecraft, there are two types of op-
eration. The first type corresponds to the free-flying case
where the base is actively controlled. Hence, the entire
servicing system is capable of being transferred and ori-
entated arbitrarily in space. The second type is the free-
floating case where the control of the base is inactive. Thus,
the base is completely free to translate and rotate in re-
action to the manipulator motion. The motions of space
manipulators will generate reaction forces and moments
on the spacecraft platform due to the dynamic coupling
between manipulators and the base, which would com-
plicate the kinematics and dynamics analysis for the sys-
tem. A precise and efficient dynamics model is important
for the model based dynamic controller to achieve a bet-
ter performance while executing space missions. Using a
tree topology to describe open chains of multi-body sys-
tems, the multi-body systems can be described by Newton-
Euler, Lagrangian formulations and Kanes method [15 –
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19]. These approaches are mainly used to complete multi-
body dynamics analysis for space mechanisms. The usual
recursive dynamics formulations are not very useful for de-
sign and development of model-based control algorithms.
The early modeling approaches that can be applied to the
dynamics modeling of space robotic systems are mainly
concerned on the free-floating mode operation. The kine-
matics and dynamics of a free-floating space manipula-
tor system have been described by using the virtual ma-
nipulator approach [20]. The generalized Jacobian matrix
has been presented and employed to present solution al-
gorithms to the inverse kinematics of a space manipulator
mounted on a free-floating spacecraft [21]. However, the
workspace of free-floating systems is restricted by the in-
ability to have the system center of mass translated. Espe-
cially when capturing a moving target, the system stabil-
ity is problematic by the existence of workspace dynamic
singularities [22]. Moosavian and Papadopoulos [23] de-
veloped the explicit dynamics model of multi-manipulator
free-flying space robots. Their analysis showed that the
explicit dynamics model was well-suited to model-based
control algorithms with reduced computational burden. In-
spired by this idea, this paper will also study an explicit
dynamics modeling method for multiple-arm systems.

The main purpose of a non-cooperative target capture
operation is to catch the moving and tumbling target with-
out undermining the attitude of the base spacecraft. Also,
the interaction with environment should be considered dur-
ing the impact phase. As for contact control methods, ac-
tive compliance control has become a big research topic in
robotics. Hybrid position/force control strategy, which was
proposed by Raibert and Craig, has been a considerable
control method [24,25]. However, control mode switching
is required at many points during most space tasks. In [26],
Hogan investigated the impedance based control scheme to
handle the physical contact between the end-effector and
the target. In the area of impedance control, many efforts
have been made to deal with the case of a free-flying space
robot. Moosavian et al. presented a multiple impedance
control to manipulate space objects by multi-arm space-
flying robots [27,28]. On the contrary, Swain and Morris
studied another control structure with force compensation
for the disturbances on the base spacecraft [29]. However,
these methods need perfect control of the base while the
base position cannot be controlled accurately by gas jet
thrusters. Also, mass and geometric properties of the ma-
nipulated object are assumed to be known, which is an
unreasonable assumption for non-cooperative targets with
unknown physical properties. For single-arm space robots,
Nakanishi and Yoshida presented an impedance control
method without precise base control [30]. Therefore, it
may be a more appropriate approach for impedance control
of multiple-arm systems, which is studied in this paper.

This paper studies the dynamics modeling and impe-
dance control of a multi-arm free-flying robot during
capture operations. Firstly, using a general and a quasi-
coordinate Lagrangian formulation, an explicit modeling
approach is developed to obtain the kinematics and dy-
namics equations. Derivation of the equations of motion
results in explicit formulations of the systems mass matrix,
nonlinear velocity terms and Jacobian matrix. Unlike re-
cursive dynamics formulations, the obtained model is very
useful for dynamics analysis, design studies, and deve-
lopment of model-based algorithms. Then, the impedance
control method for free-flying space robots proposed in
[30] is extended to the case of multi-arm free-flying robot.
Based on the derived kinematics and dynamics equations,
the impedance control method is developed for distinct co-
operating manipulators to capture a target. The impedance
control enforces a reference impedance on the manipula-
tor end-tips such that the end-effectors behave like a mass-
damper-spring system fixed in inertial space in reaction to
any contact force between the capture hands and the tar-
get. Meanwhile, the position and the attitude of the base
are maintained stably by using gas jet thrusters to work
against the manipulators’ reaction. Finally, a capture simu-
lation is conducted with the two-arm space robot carrying
a load. Numerical simulation results indicate that the pre-
sented impedance control of the multi-arm space robot is
effective even in the case of capturing a target with fast or
complicated motion.

2. Explicit modeling of free-flying space
robot with multiple arms

This section develops the kinematics and dynamics equa-
tions of a rigid multiple arm free-flying space robotic sys-
tem, as shown in Fig. 1. For the sake of simplicity, the
effect of elastic deformation and gravity are neglected. B0

in Fig. 1 represents the base of the space robot, which is
connected by n manipulators. Each manipulator has n ac-
tive joints and Nm links. Bi denotes the ith link of the mth
manipulator, and Ji is the joint which connects Bi−1 and
Bi.

Fig. 1 Space free-flying robot with multiple arms
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The joints are revolute and have only one degree of free-
dom (DOF). The equations pertaining to the kinematics
and dynamics are represented with respect to the local co-
ordinate system Ci attached to the link.

The kinetic energy Ti for the given ith link of the mth
manipulator is written as
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where diag(0, 0, 1) denotes the diagonal matrix.
For the kth link of the mth manipulator, the kinematic

equations of motion can be assembled as[
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Now, all of the intermediate terms can be put together and
written in a more compact form as
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J
(m)
b and J
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m are the Jacobian matrices for space robot

base motion and manipulator motion, respectively.

From (13), the kinetic energy T (m) for the mth mani-
pulator is obtained as
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According to the dimensions of [v0, ω0]T and q(m), par-
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Therefore, the total kinetic energy for the space robot sys-
tem is given by
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Note here that the matrix M(q) is the well-known general-
ized inertia matrix (GIM) [21]. Similarly, according to the
dimensions of [v0, ω0]T and q, partition the matrix M(q)
as

M(q) =
[

M00(q) M0q(q)
Mq0(q) Mqq(q)

]
. (23)

Unlike the recursive Newton-Euler dynamics formula-
tions, Lagrange’s equations of the second kind applied to
the total kinetic energy of the system result in a minimal set
of ordinary differential equations with independent vari-
ables. To develop an explicit dynamics model of such com-
plex systems, the Lagrangian formulation is applied. Note
that the angular velocity ω0 of the base is not generalized
coordinate, because the attitude angle of the base cannot be
obtained directly by integrating through the angular velo-
city. Therefore, the classical Lagrangian formulation based

on generalized coordinate becomes quite intricate to derive
for the rotational motion of the space robot base directly.
To overcome this limitation, the quasi-Lagrangian (25) is
preferred to describe the base motion.
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where τ is the generalized force in the general sense, and
here is the joint torques of the manipulators. F0 and T0

are the external force and the moment applied on the base,
respectively.

Using the expression for the kinetic energy given
by (21), and by applying Lagrangian (24) and quasi-
Lagrangian (25) to the DOFs of the manipulators and the
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base respectively, the dynamics model can be obtained as
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ṽ0 and ω̃0 are the skew-symmetric matrices of v0 and ω0,
respectively. τ (m) is the joint torque of the mth manipula-
tor. To facilitate the derivation of the control method, the

compact form of the dynamics (26) is written as

H(q)η̇ + C(v0, ω0, q, q̇) = T . (29)

3. Impedance control of multi-arm
space robot

This section will extend the impedance control method to
the case of multi-arm space robot for the target capture.
The control objectives include the compliance of the tip
of the manipulator in the inertial space, and the dynamic
stability of position and attitude of the base. As shown in
Fig. 2, all of the manipulator end-effectors are controlled to
behave like a mass-damper-spring system fixed in inertial
space in reaction to any contact force between the capture
hands and the target. Meanwhile, the position and the at-
titude of the base are maintained stably by using gas jet
thrusters to work against the manipulators’ reaction.

Fig. 2 Impedance control for multi-arm space robot

Availability of the system kinematics and dynamics is
always helpful in the design of the impedance control sys-
tem. To distinguish between the motion of the base and the
manipulators, the complete variable η is broken down into
xb and q. xb is the position and attitude of the base with
ẋb = [v0, ω0]T. Adding the external force and moment
applied on the manipulators and according to the partition,
(29) can be further decomposed as follows:[
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where Hb is the inertia matrix of the base, Hm is the in-
ertia matrix of the manipulators, and Hbm is the coupling

inertia matrix between the base and the manipulators. Cb

is the nonlinear term of the base, and Cm is the nonlin-
ear term of the manipulators. Fb is the external force and
moment applied on the base with Fb = [F0, T0]T. Fh

is the external force and moment applied on the end tips
of the manipulators with Fh = [F (1)

h , F
(2)
h , . . . ,F
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h ]T,
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Jm is the Jacobian matrices for the manipulators with
Jm = diag(J(1)

m , J
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m ).

By canceling out the base acceleration ẍb in (30), the
equations of motion can be reduced to the joint space for-
mulation:
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H∗q̈ + c∗ = τ + J∗
b Fb + J∗

hFh (31)

where H∗ = Hm − HT
bmHbHbm, c∗ = cm −
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b is the generalized Jacobian matrix for

the base with J∗
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Jacobian matrix for the manipulators with J∗
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The momentum P0 ∈ R3 and angular momentum L0 ∈
R3 of the whole system with respect to the base body fixed
frame are [
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]
= Hbẋb + Hbmq̇. (32)

The relationship of the velocity of the base, the angular
velocity of the joints, and the end-effector velocity of the
manipulators ẋh ∈ R6n is
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Substituting (32) into (33) leads to
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where the term ẋgh ∈ R6 is defined by follows:
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For capturing a non-cooperative target, the motion of the
target after contact depends on the apparent momentum of
the contact point of the manipulator end-effectors. Since
the target to be captured is noncooperative, its mass and
geometric properties are unknown in advance. One of the
most reasonable methods to control the apparent inertia is
impedance control of the manipulators. It should be noted
that an important premise of the above theory is that the
impedance characteristics of the manipulators are realized
under the inertial coordinate. However, in case of a free-
flying space robot, such characteristics cannot be obtained
by the conventional impedance control method [26], be-
cause the motion of the base interferes with the impedance
characteristics defined by the control. In this paper, the
control objective is the dynamic stability of the tips of the
manipulators in inertial space. The tips of the manipulator
can be the mounting positions of the capture hands, be-
cause the force measurement here is more convenient and
stable. As is shown in Fig. 2, the desired dynamic charac-
teristics are assigned in a compact form as follows:

Miẍh + DiΔẋh + KiΔxh = Fh (36)
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mass matrix, damping matrix, and stiffness matrix of the
desired dynamic characteristic of the mth manipulator’s
tip, respectively. Δxh denotes the position deviations of
the tips of the manipulators in inertial space.

By differentiating (34) with respect to time, it turns out
that

ẍh = J̇∗
h q̇ + J∗

h q̈ + ẍgh. (37)

According to (31), (36) and (37), the impedance control
for the multi-arm space robot is derived as follows:
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i (Fh − DiΔẋh − KiΔxh)−

J̇∗
h q̇ − ẍgh] − J∗

b Fb − J∗T
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When the base is uncontrolled as the free-floating case,
(38) decreases to the control law for the free-floatingmode.
By applying the control input to actuate the joints, the tips
of the manipulators can behave like a mass-damper-spring
system fixed in inertial space.

In (38), Fb is the force and moment control signal from
the base thrusters, which is used as a feedforward term
to compensate the disturbance from the base control. The
pseudorate modulator is used as the pulse signal generator,
shown in Fig. 3. The modulator produces a pulse command
sequence to the thruster valves by adjusting the pulse width
and pulse frequency. In the linear range, the average torque
produced equals the demanded torque input.

Fig. 3 Derived-rate modulator

Under slowly varying signals, the dynamic character-
istics of the derived-rate modulator can be approximated
as 1 + Tms. A proportion integration differentiation (PID)
controller is designed as follows:

u = kpΔxb + ki

∫
Δxbdt + kdΔẋb (39)

where u is the control command input to the modulator.
Δxb denotes the deviations of the base position in inertial
space. According to the pole assignment method, the con-
trol gains kp ∈ R6×6, ki ∈ R6×6, kd ∈ R6×6 can be
computed for certain bandwidth requirement.
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The compliance capture and coordinated control of the
base and its manipulator are shown in Fig. 4. Traditional
methods usually assume the manipulators’ reaction as a
disturbance force on the base, and use the feedforward
momentum or torque to compensate for the manipulators’
reaction. The presented method does not clearly distin-
guish the interface between the base and the manipulators.

The space robot is considered as a whole dynamic system.
The derived compliance control uses dynamics decoupling
and kinematics matching to realize the desired dynamic
characteristics precisely. The reaction jet based control of
the base works against the manipulators’ reaction, while
compensating the extra momentum imposed by the impact
forces on the space robot system.

Fig. 4 Compliance capture and coordinated control system

4. Applications to a tumbling target
capture mission

To verify the effectiveness of the proposed method of the
impedance control of the multi-arm robot, this section will
consider a simulation based on a space robot with two ma-
nipulators and a free-floating space target. The system dy-
namics model of the two-arm space robot is a critical ele-
ment in the control system simulation code. The comput-
ing code for dynamics (30) and Jacobian matrices in (37)
are obtained by the explicit modeling method presented in
Section 2 to realize the control code simulation. The simu-
lation dynamics model of the space robot capture sys-
tem is set up by Adams including space robot dynam-
ics, target dynamics, and contact dynamics between the
capture hands and the target. The control model of the
space robot is constructed in Matlab/Simulink. The two
models are integrated together using Adams & Matlab co-
simulation. The space robot system consists of a 400 kg
satellite base, two 2 m and 6 DOF manipulators. The mass
of the target is 100 kg. The same impedance character-
istics are selected for the two end-effectors with the va-
lues of inertia, damping and stiffness matrices chosen as
Mi = I12×12, Di = 10I12×12, Ki = 100I12×12. The
magnitudes of the force and moment components of Fb in
(38) are assumed to be 10 N and 10 N·m.

The responses of the end tips of the two manipulators to

static load input are examined. Two 10 N static forces are
applied in the −x direction for the two end-effectors. The
robot is set to be the free-floating mode with the base un-
controlled. The deviations of the end-effectors of the ma-
nipulators are shown in Fig. 5(a). As shown in Fig. 5(a)
and Fig. 5(b), the responses of the positions of the end-
effectors coincide with the analytically obtained responses
with (36) precisely. In spite of the base motion by the input
forces and reaction forces of the manipulation, the manipu-
lators make adjustment to maintain the desired impedance
characteristics with respect to the inertial space (see
Fig. 5(c) and Fig. 5(d)).
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Fig. 5 Simulation results of static load response

However, the cost is that the manipulator configuration
needs to make large regulation to maintain the stability
of the position and attitude of the end-effectors in inertial
space. Meanwhile, the base is moving backward in the −x

direction due to conversation of momentum, and the atti-
tude is disturbed to increase larger and larger, as shown in
Fig. 5(e) and Fig. 5(f). Large changes of manipulator con-
figuration may lead to dynamic singularity and system in-
stability, as is pointed out in [30]. Therefore, the jet based
control of the position and attitude of the base is very nec-
essary to maintain the stability of the capture configuration
during the contact phase.

In the capture simulation, it is assumed that prior to the
contact, the target is tumbling around the capture axis at
a constant angular velocity of 5 ◦/s. During capture, the
end-effectors of the two manipulators follow the grasping
points in the spin axis with the same velocity. The robot
is set to be the free-flying mode with the base controlled.
Based on the above setup, the obtained simulation results
are presented in Fig. 6.
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Fig. 6 Simulation results of capture operation
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As shown in Fig. 6(a) and Fig. 6(b), the tips of the
two manipulators are maintained dynamic stable in iner-
tial space during the whole capture operation. The position
and attitude perturbations of the base are effectively sup-
pressed by the jet control to compensate for the manipula-
tors’ reaction (see Fig. 6(c) and Fig. 6(d)). As a result, the
manipulator configuration just needs to make small adjust-
ment to maintain the stability of the tips in inertial space
(see Fig. 6(e) and Fig. 6(f)). The control torques of the ma-
nipulators are shown in Fig. 6(g) and Fig. 6(h). The pre-
sented impedance control of the multi-arm space robot is
effective even in the case of capturing a target with fast or
complicated motion.

5. Conclusions

This paper introduces a general model of multi-arm space
robot for the capture of non-cooperative targets by using
a general and a quasi-coordinate Lagrangian formulation.
Unlike the classical recursive dynamics formulations, the
proposed model is very convenient for dynamics analysis
and model-based control algorithms design. Based on the
proposed model, the impedance control strategy is gener-
alized to get a good performance of the multi-arm colla-
borative capture of non-cooperative targets. By introduc-
ing a reference impendence on manipulator end-tips such
that end-effectors behave like a mass-damper-spring sys-
tem in reaction to any contact force between the capture
hands and the non-corporative target, the proposed impen-
dence method has a good control performance. Numerical
simulation results also indicate that the method is very ef-
fective even in the case of capturing a target with fast or
complicated motion.
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