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Abstract: A typical adaptive neural control methodology is used
for the rigid body model of the hypersonic vehicle. The rigid body
model is divided into the altitude subsystem and the velocity sub-
system. The proportional integral differential (PID) controller is
introduced to control the velocity track. The backstepping design is
applied for constructing the controllers for the altitude subsystem.
To avoid the explosion of differentiation from backstepping, the
higher-order filter dynamic is used for replacing the virtual con-
troller in the backstepping design steps. In the design procedure,
the radial basis function (RBF) neural network is investigated to ap-
proximate the unknown nonlinear functions in the system dynamic
of the hypersonic vehicle. The simulations show the effectiveness
of the design method.
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1. Introduction

The study of the hypersonic vehicle is important for uti-
lization of the Near Space, which has become a hot issue in
recent years. However, there are many challenges to be ad-
dressed. One of the challenges is the control system design
for the hypersonic vehicle. Many nonlinear control meth-
ods and intelligent control methods are used for the design
of the control system, moreover, many achievements have
been proposed in recent years. It is known that the adaptive
backstepping control method can be systematically formu-
lated in a recursive way to achieve the asymptotic stabi-
lity for a strict feedback system from [1], which is used
for the control system design of the hypersonic vehicle
in many papers. The adaptive backstepping design based
on the nonlinear disturbance observer was proposed in [2],
the robustness can be guaranteed and the explosion of dif-
ferential can be solved by a dynamic surface method. As
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discussed in [3], the adaptive discrete-time controller was
designed via backstepping and the neural network (NN)
was used for approximating the known nonlinear func-
tions. The adaptive backstepping method cannot be di-
rectly applied when the nonlinear terms in the hypersonic
vehicle models are totally unknown or partially unknown.
The popular methodology is that the unknown terms are
approximated by the NN. The NN methods used in control
system design were proposed in many papers [4 – 7]. How-
ever, there is a drawback associated with backstepping, the
complexity of the control system arising from the repeated
differentiations of virtual controllers is difficult to solve,
i.e., the so-called differentiation explosion problem. The
popular scheme aims to solve such a problem by a filter-
ing instead of the virtual controller differentiations in each
backstepping step [8,9]. However, as we know, the stabi-
lity analysis of the whole closed-loop system consists of
the original system and the filter system. It is easy to see
that the boundedness of the input of filters and filter dy-
namics are so important and difficult to establish. So far,
there is no systematic methodology to select the control
gains and the time constants of the filters. In most papers,
the first-order filter is established to solve the explosion
problem, moreover, the input of the filter is the virtual con-
troller, and hence the boundedness of filter dynamics is
quite involved in the virtual control and the selection of
time constants for the filter is important for the stability of
the filter. In [10], the higher-order filter was proposed to
solve the explosion problem of the backstepping design,
and the design parameters are selected to render the poly-
nomial Hurwitz. Therefore, the selection of design param-
eters can ensure the stability of the filter dynamics.

In this paper, problem formulation will be described in
Section 2 which consists of the representation of the dy-
namic model of the hypersonic vehicle, the control law of
the velocity subsystem, and the description of the reference
flight path angle. The typical adaptive NN backstepping
controller design based on higher-order filters will be pro-
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posed in Section 3. The explosion problem arising from the
backstepping method will be avoided by the higher-order
filters, moreover, the stability of filter dynamics can be en-
sured. The stability analysis for the whole closed-loop sys-
tem will be described in Section 4. In Section 5, to demon-
strate its usefulness, simulation will be carried out to verify
the effectiveness of the controller proposed. Finally, con-
clusions and future works are discussed in Section 6.

2. Problem formulation

The longitudinal dynamic model of the hypersonic vehi-
cle in this study was given in [11]. The detail form can be
described as follows. There are five rigid-body state vari-
ables involved in the model, i.e., V, h, γ, α, Q, while the
four flexible state variables are not considered in this study.
Moreover, the control inputs are δe, i.e., elevator deflection
and Φ, i.e., the fuel equivalence ratio.

V̇ =
1
m

(T cosα − D) − g sin(θ − α), (1)

ḣ = V sin(θ − α), (2)

α̇ =
1

mV
(−T sin α − L) + Q +

g

V
cos(θ − α), (3)

θ̇ = Q, (4)

IyyQ̇ = M, (5)

where V is the velocity, h is the altitude, γ is the flight
path angle, α is the attack angle, Q is the pitch rate, m is
the mass of the aircraft, g is the acceleration due to gravity,
θ is the angle of pitch, moreover, T , D, L, M represent the
thrust, drag, lift-force, and pitching moment, respectively.
And Iyy is the moment of inertia about the pitch axis.

The related expressions are described as follows:

L =
1
2
ρV 2SCL, (6)

D =
1
2
ρV 2SCD, (7)

M = zT T +
1
2
ρV 2Sc̄[CM,α + CM,δe ], (8)

T = Cα3

T α3 + Cα2

T α2 + Cα
T α + C0

T , (9)

where

ρ = ρ0 exp[−(h − h0)/hs], CL = Cα
Lα + C0

L,

CD = Cα2

D α2 + Cα
Dα + C0

D,

CM,α = Cα2

M,αα2 + Cα
M,αα + C0

M,α, CM,δe = ceδe,

Cα3

T = β1Φ + β2, Cα2

T = β3Φ + β4,

Cα
T = β5Φ + β6, C0

T = β7Φ + β8.

The detail information of parameter values was de-
scribed in [11]. It is easy to see that θ = α + γ, the equa-
tions (1) – (5) can be expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

V̇ =
1
m

(T cosα − D) − g sin γ

ḣ = V sin γ

α̇ =
1

mV
(−T sin α − L) + Q +

g

V
cos γ

θ̇ = Q

IyyQ̇ = M

. (10)

The dynamics of model (10) can be divided into two
subsystems. One is the velocity subsystem, and the other
is the altitude subsystem. For the velocity subsystem, we
have

V̇ = gV Φ + fV (11)

where

gV =
1
m

(β1α
3 + β3α

2 + β5α + β7) cosα,

fV =
1
m

[(β2α
3 + β4α

2 + β6α + β8)·
cosα − D] − g sin γ.

For the velocity subsystem, the control method is not
discussed in this study, and the controller is designed di-
rectly with the control algorithm form [12], which is in a
form of

Φ = kpvzV + kiv

∫
zV dt + kdv

dzV

dt
(12)

where kpv , kiv , kdv are designed parameters for the propor-
tional integral differential (PID) controller, zV = Vr − V

is the tracking error of velocity, and Vr is the reference ve-
locity.

Based on the timescale conclusion from [13,14], it is ob-
vious that the velocity can be considered as slow dynamic
compared with the state variables of the altitude subsys-
tem, therefore the velocity will be treated as constant dur-
ing the controller design for the altitude subsystem. For
the altitude subsystem, the flight path command [15] is de-
signed as

γd =
−kh(h − hr) − ki

∫
(h − hr)dt + ḣr

V
(13)

where kh, ki are positive constants, hr is the reference alti-
tude. If the flight path angle can follow γd, then the altitude
tracking error h̃ = h − hr can be regulated to zero expo-
nentially. According to [12], we have

γ̇d ≈ −kh(V sinγ − ḣr) − kih̃ + ḧr

V
. (14)
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Assumption 1 In (10), it is easy to know that the term
T sin α is generally much smaller than L, which can be
neglected.

Define x1 = γ, x2 = θ, x3 = Q, and X =
[x1, x2, x3]T, based on Assumption 1, model (10) can be
written in a form of⎧⎪⎪⎨

⎪⎪⎩
ẋ1 = g1x2 + f1(x1)
ẋ2 = x3

ẋ3 = g3u + f3(X)
y = x1

(15)

where

g1 =
ρV S

2m
Cα

L ,

f1 = −ρV S

2m
Cα

Lx1 − g

V
cosx1 +

ρV S

2m
C0

L,

g3 =
1

2Iyy
ρV 2Sc̄ce,

f3 =
zT T

Iyy
+

1
2Iyy

ρV 2Sc̄CM,α,

where c is the elevator coefficient and ce is the canard co-
efficient.

In (15), X = [x1, x2, x3]T ∈ R3, u ∈ R, and y ∈ R
are the state, input and output of the attitude subsystem,
respectively. It is obvious that g1, g3 are known constants.
Without of generality, some assumptions are essential in
the sequel.

Assumption 2 The reference output yd is bounded and
smooth.

Assumption 3 The state vector X is measurable.
Assumption 4 The nonlinear functions f1 and f3 are

unknown and bounded.
For Assumption 1, it is very necessary for establish-

ing the boundedness of signals in the closed-loop system
[16,17]. For Assumption 2, the state feedback can be gua-
ranteed, which is needed for the control design. For model
(15), it is a strict-feedback form [18], and the backstepping
design algorithms can be used to design the controller of
the attitude subsystem.

The control goal is that controller u designed in this
study for the altitude subsystem and the given controller Φ
of the velocity subsystem can steer the altitude and velocity
of longitudinal system output dynamics to track the refer-
ence values. In this study, the radial basis function (RBF)
NN is incorporated with the adaptive method, which will
be used for approximating the unknown nonlinear func-
tions. Moreover, the higher-order filter will be used for
solving the explosion of the complexity problem from the
backstepping design procedure.

3. Controller design

In this section, the classical backstepping method will be
developed to design the controller with the higher-order
filter solving the differential explosion problems from re-
peated differentiations of the virtual controllers in each
backstepping procedures [19]. The detail steps will be
shown in the following.

Step 1 Consider the first case, i.e., ẋ1 = g1x2+f1(x1),
then define the tracking error z1 = x1 − yd. The direct dif-
ferentiation for z1 is

ż1 = ẋ1 − ẏd = g1x2 + f1 − ẏd. (16)

For z1 dynamic (16), x2 can be treated as the virtual
controller designed for stabilizing the z1 dynamic. More-
over, the unknown nonlinear function can be approximated
by RBF NN [20], which is in a form of

g−1
1 (f1 − ẏd) = W ∗T

1 φ1(ϑ1) + ε1 (17)

where W ∗
1 is the optimal weight vector, φ1(ϑ1) is the

radical basis function, ϑ1 = [x1, ẏd]T is the input vec-
tor of NN, and ε1 is the construction error of NN with the
supreme ε1m. Based on (17), we have

ż1 = g1(x2 + W ∗T
1 φ1 + ε1). (18)

Define the second tracking error z2 = x2 −x2v, and the
virtual controller x2v is proposed in a form of

x2v = −k1z1 − Ŵ T
1 φ1 − ε̂1 tanh

(z1

δ

)
(19)

where k1 > 0 is the design parameter, δ is a positive
constant [21], Ŵ1 is the estimation of W ∗

1 , and ε̂1 is
the estimation of ε1m, moreover, we can define the errors
W̃1 = W ∗

1 − Ŵ1, ε̃1 = ε1m − ε̂1. By substituting (19)
into (18), it yields

ż1 = g1

[
− k1z1 + z2 + W̃ T

1 φ1 + ε̃1 tanh
(z1

δ

)
+

ε1 − ε1m tanh
(z1

δ

)]
. (20)

A Lyapunov function is constructed in a form of

L1 =
1

2g1
z2
1 +

1
2
W̃ T

1 Γ−1
1 W̃1 +

1
2	1

ε̃2
1 (21)

where Γ1, 	1 are positive design parameters. By a direct
differentiation of (21), it yields

L̇1 =
1
g1

ż1z1 + ˙̃
W

T

1 Γ−1
1 W̃1 +

1
	1

˙̃ε1ε̃1 =

z1

[
− k1z1 + z2 + W̃ T

1 φ1 + ε̃1 tanh
(

z1

δ

)
+

ε1 − ε1m tanh
(

z1

δ

)]
− ˙̂

W
T

1 Γ−1
1 W̃1 − 1

	1

˙̂ε1ε̃1. (22)
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The updating laws for Ŵ1, ε̂1, respectively, can be de-
signed as follows:⎧⎪⎨

⎪⎩
˙̂

W 1 = Γ1(z1φ1 − λ1Ŵ1)

˙̂ε1 = 	1

[
z1 tanh

(
z1

δ

)
− σ1ε̂1

]
(23)

where λ1, σ1 are the positive design parameters. Substitut-
ing the updating algorithm (23) into (22), it yields

L̇1 = −k1z
2
1 + z1z2 + z1

[
ε1 − ε1m tanh

(
z1

δ

)]
+

λ1Ŵ
T
1 W̃1 + σ1ε̂1ε̃1. (24)

Step 2 The differentiation z2 is calculated as

ż2 = ẋ2 − ẋ2v = x3 − ẋ2v. (25)

Clearly, the differentiation of the virtual controller x2v

is so difficult to calculate and the explosion of the com-
plexity problem is unfavorable to the practical implemen-
tation [22]. Thus in this section, the differentiation of x2v

is replaced with filtering to conquer the explosion problem.
Then let x2v pass through an (n−1)th-order filter in a form
of

n−1∑
i=0

η2,iq
(i)
2 = x2v, q2(0) = x2v(0) (26)

where n is the order number of the system, η2,i is the posi-
tive number chosen to render the polynomial η2,n−1s

n−1+
η2,n−2s

n−2 + · · · + η2,0 Hurwitz, i.e., η2,2q̈2 + η2,1q̇2 +
η2,0q2 = x2v, q2(0) = x2v(0). Based on the results from
[6], x2v can be replaced with the output q2 of filter (26),
i.e., x2v = q2, and ẋ2v = q̇2.

Remark 1 The reason for using a higher-order filter in-
stead of a typical general first-order filter is that the output
of the filter (26) is involved in the next virtual controller.
It is easy to see that the virtual controller (19) is bounded,
and based on the higher-order design algorithm, stability
of the filter (26) dynamics can be ensured, then the output
of the filter (26) is bounded, which is an important issue
for the boundedness of the next virtual controller.

Based on the result above, the explosion of the complex-
ity problem arising from the differentiation of the virtual
controller (19) can be avoided. To this end, we have

ż2 = ẋ2 − ẋ2v = x3 − q̇2. (27)

Likewise, for z2 dynamic, x3 can be treated as the vir-
tual controller designed for stabilizing equilibrium z2 = 0.
Define the tracking error z3 = x3 − x3v , the virtual con-
troller x3v can be proposed as

x3v = −k2z2 − z1 + q̇2 (28)

where k2 is the positive design parameter. Substituting (28)
into (27), it yields

ż2 = z3 + x3v − q̇2 = −k2z2 − z1 + z3. (29)

Consider the following Lyapunov function

L2 =
1
2
z2
2 . (30)

The differentiation of (30) is calculated as

L̇2 = ż2z2 = −k2z
2
2 − z1z2 + z2z3. (31)

Step 3 The differentiation of z3 is attained as follows:

ż3 = ẋ3 − ẋ3v. (32)

Likewise, let x3v pass a higher-order filter, which can
be replaced with the output of the filter, i.e., ẋ3v = q̇3. The
higher-order filter is in a form of

n−2∑
i=0

η3,iq
(i)
3 = x3v, q3(0) = x3v(0) (33)

where η3,i is the positive number chosen to render the poly-
nomial η3,n−1s

n−1+η3,n−2s
n−2+· · ·+η3,0 Hurwitz, i.e.,

η3,1q̇3 + η3,0q3 = x3v, q3(0) = x3v(0).
Remark 2 Clearly, the virtual controller x3v is

bounded, moreover, it is the input of the filter (33), then
the dynamics stability of the filter (33) can be ensured, i.e.,
q3 is bounded, which is involved in the next controller.

Substituting ẋ3 of (15) into (32), it yields

ż3 = g3u + f3(X) − q̇3. (34)

The unknown nonlinear function f3(X) can be approxi-
mated by RBF NN, which is in a form of

f3(X) = W ∗T
3 φ3(ϑ3) + ε3 (35)

where W ∗
3 is the optimal weight vector, φ3(ϑ3) is the ra-

dical basis function, ϑ3 = [x1, x2, x3]T is the input vec-
tor of NN, and ε3 is the construction error of NN with the
supreme ε3m. Based on (35), we have

ż3 = g3u + W ∗T
3 φ3(ϑ3) + ε3 − q̇3. (36)

Clearly, the overall controller of the system, i.e., u, is
proposed in a form of

u = g−1
3

[
− k3z3 − z2 − Ŵ T

3 φ3 − ε̂3 tanh
(

z3

δ

)
+ q̇3

]

(37)

where k3 is a positive design parameter, δ is a positive
constant, likewise, define errors W̃3 = W ∗

3 − Ŵ3, ε̃3 =
ε3m− ε̂3. It is easy to see that q̇3 is in the overall controller,
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while based on Remark 2, q̇3 is bounded. Substituting (37)
into (36), we have

ż3 = −k3z3 − z2 + W̃ T
3 φ3 + ε̃3 tanh

(
z3

δ

)
+

ε3 − ε3m tanh
(

z3

δ

)
. (38)

Consider the following Lyapunov function:

L3 =
1
2
z2
3 +

1
2
W̃ T

3 Γ−1
3 W̃3 +

1
2	3

ε̃2
3. (39)

The direct differentiation of (39) is calculated as

L̇3 = ż3z3 + ˙̃
W

T

3 Γ−1
3 W̃3 +

1
	3

˙̃ε3ε̃3 =

ż3z3 − ˙̂
W

T

3 Γ−1
3 W̃3 − 1

	3

˙̂ε3ε̃3. (40)

Substituting (38) into (40), it yields

L̇3 = −k3z
2
3 − z2z3 + z3

[
ε3 − ε3m tanh

(
z3

δ

)]
+

z3

[
W̃ T

3 φ3 + ε̃3 tanh
(

z3

δ

)]
− ˙̂

W
T

3 Γ−1
3 W̃3 − 1

	3

˙̂ε3ε̃3.

(41)

The updating algorithms can be designed as follows:⎧⎪⎨
⎪⎩

˙̂
W 3 = Γ3(z3φ3 − λ3Ŵ3)

˙̂ε3 = 	3

[
z3 tanh

(
z3
δ

)
− σ3ε̂3

]
(42)

where λ3, σ3 are the positive design parameters. Then sub-
stituting updating laws (42) into (41), it yields

L̇3 = −k3z
2
3 − z2z3 + z3

[
ε3 − ε3m tanh

(
z3

δ

)]
+

λ3Ŵ
T
3 W̃3 + σ3ε̂3ε̃3. (43)

4. Stability analysis

As mentioned, the notion of input-state-stability (ISS) has
been utilized in the controller design of nonlinear systems
in recent years. ISS means that the bounded input implies
the bounded state [16]. In this section, the stability of the
control system designed is verified in two steps. Firstly, the
ISS stability will be analyzed. Besides, the Lyapunov sta-
bility method [23 – 25] will be used for verifying that all
the states of the closed-loop control system are uniformly
ultimately bounded [26,27].

Theorem 1 For the closed-loop control system con-
sisting of the plant (15), virtual controllers (19) and (28),

overall controller (37), and the NN adaptive tuning laws
(23) and (42) are designed. If the control gain and tuning
parameters can be selected reasonably, all the signals in the
closed-loop system are uniformly ultimately bounded. Be-
sides, tracking errors can converge uniformly to the follow-
ing set Ω , and the radius can be controlled arbitrarily small
with the sufficiently large design parameters. The rela-
tive definitions will be given later.

Ω Δ= {z1, z2, z3, W̃1, W̃3, ε̃1, ε̃3

∣∣|z1|2 � 2g1L(0)+

2g1C

ζ
, |z2|2 � 2L(0) +

2C

ζ
, |z3|2 � 2L(0) +

2C

ζ
,

‖W̃1‖2 � 2L(0)
λmin(Γ−1

1 )
+

2C

ζλmin(Γ−1
1 )

,

‖W̃3‖2 � 2L(0)
λmin(Γ−1

3 )
+

2C

ζλmin(Γ−1
3 )

,

|ε1|2 � 2L(0) +
2C

ζ
, |ε3|2 � 2L(0) +

2C

ζ
}

For the proposed control system consists of two sub-
systems, i.e., the filter closely system, and the original er-
ror system, the stability of the whole closely system needs
two sides. One is the output boundedness of filters, and the
other is the boundedness of original error system signals.

Proof It is easy to know that (23) is bounded, which
in turn can ensure the boundedness of virtual control law
(19). In (26), the virtual controller is the input of the fil-
ter (26), clearly, the boundedness of the virtual controller
(19) implies the boundedness of output state q2 from the
filter (26). Output state q2 of the filter (26) is the compo-
nent of virtual controller (28). Thus. it is easy to see that
the virtual controller (28) is bounded, which is the input of
the filter (33), and can ensure the bounded stability of the
constructed filter dynamics, in turn q3 is bounded, which
is the component of the overall controller (37). Besides,
based on the boundedness of (42), the overall control input
(37) is bounded, we can know that all state signals of the
original error system are bounded, and the design filters
dynamics are bounded, then the whole closed-loop system
is ISS. The two systems are coupling through the above
analysis, thus the boundedness needs to be verified for the
two systems. Then the uniform ultimately bounded will be
analyzed with Lyapunov stability methods.

Consider the Lyapunov function in a form of

L = L1 + L2 + L3 (44)

where

L1 =
1

2g1
z2
1 +

1
2
W̃ T

1 Γ−1
1 W̃1 +

1
2	1

ε̃2
1,

L2 =
1
2
z2
2 ,
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L3 =
1
2
z2
3 +

1
2
W̃ T

3 Γ−1
3 W̃3 +

1
2	3

ε̃2
3.

Differentiating (44) along (24), (31) and (43), we have

L̇ = L̇1 + L̇2 + L̇3 =

−k1z
2
1 − k2z

2
2 − k3z

2
3 + λ1Ŵ

T
1 W̃1+

σ1ε̂1ε̃1 + λ3Ŵ
T
3 W̃3 + σ3ε̂3ε̃3+

z1

[
ε1 − ε1m tanh

(
z1

δ

)]
+ z3

[
ε3 − ε3m tanh

(
z3

δ

)]
.

(45)

For easy reference, we quote the following inequalities
[28 – 30]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ŵ T
1 W̃1 � 1

2
‖W ∗

1 ‖2 − 1
2
‖W̃1‖2

Ŵ T
3 W̃3 � 1

2
‖W ∗

3 ‖2 − 1
2
‖W̃3‖2

ε̂1ε̃1 � 1
2
ε2
1m − 1

2
ε̃2
1

ε̂3ε̃3 � 1
2
ε2
3m − 1

2
ε̃2
3

. (46)

The following inequalities can be attained:

L̇ � −k1z
2
1 − k2z

2
2 − k3z

2
3 +

1
2
λ1‖W ∗

1 ‖2−

1
2
λ1‖W̃1‖2 +

1
2
σ1ε

2
1m − 1

2
σ1ε̃

2
1+

1
2
λ3‖W ∗

3 ‖2 − 1
2
λ3‖W̃3‖2 +

1
2
σ3ε

2
3m−

1
2
σ3ε̃

2
3 + z1

[
ε1 − ε1m tanh

(
z1

δ

)]
+

z3

[
ε3 − ε3m tanh

(
z3

δ

)]
. (47)

Based on the results from [17], the following inequality
holds:

0 � |η| − η tanh(
η

δ
) � cηδ, η ∈ R (48)

where cη is selected as 0.278 5. It is easy to verify that the
above-mentioned inequality is very useful for the stability
analysis.

Hence according to (48), we know

ε1z1 − ε1mz1 tanh
(

z1

δ

)
�

ε1m|z1| − ε1mz1 tanh
(

z1

δ

)
�

ε1m

[
|z1| − z1 tanh

(
z1

δ

)]
� ε1mcηδ. (49)

Likewise we have

ε3z3 − ε3mz3 tanh
(

z3

δ

)
� ε3mcηδ. (50)

Substituting (49), (50) into (47) yields

L̇ � −k1z
2
1 − k2z

2
2 − k3z

2
3 +

1
2
λ1‖W ∗

1 ‖2−

1
2
λ1‖W̃1‖2 +

1
2
σ1ε

2
1m − 1

2
σ1ε̃

2
1+

1
2
λ3‖W ∗

3 ‖2 − 1
2
λ3‖W̃3‖2 +

1
2
σ3ε

2
3m−

1
2
σ3ε̃

2
3 + (ε1m + ε3m)cηδ. (51)

Considering (21), (30) and (39), we have

L̇ � −
3∑

i=1

ζiLi + C (52)

with

ζ1 = min
[
2k1g1,

λ1

λmax(Γ−1
1 )

, σ1	1

]
, ζ2 = 2k2,

ζ3 = min
[
2k3,

λ3

λmax(Γ−1
3 )

, σ3	3

]
,

C =
1
2
λ1‖W ∗

1 ‖2 +
1
2
λ3‖W ∗

3 ‖2 +
1
2
σ1ε

2
1m+

1
2
σ3ε

2
3m + (ε1m + ε3m)cηδ.

The conclusion is attained as follows:

L̇ � −ζL + C (53)

with ζ = min[ζ1, ζ2, ζ3]. It is easy to know that C is a
bounded constant.

Based on (49), we have

L � L(0)e−ζt +
C

ζ
� L(0) +

C

ζ
, ∀t � 0. (54)

Besides considering (44), we can obtain the conclusion
that all signals of the closed-loop system are bounded,
moreover, the tracking errors can be converted into a
bounded invariant set as follows:

Ω Δ= {z1, z2, z3, W̃1, W̃3, ε̃1, ε̃3

∣∣|z1|2 � 2g1L(0)+
2g1C

ζ
,

|z2|2 � 2L(0) +
2C

ζ
; |z3|2 � 2L(0) +

2C

ζ
;

‖W̃1‖2 � 2L(0)
λmin(Γ−1

1 )
+

2C

ζλmin(Γ−1
1 )

;

‖W̃3‖2 � 2L(0)
λmin(Γ−1

3 )
+

2C

ζλmin(Γ−1
3 )

;
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|ε1|2 � 2L(0) +
2C

ζ
; |ε3|2 � 2L(0) +

2C

ζ
}. (55)

5. Simulations

In this section, the effectiveness of control system design
strategies will be proved through simulation. The control
gains are selected as k1 = 18, k2 = 7, k3 = 10, kh = 0.3,
ki = 0.1, kpv = 0.5, kiv = 7, kdv = 10. Moreover,
the updating laws parameters are selected as Γ1 = 5,
λ1 = 0.001, 	1 = 15, σ1 = 2.5, Γ3 = 2.5, λ3 = 0.001,
	3 = 0.01, σ3 = 0.002, δ = 0.05. And the higher-order
filters parameters can be designed as η2,2 = 2, η2,1 = 1,
η2,0 = 1, η3,1 = 1, η3,0 = 0.05. The numbers of NN nodes
are selected as N1 = 20 and N2 = 20, with their cen-
ters being evenly spaced in [−0.5, 0.5] × [−0.5, 0.5] and
[−0.5, 0.5]× [−9.7, 9.7]× [−4.5, 4.5], respectively.

In simulation, the reference altitude hr of altitude sub-
system simulation is achieved through a filter presented as
follows:

hr

hc
=

0.5 × 0.22

(s + 0.5)(s2 + 2 × 0.9 × 0.2s + 0.22)

where hc is the command signal, which climbs from
85 000 ft to 87 000 ft in 40 s, and then descends to
86 000 ft. The reference velocity Vr of the velocity sub-
system simulation is achieved through a filter presented as
follows:

Vr

Vc
=

0.3 × 0.22

(s + 0.3)(s2 + 2 × 0.7 × 0.2s + 0.22)

where Vc is the command signal, which climbs from
8 850 ft/s to 8 900 ft/s in 20 s, and then climbs to
9 150 ft/s.

The initial condition of simulation is shown in Table 1.
The simulation results are shown in figures that follow.

Table 1 The initial values

State Value Unit
h 85 000 ft
V 8 850 ft/s
γ 0 ◦
θ 0 ◦
Q 0 (◦)/s

In Fig. 1, we can see that the altitude tracks the reference
signal well. The altitude tracking error is shown in Fig. 2,
and the results can illustrate that the altitude subsystem de-
sign is satisfied. As shown in Fig. 3, the flight velocity can
track the reference signal well, moreover, the result, i.e.,
the velocity tracking error from Fig. 4 can indicate that the
PID contrller can fulfill the velocity tracking task.

Fig. 1 Altitude tracking

Fig. 2 Altitude tracking error

Fig. 3 Velocity tracking

Fig. 4 Velocity tracking error

The elevator deflection is shown in Fig. 5. It is easy
to see that the input of the altitude subsystem is bounded
and smooth. The virtual controllers of the altitude subsys-
tem are shown in Fig. 6 and Fig. 7. The input of the velo-
city subsystem, i.e., the fuel equivalence raio is shown in
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Fig. 8, which is bounded within (0,1.2). From Fig. 9 to
Fig. 11, the altitude subsystem states, i.e., the flight path
angle, the angle of pitch, and the pitch rate, are bounded.
The tracking errors of system states can be demonstrated
in Fig. 12.

Fig. 5 Elevator deflection

Fig. 6 Virtual controller x2v

Fig. 7 Virtual controller x3v

Fig. 8 Fuel equivalence ratio

Fig. 9 Flight path angle

Fig. 10 Angle of pitch

Fig. 11 Pitch rate
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Fig. 12 System states tracking errors

The filter dynamics q2 and q3 are represented in
Fig. 13 and Fig. 14. It is obvious that the fitler dynamics
are bounded and smooth, thus the filters design is effec-
tive.

Fig. 13 Filter dynamic q2

Fig. 14 Filter dynamic q3

The estimations of NN weights in Fig. 15 are smooth,
and the NN approximations for unknown nonlinear func-
tions f1 and f3 are shown in Fig. 16 and Fig. 17. The ap-
proximation performance could satisfy the requirement for
the control system design.

Fig. 15 Norm of cW1 and cW3

Fig. 16 NN approximation for f1

Fig. 17 NN approximation for f3

6. Conclusions

The typical adaptive neural control involved in the back-
stepping method is applied for the control system design of
the hypersonic vehicle in this paper. Moreover, the higher-
order filters are used for avoiding the explosions of dif-
ferentiation in backstepping steps. The important issue is
that the design parameter of higher-order filter selection
methodology is proposed. The NN can be improved in the
future work, since the range of RBF function action is li-
mited, and NN cannot approximate the unknown nonlinear
functions when the dynamics are out of the range of RBF
function action. Moreover, the flexible state stability con-
trol issue for the hypersonic vehicle should be considered
in the controller design.
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