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Abstract: Most of the existing multivariable grey models are based
on the 1-order derivative and 1-order accumulation, which makes
the parameters unable to be adjusted according to the data char-
acteristics of the actual problems. The results about fractional
derivative multivariable grey models are very few at present. In this
paper, a multivariable Caputo fractional derivative grey model with
convolution integral CFGMC(q,N) is proposed. First, the Caputo
fractional difference is used to discretize the model, and the least
square method is used to solve the parameters. The orders of
accumulations and differential equations are determined by using
particle swarm optimization (PSO). Then, the analytical solution of
the model is obtained by using the Laplace transform, and the con-
vergence and divergence of series in analytical solutions are also
discussed. Finally, the CFGMC(q,N) model is used to predict the
municipal solid waste (MSW). Compared with other competition
models, the model has the best prediction effect. This study en-
riches the model form of the multivariable grey model, expands the
scope of application, and provides a new idea for the development
of fractional derivative grey model.
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1. Introduction

Grey prediction model is the core component of the grey
system theory, and its main models, such as the classi-
cal grey model GM(1,1) [1], multivariable grey model
GM(1, N) [2], grey Verhulst model [3,4], grey Bernoulli
model [5], have made some progress. These models have
been successfully applied to fields such as energy [6], fi-
nance [7] and mechanical [8], etc. The multivariate grey
model has attracted the attention of scholars because it can
better reflect the mutual influence and restriction among
variables in the system.
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The development history of GM(1, N) model can be
seen in Table 1. In addition, scholars have studied the back-
ground values [9], the combined model [10,11], data type
[12], multicollinearity [13], time delay [14], driving fac-
tors [15], etc. These research results greatly promote the
development of the GM(1, N) model.

However, according to Table 1, we can see that most of
the existing grey models are 1-order accumulative gener-
ation operation (AGO) and 1-order derivative. When the
original data is a nonstationary sequence, the characteris-
tics and rules of the sequence cannot be fully discovered by
AGO [27], and AGO cannot embody the principle of new
information priority. On the other hand,1-order derivative
models are ideal memory models, which are not suitable
for describing irregular phenomena. When encountering a
sequence with large data fluctuation, the parameters of the
model cannot be adjusted according to the data character-
istics of the actual problem.

In order to solve the existing problems, fractional ac-
cumulation generating operation (FAGO) and fractional
derivative should be introduced into the grey model. There
are many research results on FAGO, such as the frac-
tional discrete multivariate model [22,24], the FAGO grey
Bernoulli equation [28], and the FAGO time delay model
[29]. There are many research results on the univariate
fractional derivative model, too. Mao et al. [30] introduced
fractional derivative into the grey system based on the good
degree of freedom and memory characteristics of fractional
derivative, and the modeling mechanism of the fractional
derivative model [31] is discussed. Yang et al. [32] used
the generalized fractional grey model to forecast the per
capita output of the power system. Mao et al. [33] estab-
lished a nonlinear fractional grey model which combines
the historical trend and the residual term. The multivari-
able fractional derivative grey model is only in [34].

Through the analysis of the existing model, four prob-
lems can be found.
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Table 1 Summary of the literature on GM(1,N)

Author Name Abbreviation Application

Deng (2002) [16] Multivariate grey model GM(1, N) Dynamic analysis of athletes’ training status
Xie et al. (2009) [17] Discrete multivariate grey model DGM(1, N) Mobile telecommunication customer

Wang (2014) [18] Nonlinear grey multivariable model NGM(1, N) High-technology industry total output
Mao et al. (2015) [19] Fractional accumulation time-lag model GM(1, N, τ) Economic development of Wuhan
Ding et al. (2017) [20] Multivariable time-delayed discrete grey model TDDGM(1, N) Output value of high-tech enterprises
Wu et al. (2018) [21] Grey multivariable convolution model GMCN(1, N) Industrial power consumption
Wu et al. (2018) [22] Grey multivariable model with fractional accumulation FGMC(1, N) Shandong’s electricity consumption
Pei et al. (2018) [23] Transformed model of nonlinear grey models TNGM(1, N) Pollutant emission
Ma et al. (2019) [24] Fractional discrete multivariate model FDGMC(1, N) Industrial pollutant emission
Ma et al. (2019) [25] Nonlinear multivariate grey Bernoulli model NGBMC(1, N) Tourist income of China

Zeng et al. (2019) [26] Grey model of ternary interval numbers TIGM(1, N) Power generation, consumer price index
This paper Caputo fractional derivative multivariable model CFGMC(q, N) Municipal solid waste (MSW) yields of Wuhan

First, the existing FAGO calculation method are ex-
tension of 1-order AGO through some deformation. It is
bound to produce a certain degree of error during trans-
formation. Second, the research of the fractional deriva-
tive grey model focuses on the single variable model, and
there are few achievements in multivariable. In fact, the
fractional derivative has a good global character, while the
GM(1, N) model reflects the influence of related factors on
the system characteristics as a whole, so the multivariable
prediction model is more suitable for the fractional deriva-
tive. Third, most of the existing fractional grey models only
consider FAGO or only study fractional derivatives, and
only [33] is used to build the grey model by combining
the two. Fourth, most of the existing fractional derivative
models do not discuss the type of fractional derivative, so
they cannot choose the appropriate discretization method
and solution method according to the type of derivative,
resulting in the inability to obtain the analytical solution.
Because there are many kinds of definition forms of frac-
tional derivative, the combination of different definition
forms and grey system will have different function forms
and different application ranges. The types of fractional
derivatives have important influence on the form and appli-
cation of the model, and the iterative solutions often affect
the prediction accuracy. Therefore, it is necessary to de-
fine the type of fractional derivative and find the analytical
solution.

After evaluation of these problems, the solutions are re-
spectively given. For the first aspect, FAGO and its inverse
(IFAGO) are directly defined by fractional sums and dif-
ference theory, which avoids the deformation extension
from 1-order AGO to FAGO. For the latter aspects, the
CFGMC(q,N) model is established by combining FAGO
and fractional derivative. The research object of the model
is multivariable system, and its derivative type is Caputo
type. The model can be discretized by Caputo fractional
difference, and the analytical solution can be obtained by

Laplace transform of Caputo fractional derivative.
The rest of this paper is organized as follows. Section 2

defines FAGO and IFAGO in the form of fractional sums
and difference and establishes the CFGMC(q,N) model
by using the Caputo fractional derivative. Then, the analy-
tical solution of the new model is given and the existence
of the solution is proved. In Section 3, the model is used to
predict the MSW yields, and the validity of the new model
is verified. Section 4 presents the conclusions.

2. Methodology

2.1 FAGO and IFAGO

This section defines FAGO and IFAGO by combining the
sum difference theory with the grey system theory.

Definition 1 [35] Suppose r is any positive real num-
ber, n is a positive integer, and the equation

∇−rx(n) =
[
r
n

]
· x(n) =

n∑
t=1

[
r

n− t

]
x(t) (1)

is called the r-order sum of x(n). Let m1 = [r] be the
smallest integer greater than or equal to r, then ∇rx(n) =
∇m1∇−(m1−r)x(n) is the r-order difference of x(n).

Definition 2 Let ϕ(0)
j = (ϕ(0)

j (1), ϕ(0)
j (2), . . . , ϕ(0)

j (n))
be the vector, k, j = {1, 2, . . . , n}, if{

ϕ
(0)
j (k) = 0, k �= j

ϕ
(0)
j (k) = 1, k = j

. (2)

ϕ
(0)
j is called the jth original generative base of AGO, and

all of ϕ(0) is called the original generative space of AGO.
Obviously, ϕ(0) is a unit matrix.

Definition 3 Let x(0) = (x(0)(1), x(0)(2), . . . , x(0)(n))
be a non-negative sequence, x(r) be r-order FAGO of x(0),
and note x(r) = ϕ

(r)
j x(0). Then ϕ

(r)
j is the generating base

vector of the FAGO space of x(0).
Theorem 1 Let ϕ(r)

j = (ϕ(r)
j (1), ϕ(r)

j (2), . . . , ϕ(r)
j (n))
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be the FAGO of ϕ
(0)
j , then

ϕ
(r)
j (k) =

k∑
t=1

[
r

k − t

]
ϕ

(0)
j (t) =

[
r

k − j

]
. (3)

Proof According to (2),

[
r

k − t

]
ϕ

(0)
j (t) = 1 only

if t = j, otherwise

[
r

k − t

]
ϕ

(0)
j (t) = 0, so ϕ(r)

j (k) =[
r

k − j

]
.

According to the definition of the fractional sum, the
vector space and the basis of FAGO can be derived. There-
fore, the theory of the fractional sum can be used to calcu-
late the FAGO. �

Definition 4 Let x(r)(k) = ∇−rx(0)(k), then x(r) =
(x(r)(1), x(r)(2), . . . , x(r)(n)) is called the r-order FAGO
sequence of x(0).

In particular, when r is a positive integer, FAGO is con-
sistent with the traditional AGO. After FAGO, the accu-
mulative sequence must be processed by the corresponding
inverse operation.

Theorem 2 If x(r−1) is the 1-order inverse AGO se-
quence of x(r), then x(r−1)(k) = x(r)(k) − x(r)(k − 1).
The process of proof is omitted.

Theorem 3 The r-order IFAGO of x(r) is x(0) =
∇rx(r) = A−rx(r), where A−r is the r-order IFAGO
matrix. The process of proof is omitted.

2.2 Establishment of CFGMC(q, N) model

Definition 5 [35] The equation

C
0 D

q
tx(t) =

1
Γ (m2 − q)

∫ t

0

x(m2)(τ)(t− τ)m2−q−1dτ

(4)
is the Caputo fractional derivative of x(t), where q is the
order of the derivative,m2 = [q]+1 is an integer, [q] is the
smallest integer greater than or equal to q, x(t) is a differ-
entiable function, Γ (·) is the Gamma function, and τ is a
variable that is different from t.

The original GM(1, N) model cannot be used for pre-
diction because it lacks control coefficients. Tian [36]
added a control variable u to the GM(1, N) model and es-
tablished the grey multivariate model with the convolution
integral GMC(1, N) which can be used for prediction. A
series of new forms of GMC(1, N) have been successfully
used for prediction. This paper uses the same method of
adding control coefficients to make the new model suitable
for prediction.

Definition 6 Let x(0)
1 = (x(0)

1 (1), x(0)
1 (2), . . . , x(0)

1 (n))
be a sequence of system characteristic data and x

(0)
i =

(x(0)
i (1), x(0)

i (2), . . . , x(0)
i (n)) (i = 2, . . . , N) be a se-

quence of system factor data. x(r)
1 and x

(r)
i are the r-order

FAGO sequences of x
(0)
1 and x

(0)
i , respectively. The dif-

ferential equation

C
0 D

q
tx

(r)
1 (t) + ax

(r)
1 (t) =

N∑
i=2

bix
(r)
i (t) + u (5)

is called the whitening differential equation of
CFGMC(q,N) model, where 0 < q � 1, a and bi are
model parameters, C

0 D
q
tx

(r)
1 (t) is the Caputo fractional

derivative of x(r)
1 (t) and u is the grey action coeffient.

The grey prediction model has the properties of dif-
ference, differential, and exponential compatibility. In the
CFGMC(q,N) model, x(r)

1 (t) is a continuous function.
The fractional differential equation can be understood as
the limit form of the fractional difference equation because
the difference is an approximate calculation of the differ-
ential. Therefore, to obtain the values of the model para-
meters, the continuous fractional differential equation can
be discretized into a difference equation.

Definition 7 [35] The equation

C
0 ∇q

tx(t)
Δ= 0∇−(m2−q)

t [∇m2x(t)] (6)

is the q-order Caputo fractional difference of x(t), where

0∇−(m2−q)
t is them2 − q order sum of ∇m2x(t).
Given that C

0 D
q
tx

(r)
1 (t) is the Caputo fractional deriva-

tive, C
0 D

q
tx

(r)
1 (t) is replaced by Caputo fractional differ-

ence. According to (6), the Caputo fractional difference of

x
(r)
1 (k) is C

1 ∇q
kx

(r)
1 (k) Δ= 1∇−m2+q

k [∇m2x
(r)
1 (k)]. Here,

because 0 � q < 1, that is m2 = 1, so it can be written as

C
0 D

q
tx

(r)
1 (t) ≈ C

1 ∇q
kx

(r)
1 (k) Δ= 1∇−1+q

k [∇x(r)
1 (k)]. (7)

According to the definition of the integer-order differ-
ence, we can get

1∇−1+q
k [∇x(r)

1 (k)] =

1∇−1+q
k [x(r)

1 (k) − x
(r)
1 (k)] =

1∇−1+q
k x

(r−1)
1 (k) = 1∇−1−q

k x
(r−1)
1 (k). (8)

Because 1 − q > 0, 1∇−(1−q)
k x

(r−1)
1 (k) represents the

1 − q order sums of x(r−1)
1 (k). According to (1),

1∇−(1−q)
k x

(r−1)
1 (k) =

k∑
t=1

[
1 − q
k − t

]
x

(r−1)
1 (t), (9)

because x
(r−1)
1 = Ar−1x

(0)
1 . A is the FAGO matrix, so

k∑
t=1

[
1 − q
k − t

]
x

(r−1)
1 (t) =

k∑
t=1

[
1 − q
k − t

]
Ar−1x

(0)
1 =
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A1−qAr−1x
(0)
1 = Ar−qx

(0)
1 = x

(r−q)
1 . (10)

The q-order Caputo fractional difference of x(r)
1 (k) can

be obtained as C
1 ∇q

kx
(r)
1 (k) Δ= x

(r−q)
1 (k). Then

C
0 D

q
tx

(r)
1 (t) ≈ C

1 ∇q
kx

(r)
1 (k) Δ= x

(r−q)
1 (k). (11)

Hence, the definition of the CFGMC(q,N) model is
given as Definition 8.

Definition 8 The equation

x
(r−q)
1 (k) + az

(r)
1 (k) =

N∑
i=2

bix
(r)
i (k) + u (12)

is called the definition form of the CFGMC(q,N) model,
where z

(r)
1 = (z(r)

1 (2), z(r)
1 (3), . . . , z(r)

1 (n)) is the se-

quence of the neighboring mean of x
(r)
1 , and x

(r−q)
1 =

A−qx
(r)
1 .

Theorem 4 The estimated parameter column P̂ =
[a, b2, b3, · · · , bN , u]T of the model of (12) obtained by the
least square method is satisfied:

P̂ = (BTB)−1BTY (13)

where

Y =
[
x

(r−q)
1 (2) x

(r−q)
1 (3) · · · x

(r−q)
1 (n)

]T
1×(n−1)

B=

⎡⎢⎢⎢⎢⎣
−z(r)

1 (2) x
(r)
2 (2) · · · x

(r)
N (2) 1

−z(r)
1 (3) x

(r)
2 (3) · · · x

(r)
N (3) 1

...
...

. . .
...

...

−z(r)
1 (n) x

(r)
2 (n) · · · x

(r)
N (n) 1

⎤⎥⎥⎥⎥⎦
(n−1)×(n+1)

P̂ =
[
a b2 b3 · · · bN u

]T
1×(n+1)

. (14)

The process of proof is omitted.

2.3 Solving CFGMC(q, N) model by using Caputo
fractional Laplace transform

In view of the superiority of Laplace transform in solv-
ing differential equations, the fractional Laplace transform
method is used to solve (5).

Definition 9 [35] Laplace transform formula of Caputo
fractional derivatives is

L(C
0 D

q
tx(t)) = sqX(s) −

m2−1∑
k=0

sq−k−1x(k)(0) (15)

where L is the sign of the Laplace transform, s is the
variable of the Laplace transform function, and X(s) =
L(x(t)) is the Laplace transform of x(t).

Theorem 5 The solution of the CFGMC(q,N) model
is presented as follows:

x̂
(r)
1 (k) =

[
x

(r)
1 (1) −M(k)Qk=1

Gk=1

]
G(k)+

M(k)kqQ(k), (16)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(k) =
N∑

i=2

bix
(r)
i (k) + u

G(k) =
∞∑

h=0

(−akq)h

Γ (qh+ 1)

Q(k) =
∞∑

h=0

(−akq)h

Γ (qh+ q + 1)

(17)

where h is the number of terms in the series.

Proof Given that
N∑

i=2

bix
(r)
i (k)+u of (5) does not con-

tain the unknown function x(r)
1 (k), then it can be recorded

as a grey variable M(k), that is,
N∑

i=2

bix
(r)
i (k) + u =

M(k). Equation (15) is used to transform both sides of (5).
Then

sqX(s) − sq−1x
(r)
1 (0) + aX(s) =

M(k)
s

. (18)

The following can be obtained by solving (18):

X(s) =

M(k)
s

+ sq−1x
(r)
1 (0)

sq + a
.

The Laplace inverse transform of X(s) is expressed as
follows:

x̂
(r)
1 (k) = L−1[X(s)] = L−1

⎡⎢⎣M(k)
s

+ sq−1x
(r)
1 (0)

sq + a

⎤⎥⎦ =

M(k)L−1

[
1

s(sq + a)

]
+ x

(r)
1 (0)L−1

[
sq−1

sq + a

]
. (19)

According to the relationship of Laplace inverse trans-
form and Mittage-leffler function, the following results can
be obtained as

L−1

[
1

s(sq + a)

]
= L−1

(
s−1

sq + a
; s
)

=

kqEq,q+1(−akq) = kq
∞∑

h=0

(−akq)h

Γ (qh+ q + 1)
, (20)

L−1

(
x

(r)
1 (0)sq−1

sq + a
; s

)
= x

(r)
1 (0)Eq,1(−akq) =
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x
(r)
1 (0)

∞∑
h=0

(−akq)h

Γ (qh+ 1)
. (21)

Substituting (20) and (21) into (19) yields

x̂
(r)
1 (k) = x

(r)
1 (0)

∞∑
h=0

(−akq)h

Γ (qh+ 1)
+

M(k)kq
∞∑

h=0

(−akq)h

Γ (qh+ q + 1)
. (22)

Let x̂(r)
1 (1) = x

(r)
1 (1), then

x
(r)
1 (0) =

x
(r)
1 (1) −M(k)

∞∑
h=0

(−a)h

Γ (qh+ q + 1)
∞∑

h=0

(−a)h

Γ (qh+ 1)

. (23)

Substituting (23) into (22) yields

x̂
(r)
1 (k) =

⎡⎢⎢⎢⎢⎣
x

(r)
1 (1) −M(k)

∞∑
h=0

(−a)h

Γ (qh+ q + 1)
∞∑

h=0

(−a)h

Γ (qh+ 1)

⎤⎥⎥⎥⎥⎦ ·
∞∑

h=0

(−akq)h

Γ (qh+ 1)
+M(k)kq

∞∑
h=0

(−akq)h

Γ (qh+ q + 1)
. (24)

Let ∞∑
h=0

(−akq)h

Γ (qh+ 1)
= G(k),

∞∑
h=0

(−akq)h

Γ (qh+ q + 1)
= Q(k),

∞∑
h=0

(−a)h

Γ (qh+ 1)
= Gk=1,

and ∞∑
h=0

(−a)h

Γ (qh+ q + 1)
= Qk=1.

Then,

x̂
(r)
1 (k) =

[
x

(r)
1 (1) −M(k)Qk=1

Gk=1

]
G(k)+

M(k)kqQ(k). �

Because the solution contains four series. The conver-
gence and divergence of these series determine whether the
solution exists. Therefore, discussing the convergence and
divergence of such series is necessary. Theorem 6 takes
∞∑

h=0

(−akq)h

Γ (qh+ 1)
as an example to illustrate this problem.

Theorem 6 Series
∞∑

h=0

(−akq)h

Γ (qh+ 1)
is convergent

throughout the domain of definition.
Proof The deformation of series is

∞∑
h=0

(−akq)h

Γ (qh+ 1)
=

∞∑
h=0

(−a)h(kq)h

Γ (qh+ 1)
let kq=t=====

∞∑
h=0

(−a)h(t)h

Γ (qh+ 1)
. (25)

∞∑
h=0

(−akq)h

Γ (qh+ 1)
is a power series, and its coefficient is

an =
(−a)h

Γ (qh+ 1)
. According to the convergence criterion

of the series, the following can be obtained:

lim
h→∞

h

√∣∣∣∣ (−a)h

Γ (qh+ 1)

∣∣∣∣ = |a| lim
h→∞

1
h
√

Γ (qh+ 1)
. (26)

The denominator limit of (26) is

lim
h→∞

h
√

Γ (qh+ 1) = lim
h→∞

eln(Γ(qh+1))
1
h =

e
lim

h→∞
ln(Γ(qh+1))

h . (27)

According to the relationship between Gamma function

and double Gamma function
d ln(Γ (qh+ 1))

dh
= ψ(qh +

1), then

lim
h→∞

ln(Γ (qh+ 1))
h

= lim
h→∞

d ln(Γ (qh+ 1))
dh

=

lim
h→∞

ψ(qh+ 1). (28)

According to ψ(x+ 1) = ψ(x) +
1
x

,

lim
h→∞

ψ(qh+1) = lim
h→∞

ψ(qh)+ lim
h→∞

1
qh

= lim
h→∞

ψ(qh).

(29)
The image of double Gamma function shows that

lim
h→∞

ψ(qh) = +∞, lim
h→∞

ln(Γ (qh+ 1))
h

= +∞, and

lim
h→∞

h
√

Γ (qh+ 1) = ∞, so

lim
h→∞

h

√∣∣∣∣ (−a)h

Γ (qh+ 1)

∣∣∣∣ = |a| lim
h→∞

1
h
√

Γ (qh+ 1)
= 0.

(30)
The convergence radius R = (−∞,∞), that is

∞∑
k=0

(−atp)k

Γ (pk + 1)
is convergent over the entire domain. �

Similarly, other series converge. It shows that the solu-
tion of the CFGMC(q,N) model exists and the model is
feasible.
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The predicted value of x(r)
1 (k) is x̂(r)

1 (k) from The-

orem 5, and the predicted value x̂(0)
1 (k) of x(0)

1 (k) can be
obtained from the IFAGO formula in Theorem 3.

2.4 Relationship of CFGMC(q, N) model and other
grey models

(i) When r = 1, q = 1, N = 1, and u �= 0, (5) can be

recorded as
dx(1)

1 (t)
dt

+ ax
(1)
1 (t) = u. This form is consis-

tent with the GM(1,1) model.
(ii) When r = 1, q = 1, N > 1, if u = 0, (5) can be

recorded as
dx(1)

1 (t)
dt

+ ax
(1)
1 (t) =

N∑
i=2

bix
(1)
i (t), and this

form is consistent with the GM(1, N) model; if u �= 0, (5)

can be recorded as
dx(1)

1 (t)
dt

+ax(1)
1 (t) =

N∑
i=2

bix
(1)
i (t)+u,

and it is the GMC(1, N) model.
(iii) When 0 < r < 1, q = 1, u �= 0, and N = 1, (5)

can be recorded as
dx(r)

1 (t)
dt

+ ax
(r)
1 (t) = u. This form is

consistent with the fractional grey model FGM(1,1).
(iv) When 0 < r < 1, q = 1, u �= 0, andN > 1, (5) can

be recorded as
dx(r)

1 (t)
dt

+ ax
(r)
1 (t) =

N∑
i=2

bix
(r)
i (t) + u.

This form is consistent with the fractional multivariate grey
model with the convolution integral FGMC(1, N).

Obviously, the CFGMC(q,N) model is the generaliza-
tion of the classical GM(1,1) model, GM(1, N) model,
GMC(1, N) model, FGM(1,1) model, and FGMC(1, N)
model.

2.5 PSO for determining the order r of FAGO and the
order q of differential equation

Fractional derivative and FAGO are the core of the
CFGMC(q,N) model. The aforementioned analysis and
calculation should be conducted when r and q are known.
Therefore, selecting the appropriate r and q for the model
is greatly important. In this study, the PSO algorithm is
used to determine the most suitable r and q to ensure the
minimum mean absolute percentage error (MAPE).

3. Case analysis: predicting the yields of
MSW of Wuhan, China

In this section, the validity of the CFGMC(q,N) model
is verified and compared to the other grey models. The
MAPE(%), mean absolute error (MAE) (10 000 t), root
mean square error (RMSE) (10 000 t), and absolute percent
error (APE)(%) are used to assess the modeling effect. The
units of these indicators are uniform throughout the text.
They are defined as follows:

MAPE =
1

n− 1

n∑
k=2

|x̂(0)(k) − x(0)(k)|
x(0)(k)

× 100%, (31)

MAE =
1
n

n∑
i=1

|x̂(0)(k) − x(0)(k)|, (32)

RMSE =

√√√√ 1
n

n∑
i=1

|x̂(0)(k) − x(0)(k)|2, (33)

APE =
|x̂(0)(k) − x(0)(k)|

x(0)(k)
× 100%. (34)

The MSW yields in China are huge and growing rapidly.
The prediction of MSW yields is a small sample and un-
certain system. The Ministry of Construction promulgated
the industry standard “Method for calculating and forecast-
ing the MSW yields” (CJ/T106-2016) [37], which clearly
pointed out that the prediction of the MSW yields should
be “based on the MSW yields of 6 – 8 consecutive years
starting from the next year of the forecast year”. Too much
data can substitute outdated information and affect the
quality of the model. The main influencing factors con-
tain both known and unknown uncertain information and
belong to an uncertain system. These two characteristics
determine that the prediction of MSW yields must choose
a prediction model that can deal with small samples, un-
certainty and diversification. From Fig. 1, we can see that
after 2012, the growth rate accelerates and the range of data
fluctuation is very large. Faced with such a large range of
data, traditional forecasting methods are ineffective, while
the CFGMC(q,N) model has the ability to process such
data. In this paper, the CFGMC(q,N) model is established
based on the data of MSW yields in Wuhan from 2006
to 2012, and the MSW yields from 2013 to 2017 are pre-
dicted. Data are from Wuhan Statistical Yearbook (2006—
2017).

Fig. 1 Amount and growth rate of MSW produced in Wuhan in
2006 —2017
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3.1 Selection of influencing factors

The selection of influencing factors has an important im-
pact on the results and rationality of modeling. In [38],
the characteristics, influencing factors and components of
MSW were compared and analyzed. Results showed that
the main indicators of influencing factors to MSW were
all of economic development levels, population and invest-
ments of government input. Based on the results of [38]

and the characteristics of urban development in Wuhan,
this paper takes five factors as input factors, namely, resi-
dent population at the end of the year, road sweeping
area, passenger accommodation and passenger volume, per
capita net income and resident consumption index. See
Table 2 for the original data on the input variables. Taking
the MSW yields as the output variable, the CFGMC(q,N)
model is established and compared with other models.

Table 2 Original data of MSW yields and its influencing factors

y1 y2 y3 y4 y5 y6

Year MSW yields/
10 000 tons

Resident population/
10 000 people

Road sweeping area/
100 000 m2

Passenger capacity/
10 000 people

Per capita net
income/yuan

Resident consumption
index/yuan

2006 211.00 875.00 4 009.00 16 193.70 4 748.00 9 182.10
2007 215.40 891.00 5 414.00 17 338.40 5 371.00 10 600.00
2008 219.10 897.00 5 994.00 18 882.10 6 349.00 11 433.00
2009 217.50 910.00 6 479.00 21 735.60 7 161.00 12 710.00
2010 219.20 978.50 6 640.00 22 896.70 8 295.00 14 490.10
2011 224.40 1 002.00 7 130.00 25 743.20 9 814.00 17 141.00
2012 225.00 1 012.00 8 857.00 27 492.20 11 190.00 18 813.10
2013 264.00 1 022.00 10 040.00 29 621.69 12 713.00 20 157.30
2014 257.36 1 033.80 15 837.00 27 899.48 16 160.00 22 002.20
2015 330.66 1 060.77 17 730.00 27 628.71 17 722.00 23 943.05
2016 356.29 1 076.62 12 486.00 29 177.15 19 152.00 26 535.00
2017 396.38 1 089.29 13 853.00 29 950.30 20 887.00 28 546.00

3.2 Model comparison and evaluation

(i) Analysis of test results: The fitting and prediction
results are shown in Table 3. In order to more intuitively
distinguish the differences among the three test indicators,
the histogram Fig. 2 of the three test indicators modeling

stages and the histogram Fig. 3 of the prediction stage are
drawn. It can be seen that although the four models have
good results in simulating, and their MAPE is less than
5%, the prediction results are quite different. The test in-
dex values of the CFGMC(0.6,6) model are smaller than
the other three models.

Table 3 Comparison of Wuhan’s MSW by CFGMC(0.6,6) model, GM(1,6) model, FGMC(1,6) model, and MLR model

CFGMC(q, N) GM(1, N) FGMC(1, N)Year or y1
r=0.5 q=0.6 r=1 q=1 r=0.8 q=1

MLR
Index MSW

Fitting APE Fitting APE Fitting APE Fitting APE
2006 211.00 211.00 0.00% 211.00 0.00% 211.00 0.00% 212.24 0.59%
2007 215.40 220.32 2.28% 194.01 9.93% 206.37 4.19% 215.97 0.27%
2008 219.10 220.50 0.64% 250.54 14.35% 211.73 3.36% 216.69 1.10%
2009 217.50 216.21 0.59% 231.33 6.36% 211.63 2.70% 217.95 0.21%
2010 219.20 223.69 2.05% 223.93 2.16% 214.12 2.32% 219.42 0.10%
2011 224.40 238.06 6.09% 226.38 0.88% 219.62 2.13% 222.87 0.68%
2012 225.00 234.22 4.10% 225.42 0.19% 220.57 1.97% 226.45 0.65%

MAPE 2.25% 4.84% 2.38% 0.51%
MAE 4.99 10.54 5.22 1.12
RMSE 6.76 15.42 5.84 1.33
2013 264.00 237.37 10.09% 188.04 28.77% 218.87 17.10% 228.16 13.58%
2014 257.36 213.46 17.06% 131.75 48.81% 214.52 16.65% 236.10 8.26%
2015 330.66 217.06 34.35% 141.09 57.33% 208.77 36.86% 240.86 27.16%
2016 356.29 366.26 2.80% 39.13 89.02% 217.71 38.90% 237.29 33.40%
2017 396.38 393.80 0.65% 22.86 94.23% 234.59 40.82% 241.07 39.18%

MAPE 12.99% 63.63% 30.06% 24.32%
MAE 39.34 216.36 102.05 84.24
RMSE 55.94 243.96 113.23 98.07

(ii) Trend of prediction curve and analysis of its reasons:
In order to more intuitively reflect the difference degree of
the model effect and further analyze the causes, the line

maps Figs. 4 – 7 of the four models in the modeling and
prediction stages are drawn. Fig. 4 shows that although the
multiple linear regression (MLR) model has the best fitting
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effect, its prediction effect is unsatisfactory. Its forecast
trend of MSW is linear, which is obviously not in line with
reality. The reason is that the MLR model only has bet-
ter prediction results when dealing with stationary series.
Fig. 5 shows that the trend predicted by the GM(1,6) model
is decreasing year by year, which is opposite to the actual
trend. The reason is that the order of AGO and derivative
are fixed, and cannot be adjusted according to the actual
situation of data types. Fig. 6 shows that the FGMC(1,6)
model is closer to the original data sequence than that of
the GM(1,6) model. The reason is that the order of AGO
of the FGMC(1, N) model is adjustable. Fig. 7 shows that
the trend chart of the CFGMC(0.6,6) model is closer to
the original curve than other models. The reason is that
the CFGMC(q,N) model not only has better prediction
effect on the stationary sequence, but also has more unique
advantages for non-stationary sequences. Obviously, it is
necessary and meaningful to extend AGO and integer grey
derivatives to the fractional order.

Fig. 2 Comparison of fitting results

Fig. 3 Comparison of prediction results

Fig. 4 Curve of the MLR model and original data

Fig. 5 Curve of the GM(1,6) model and original data

Fig. 6 Curve of the FGMC(1,6) model and original data
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Fig. 7 Curve of the CFGMC(0.6,6) model and original data

4. Conclusions

The main contents of this paper include the following five
aspects. First, FAGO and IFAGO are directly defined by
fractional sums and the difference theory. Second, the type
of fractional derivative used in the model is pointed out.
Third, the CFGMC(q,N) model is established by combin-
ing FAGO and fractional derivative. Fourth, the analytical
solution of the model is obtained. Fifth, the existence of the
analytical solution is proven. The model is used to forecast
the MSW yields. Through the work, we can get the follow-
ing conclusions:

(i) The order of FAGO and differential equation have im-
portant influence on the accuracy of the model. The frac-
tional grey model is a general case of the integral grey
model.

(ii) The CFGMC(q,N) model can adjust the order of
FAGO and the differential equation according to the data
characteristics of practical problems, so that the prediction
of non-stationary series can also have satisfactory results.

(iii) The establishment of the CFGMC(q,N) model ex-
tends the form and application scope of the multivariate
grey prediction model, and improves the accuracy of the
model to a certain extent.

(iv) FAGO and IFAGO, which are defined directly by
the theory of fraction sum and difference, do not need to
be transformed indirectly. They are intuitionistic, clear and
accurate.
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