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Abstract: This article investigates the optimal observation confi-
guration of unmanned aerial vehicles (UAVs) based on angle and
range measurements, and generalizes predecessors’ researches
in two dimensions into three dimensions. The relative geome-
try of the UAVs-target will significantly affect the state estimation
performance of the target, the cost function based on the Fisher
information matrix (FIM) is used to derive the FIM determinant of
UAVs’ observation in three-dimensional space, and the optimal ob-
servation geometric configuration that maximizes the determinant
of the FIM is obtained. It is shown that the optimal observation
configuration of the UAVs-target is usually not unique, and the
optimal observation configuration is proved for two UAVs and three
UAVs in three-dimension. The long-range over-the-horizon target
tracking is simulated and analyzed based on the analysis of opti-
mal observation configuration for two UAVs. The simulation results
show that the theoretical analysis and control algorithm can effec-
tively improve the positioning accuracy of the target. It can provide
a helpful reference for the design of over-the-horizon target local-
ization based on UAVs.
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1. Introduction

In recent years, unmanned aerial vehicles (UAVs) have
been widely used in military and civilian applications due
to their diverse sensors, concealed actions, controllable
costs, and no need for personnel to come forward. In par-
ticular, they have the characteristics of aerial reconnais-
sance, so that UAVs have the potential to provide precise
target position for long-range strike weapons [1,2].

Target localization and tracking have been studied ex-
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tensively in numerous references. Xu and Shao et al. [3,4]
studied the factors that affect the precise localization by
UAVs, the main influencing factors include the position of
the UAV, the navigation accuracy of the attitude angle and
the relative position relationship between the UAV and the
target. In the research of multi-UAV coordinated localiza-
tion and tracking, in order to achieve the purpose of ef-
fectively using observation information [5], Campbell et
al. [6] used unscented Kalman filtering combined with in-
formation filtering to fuse target state estimation, Wang et
al. [7] used distributed unscented information filtering to
achieve estimation of targets, and Yu et al. [8] used the
two-level localization mode of coarse and fine to obtain
the optimal solution of the target position.

However, the fusion filtering method is the only way
to improve the target state estimation based on the obser-
vation data, the validity of the observation data varies ac-
cording to the geometry of the UAV relative to the target.
Subsequent research of relevance focuses mainly on deve-
loping methods for optimizing observation configuration
to achieve the best target estimation performance. A com-
mon approach is to use objective functions derived from
the determinant of the Fisher information matrix (FIM)
[9 – 11]. FIM characterizes the amount of information
about state parameters contained in a given observation
sequence. The larger the value, the smaller covariance of
the state estimation and the more accurate of the target
state estimation. Tichavsky et al. [12] proposed a recur-
sive FIM calculation method. Adrian et al. [13] studied the
optimal sensor-target geometries for range-only, time-of-
arrival-based and bearing-only localization. Sameera et al.
[14] gave an FIM expression based on angle-measuring of
UAVs system in three dimensions but did not simplify it.
For a target-tracking application with range sensors, the
determinant of the FIM is computed in the two-dimension
(2-D) and three-dimension (3-D) cases by Sonia et al. [15].
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Eric et al. [16] researched the optimal observation configu-
ration of double UAVs based on angle and range measure-
ments in two-dimensional space. Wang [17] gave the de-
terminant of FIM based on angle and range information in
two dimensions and proposed the optimal observation con-
figuration of UAVs. Zhong et al. [18] analyzed the optimal
configuration of sensor-target geometries for bearing-only
passive localization in three-dimensional space and theo-
retically derived it. Similar optimization functions are con-
sidered in some researches. Logothetis et al. [19] used mu-
tual information as the objective function to model the op-
timal observational motion problem as a part of a consid-
erable Markov process. Frew [20] explored the problem of
trajectory planning for a 2-D ground robot equipped with
vision sensors, using the determinant of the error covari-
ance matrix as the objective function. The target tracking
problem was solved by using the trace of the FIM as the
objective function by Zhou et al. [21].

At present, most researches about the problem of co-
ordinated localization and tracking of UAVs are based on
short-range tracking, but there is little research on over-
the-horizon target tracking by UAVs. Some researches with
the optimal configuration of UAVs are in two-dimensional
space, and some only consider the measurements of range-
only or bearing-only in three-dimensional space, which
is difficult to meet the requirements of accurate localiza-
tion of the over-the-horizon target. For those reasons, this
work builds upon previous literature by developing a cost
function based on the determinant of FIM for designing
UAVs observation configuration to localize a target using
range and angle measurements in three-dimensional space.
The purpose of this article is to focus on analyzing the
optimal configuration of UAVs based on range and angle
measurements, increasing the information provided by the
measurements, reducing the uncertainty of target state es-
timation, and improving the accuracy in localization of
the target. The optimal observation control algorithm of
two UAVs is designed and simulated based on the analy-
sis of optimal observation configuration for two UAVs. The
simulation results verify the effectiveness of the theoretical
analysis and control algorithm in this paper.

2. Determinant of FIM

2.1 Definition of FIM

Error covariance is a common performance function of
state estimation, which represents the uncertainty of state
estimation, so the error covariance should be as small as
possible.

The Cramer-Rao lower bound (CRLB) provides a lower
bound on the covariance of the estimation. Moreover,
CRLB is related to the inherent properties of the system
and has nothing to do with the specific estimation algo-

rithm. The mathematical expression of CRLB is

CRLB
Δ= F−1

k �

Pk|k = E{[X̂k|k − Xk][X̂k|k − Xk]T} (1)

where Pk|k denotes the covariance matrix of the estimation

error, Xk is the state to be estimated, and X̂k|k is the es-
timated value of Xk under the given measurement data. F
represents FIM, which is the inverse of CRLB, and it repre-
sents the amount of information about the state parameters
contained in a given observation sequence.

The determinant of FIM det(F (T )) is inversely propor-
tional to the uncertainty area of T , therefore the optimality
analysis of sensor-target geometry is equal to maximizing
det(F (T )).

2.2 Calculation for the determinant of FIM

In three-dimensional space, the target locates in
T (xt, yt, zt), UAV i locates in Ui(xi, yi, zi), UAV j lo-
cates in Uj(xj , yj, zj), the angle of sight between UAVs
and the target is θij , which is shown in Fig. 1.

Fig. 1 Target localization by two UAVs

Fig. 1 shows the horizontal angle of the target observed
by UAV j is βj , and the pitch angle of the target observed
by UAV j is ϕj . Xk = [xt, yt, zt]Tk is the target state at
time k, Uk = [xu, yu, zu]Tk is the UAV state at time k,
and the related vector between the UAV and the target is
rk = [rx, ry, rz ]Tk , where rx = xu − xt, ry = yu − yt,
rz = zu − zt. We can obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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The target information observed by the UAV is

h(Xk) =
[
r β ϕ

]T =

⎡⎣√r2
x + r2

y + r2
z arctan

(
rx

ry

)
arctan

⎛⎝ rz√
r2
x + r2

y

⎞⎠⎤⎦T

. (3)

The Jacobian matrix of the observation function is expressed as

Hk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rx√
r2
x + r2

y + r2
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−rx
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0

−rxrz
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y + r2
z

√
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−ryrz

r2
x + r2

y + r2
z

√
r2
x + r2

y

√
r2
x + r2

y

r2
x + r2

y + r2
z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [Hr, Hβ , Hϕ]Tk . (4)

eri, eβi and eϕi constitute the observation error ma-
trix Ri of UAV i. eri∼N(0, σ2

r), eβi ∼ N(0, σ2
β), eϕi ∼

N(0, σ2
ϕ). The observation error matrix of UAV i is

Ri = diag(σ2
r , σ2

β , σ2
ϕ). (5)

The FIM of this observation system [14] is

Jk = [ΦT
k,k−1]

−1Jk−1Φ
−1
k,k−1 + HT

k R−1
k Hk. (6)

In the optimal observation configuration, only the cur-
rent position of the target is considered, and it is assumed
that the current position of the target is fixed.

Φk,k−1 =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ (7)

Therefore, for the current UAV observation platforms,
the total FIM of the system [17] can be expressed as

J =
N∑

i=1

Ji =
N∑

i=1

HT
i RiHi =

N∑
i=1

[Hr, Hβ, Hϕ]iRi

⎡⎣Hr

Hβ

Hϕ

⎤⎦T

i

. (8)

Assume that σ2 = σ2
β cos2 ϕ = σ2

ϕ, and when UAVs
observe a single target, the total FIM of the system is ex-
pressed as J = JNJT

N , where

JN =

⎡⎢⎢⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎥⎥⎦ . (9)

Using the Cauchy-Binet [22] formula, det(J) is com-
posed of the following ten parts, and the case of N = 2 is
explained at the same time.

(i)
∑
S1

det(D1) · det(DT
1 ), N(S1) = C1

NC1
NC1

N , S1

represents a subset, D1 is a block matrix of 3 times 3,
N(S1) represents the number of elements contained in S1,
with the same meaning later.

D1 =

⎡⎢⎢⎢⎢⎢⎢⎣

cosϕi sin βi

σr

cosβj

σRj
− sinβk sin ϕk
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cosϕi cosβi
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− sinβj
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0
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⎤⎥⎥⎥⎥⎥⎥⎦
(10)
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i) As i = j = k, that is i, j, k columns of observation
come from the same UAV, this sub-part is equal to∑

S11

det(D1) · det(DT
1 ) =

∑
S11

1
σ2

rσ4R4
j

(11)

where S11 = {(i, j, k)|1 � i = j = k � N}, N(S11) =
C1

N .
ii) As i = j �= k, both columns i and j come from the

same UAV, column k comes from another UAV, this sub-
part is equal to ∑

S12

det(D1) · det(DT
1 ) =

∑
S12

[sin ϕi sin ϕk cos(βi − βk) + cosϕi cosϕk]2

σ2
rσ4R2

i R
2
k

(12)

where S12 = {(i, j, k)|1 � i = j �= k � N}, N(S12) =
C1

NC1
N−1.

iii) As i = k �= j, both columns i and k come from
the same UAV, column j comes from another UAV, this

sub-part is equal to

∑
S13

det(D1) · det(DT
1 ) =

∑
S13

cos2(βi − βj)
σ2

rσ4R2
i R

2
j

(13)

where S13 = {(i, j, k)|1 � i = k �= j � N}, N(S13) =
C1

NC1
N−1.

iv) As i �= j = k, both columns j and k come from the
same UAV, column i comes from another UAV, this sub-
part is equal to ∑

S14

det(D1) · det(DT
1 ) =

∑
S14

[cosϕi cosϕk cos(βi − βk) + sin ϕi sin ϕk]2

σ2
rσ4R2

i

(14)

where S14 = {(i, j, k)|1 � i �= j = k � N}, N(S14) =
C1

NC1
N−1.

v) As i �= j �= k, columns i, j and k come from different
UAVs, this sub-part is equal to

∑
S15

det(D1) · det(DT
1 ) =

∑
S15

[cosϕi cosϕk cos(βi − βj) + sin ϕi sinϕk cos(βj − βk)]2

σ2
rσ4R2

jR
2
k

(15)

where S15 = {(i, j, k)|1 � i �= j �= k � N}, N(S15) =
C1

NC1
N−1C

1
N−2. In the case of N = 2, this part does not

exist. S1 = S11 ∪ S12 ∪ S13 ∪ S14 ∪ S15, the first part is
equal to the sum of (11) – (15).

(ii)
∑
S2

det(D2) · det(DT
2 ), N(S2) = C1

NC2
N .

D2 =

⎡⎢⎢⎢⎢⎢⎢⎣

cosϕi sin βi

σr

cosβj

σRj

cosϕk sin βk

σr

cosϕi cosβi

σr
− sinβj

σRj

cosϕk cosβk

σr

sin ϕi

σr
0

sin ϕk

σr

⎤⎥⎥⎥⎥⎥⎥⎦
(16)

i) As i = j, both columns i and j come from the same
UAV, this sub-part is equal to∑

S21

det(D2) · det(DT
2 ) =

∑
S21

[sin ϕj cosϕk cos(βj − βk) − cosϕj sin ϕk]2

σ4
rσ2R2

j

(17)

where S21 = {(j, k)|1 � j < k � N}, N(S21) = C2
N .

ii) As j = k, both columns j and k come from the same
UAV, this sub-part is equal to∑

S22

det(D2) · det(DT
2 ) =

∑
S22

[sin ϕj cosϕi cos(βi − βj) − cosϕj sin ϕi]2

σ4
rσ2R2

j

(18)

where S22 = {(i, j)|1 � i < j � N}, N(S22) = C2
N .

iii) As i �= j �= k, columns i, j and k come from differ-
ent UAVs, this sub-part is equal to

∑
S23

det(D2) · det(DT
2 ) =

∑
S23

[sin ϕi cosϕk cos(βj − βk) − cosϕi sin ϕk cos(βi − βj)]2

σ4
rσ2R2

j

(19)

where S23 = {(i, j, k)|1 � i < k � N, 1 � j � N, j �=
i, j �= k}, N(S23) = C2

NC1
N−2, in the case of N = 2, this

part does not exist.

(iii)
∑
S3

det(D3) · det(DT
3 ), N(S3) = C1

NC2
N .
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D3 =

⎡⎢⎢⎢⎢⎢⎢⎣

cosϕi sin βi

σr

cosβj

σRj

cosβk

σRk

cosϕi cosβi

σr
− sinβj

σRj
− sin βk

σRk

sin ϕi

σr
0 0

⎤⎥⎥⎥⎥⎥⎥⎦ (20)

Similar to the analysis of the second part, the third part
is also divided into three situations. The third part is as fol-
lows:∑

S3

det(D3) · det(DT
3 ) =

∑
S31

sin2 ϕj sin2(βj − βk)
σ2

rσ4R2
jR

2
k

+

∑
S32

sin2 ϕk sin2(βj − βk)
σ2

rσ4R2
jR

2
k

+
∑
S33

sin2 ϕi sin2(βk − βj)
σ2

rσ4R2
jR

2
k

(21)
where S31 = {(j, k)|1 � j < k � N}, N(S31) = C2

N ,

S32
Δ= S31, S33 = {(i, j, k)|1 � j < k � 2, 1 � i �

2, i �= j, i �= k}, N(S33) = C2
NC1

N−2. In the case of
N = 2, the last sub-part does not exist.

(iv)
∑
S4

det(D4) · det(DT
4 ), N(S4) = C1

NC2
N .

D4 =

⎡⎢⎢⎢⎢⎢⎢⎣

cosϕi sin βi

σr
− sinβj sinϕj

σRj

cosϕk sin βk

σr

cosϕi cosβi

σr
−cosβj sin ϕj

σRj

cosϕk cosβk

σr

sin ϕi

σr

cosϕj

σRj

sin ϕk

σr

⎤⎥⎥⎥⎥⎥⎥⎦
(22)

Similar to the analysis of the second part, the fourth part
is also divided into three situations. The fourth part is as
follows:

∑
S4

det(D4) · det(DT
4 ) =

∑
S41

cos2 ϕk sin2(βj − βk)
σ4

rσ2R2
j

+
∑
S42

cos2 ϕi sin2(βi − βj)
σ4

rσ2R2
j

+

∑
S43

[sin ϕi sin ϕj cosϕk sin(βj − βk) + cosϕi cosϕj cosϕk sin(βi − βk) + cosϕi sin ϕj sin ϕk sin(βi − βj)]2

σ4
rσ2R2

j

(23)

where

S41 = {(j, k)|1 � j < k � N}, N(S41) = C2
N ,

S42 = {(i, j)|1 � i < j � N}, N(S42) = C2
N ,

S43 = {(i, j, k)|1 � i < k � N, 1 � j � N, i �= j, j �=
k}, N(S43) = C2

NC1
N−2. In the case of N = 2, the last

sub-part does not exist.
(v)
∑
S5

det(D5) · det(DT
5 ), N(S5) = C1

NC2
N .

D5=

⎡⎢⎢⎢⎢⎢⎢⎣

cosϕi sinβi

σr
− sin βj sin ϕj

σRj
− sinβk sinϕk

σRk

cosϕi cosβi

σr
−cosβj sin ϕj

σRj
−cosβk sin ϕk

σRk

sinϕi

σr

cosϕj

σRj

cosϕk

σRk

⎤⎥⎥⎥⎥⎥⎥⎦
(24)

Similar to the analysis of the second part, the fifth part
is also divided into three situations. The fifth part is as fol-
lows:

∑
S5

det(D5) · det(DT
5 ) =

∑
S51

cos2 ϕk sin2(βj − βk)
σ2

rσ4R2
jR

2
k

+
∑
S52

cos2 ϕj sin2(βk − βj)
σ2

rσ4R2
jR

2
k

+

∑
S53

[sin ϕi sin ϕj sin ϕk sin(βj − βk) + cosϕi cosϕj sin ϕk sin(βi − βk) + cosϕi sinϕj cosϕk sin(βj − βi)]2

σ2
rσ4R2

jR
2
k

(25)

where

S51 = {(j, k)|1 � j < k � N},

N(S52) = C2
N , S52

Δ= S51,

S53 = {(i, j, k)|1 � j < k � N, 1 � i � N, i �= j, i �=
k}, N(S53) = C2

NC1
N−2. In the case of N = 2, the last

sub-part does not exist.
(vi)

∑
S6

det(D6) · det(DT
6 ), N(S6) = C1

NC2
N .

D6 =

⎡⎢⎢⎢⎢⎢⎢⎣

cosβi

σRi

cosβj

σRj
− sinβk sin ϕk

σRk

− sin βi

σRi
− sinβj

σRj
−cosβk sinϕk

σRk

0 0
cosϕk

σRk

⎤⎥⎥⎥⎥⎥⎥⎦ (26)

Similar to the analysis of the second part, the sixth part
is also divided into three situations. The sixth part is as
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follows:

∑
S6

det(D6) · det(DT
6 ) =

∑
S61

cos2 ϕi sin2(βi − βj)
σ6R4

i R
2
j

+

∑
S62

cos2 ϕj sin2(βi − βj)
σ6R2

i R
4
j

+
∑
S63

cos2 ϕk sin2(βi − βj)
σ6R2

i R
2
jR

2
k

(27)
where S61 = {(i, j)|1 � i < j � N}, N(S61) = C2

N ,

S62
Δ= S61, S63 = {(i, j, k)|1 � i < j � N, 1 � k �

N, i �= k, j �= k}, N(S63) = C2
NC1

N−2. In the case of
N = 2, the last sub-part does not exist.

(vii)
∑
S7

det(D7) · det(DT
7 ), N(S7) = C1

NC2
N .

D7 =

⎡⎢⎢⎢⎢⎢⎢⎣

cosβi

σRi
− sinβj sin ϕj

σRj
− sin βk sin ϕk

σRk

− sin βi

σRi
−cosβj sinϕj

σRj
−cosβk sin ϕk

σRk

0
cosϕj

σRj

cosϕk

σRk

⎤⎥⎥⎥⎥⎥⎥⎦
(28)

Similar to the analysis of the second part, the seventh
part is also divided into three situations. The seventh part
is as follows:

∑
S7

det(D7) · det(DT
7 ) =

∑
S71

[cosϕj sin ϕk cos(βj − βk) − sinϕj cosϕk]2

σ6R4
jR

2
k

+

∑
S72

[sin ϕj cosϕk cos(βj − βk) − cosϕj sinϕk]2

σ6R2
jR

4
k

+
∑
S73

[cosϕj sin ϕk cos(βi − βk) − sin ϕj cosϕk cos(βi − βj)]2

σ6R2
i R

2
jR

2
k

(29)

where S71 = {(j, k)|1 � j < k � N}, N(S71) = C2
N ,

S72
Δ= S71, S73 = {(i, j, k)|1 � j < k � N, 1 � i �

N, i �= j, i �= k}, N(S73) = C2
NC1

N−2. In the case of
N = 2, the last sub-part does not exist.

(viii)
∑
S8

det(D8) · det(DT
8 ), N(S8) = C3

N .

D8 =

⎡⎢⎢⎢⎢⎣
cosβi

σRi

cosβj

σRj

cosβk

σRk

− sinβi

σRi
− sinβj

σRj
− sinβk

σRk

0 0 0

⎤⎥⎥⎥⎥⎦ (30)

This part is equal to zero.

(ix)
∑
S9

det(D9) · det(DT
9 ), N(S9) = C3

N .

D9 =

⎡⎢⎢⎢⎢⎢⎢⎣

cosϕi sin βi

σr

cosϕj sin βj

σr

cosϕk sin βk

σr

cosϕi cosβi

σr

cosϕj cosβj

σr

cosϕk cosβk

σr

sin ϕi

σr

sin ϕj

σr

sin ϕk

σr

⎤⎥⎥⎥⎥⎥⎥⎦
(31)

As i �= j �= k, columns i, j and k come from different
UAVs, this part is equal to

∑
S9

det(D9) · det(DT
9 ) =

∑
S9

[sinϕi cosϕj cosϕk sin(βj − βk) + cosϕi sin ϕj cosϕk sin(βk − βi) + cosϕi cosϕj sin ϕk sin(βi − βj)]2

σ6
r

(32)

where S9 = {(i, j, k)|1 � i < j < k � N}. In the case of
N = 2, this part does not exist.

(x)
∑
S10

det(D10) · det(DT
10), N(S10) = C3

N .

D10 =

⎡⎢⎢⎢⎢⎢⎢⎣
− sinβi sinϕi

σRi
− sin βj sinϕj

σRj
− sinβk sin ϕk

σRk

−cosβi sin ϕi

σRi
−cosβj sin ϕj

σRj
−cosβk sin ϕk

σRk
cosϕi

σRi

cosϕj

σRj

cosϕk

σRk

⎤⎥⎥⎥⎥⎥⎥⎦ (33)
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As i �= j �= k, columns i, j and k come from different UAVs, this part is equal to

∑
S10

det(D10) · det(DT
10) =

∑
S10

[cosϕi sin ϕj sin ϕk sin(βk − βj) + sin ϕi cosϕj sin ϕk sin(βi − βk) + sinϕi sin ϕj cosϕk sin(βj − βi)]2

σ6R2
i R

2
jR

2
k

(34)

where S10 = {(i, j, k)|1 � i < j < k � N}. In the case
of N = 2, this part does not exist.

2.3 Four equations used to compute the
determinant of FIM

The following four equations are needed to calculate the
FIM determinant of a system.

Given r(ϕi, βi) = (cosϕi sinβi, cosϕi cosβi, sin ϕi),
we can get the followings:

(i) According to the definition of cos θij in Fig. 1,

cos θij = r(ϕi, βi) · r(ϕj , βj) =

cosϕi cosϕj cos(βj − βi) + sin ϕi sinϕj (35)

where 1 � i < j � N .
(ii) From (35), we can get

[cosϕj sin ϕi − sin ϕj cosϕi cos(βj − βi)]2+

cos2 ϕi sin2(βj − βi) = 1 − [r(ϕi, βi) · r(ϕj , βj)]2 =

1 − cos2 θij (36)

where 1 � i < j � N .
(iii) Calculate the mixed product of r(ϕ1, β1),

r(ϕ2, β2) and r(ϕ3, β3):

[r(ϕ1, β1)r(ϕ2, β2)r(ϕ3, β3)]2 =

[sin ϕ1 cosϕ2 cosϕ3 sin(β2 − β3)+

cosϕ1 sin ϕ2 cosϕ3 sin(β3 − β1)+

cosϕ1 cosϕ2 sin ϕ3 sin(β1 − β2)]2. (37)

(iv) There are the following relationships:

[r(ϕ1, β1)r(ϕ2, β2)r(ϕ3, β3)]2 =

1 − [r(ϕ1, β1)r(ϕ2, β2)]2 − [r(ϕ1, β1)r(ϕ3, β3)]2−
[r(ϕ2, β2)r(ϕ3, β3)]2 + 2[r(ϕ1, β1)r(ϕ2, β2)]·
[r(ϕ1, β1)r(ϕ3, β3)][r(ϕ2, β2)r(ϕ3, β3)]. (38)

3. Analysis of optimal observation
configuration

The optimal observation configuration refers to UAVs ob-

servation configuration which minimizes the error of target
state estimation. The quality of the measurement data is
closely related to the observation position of the UAV rela-
tive to the target. The target information provided by the
measurement data obtained from different observation po-
sitions is different. The “good” or “bad” of the measured
data directly affects the target state estimation. This part
mainly analyzes the observation configuration of the UAV,
so that the UAV is in a better observation position and get
a better target state estimation.

From the derivation process of FIM determinant, it can
be seen that when moving UAV i from Ui = (xui, yui, zui)
to U ′

i = (2xt − xui, 2yt − yui, zui), the total determinant
value of FIM does not change, so the optimal observation
configuration of the UAVs is not unique.

3.1 Analysis of optimal observation configuration
for N = 1

When N = 1, that is, a single UAV observes the target.

J1 =

⎡⎢⎢⎢⎢⎢⎢⎣

cosϕ1 sin β1

σr

cosβ1

σR1
− sinβ1 sin ϕ1

σR1

cosϕ1 cosβ1

σr
− sin β1

σR1
−cosβ1 sin ϕ1

σR1

sin ϕ1

σr
0

cosϕ1

σR1

⎤⎥⎥⎥⎥⎥⎥⎦
(39)

The total determinant of FIM is

det(J) = det(J1) det(JT
1 ) =

1
σ2

rσ4R2
1

. (40)

This shows that the smaller distance between the UAV
and the target is, the larger determinant of the FIM is,
and the more information UAV observes on the target,
especially R2

1 → 0, det(J) → ∞. Therefore, when
a single UAV observes, it will shorten the distance be-
tween the UAV and the target as soon as possible. There
is a minimum observation distance rmin in practical ap-
plication, the maximum determinant value of the system
FIM is det(J) = 1/(σ2

rσ4r2
min). Especially R2

1 → ∞,
det(J) → 0, there is no unbiased estimator.

3.2 Analysis of optimal observation configuration
for N = 2

When N = 2, that is, two UAVs observe a single target,
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the total determinant of FIM is

det(J2) = det(F2) det(F T
2 ) =

(1 + cos2 θ12)
σ2

rσ4
(

1
R4

1

+
1

R4
2

)+

(1 − cos2 θ12)
σ4

rσ2
(

1
R2

1

+
1

R2
2

)+

(1 − cos2 θ12)
σ6

(
1

R2
1R

4
2

+
1

R4
1R

2
2

)+

2(1 + cos2 θ12)
σ2

rσ4R2
1R

2
2

. (41)

From (41), we can get when two UAVs observe, Ri =
rmin (i ∈ {1, 2}) is a necessary condition for the maxi-
mum determinant of FIM. When R1 = R2 = rmin, then,

det(J2) =
2

r6
minσ4

rσ6
[(r2

minσ2 + σ2
r )2−

(r2
minσ

2 − σ2
r)2 cos2 θ12]. (42)

Obviously det(J) is maximized if cos θ12 = 0, when
the two UAVs measure the range and angle of the target
in three-dimensional space, two UAVs should be as close
to the target as possible and keep the line of sight angle
θ12 = π/2, so that the determinant of FIM gets the maxi-
mum and the target tracking error is the smallest. Fig. 2
shows the optimal observation geometry configuration of
two UAVs.

Fig. 2 Optimal observation geometry configuration of two UAVs

Equation (41) is proved as follows.
Proof According to the analysis of Section 2.2, let

N = 2, the total determinant of FIM is computed as fol-
lows:

det(J2) =

1 + [cosϕ1 cosϕ2 cos(β1 − β2) + sinϕ1 sin ϕ2]2

σ2
rσ4R4

1

+

1 + [cosϕ1 cosϕ2 cos(β1 − β2) + sinϕ1 sin ϕ2]2

σ2
rσ4R4

2

+

[sin ϕ1 cosϕ2 cos(β1 − β2) − cosϕ1 sin ϕ2]2

σ4
rσ2R2

1

+

cos2 ϕ2 sin2(β2 − β1)
σ4

rσ2R2
1

+

[sin ϕ2 cosϕ1 cos(β1 − β2) − cosϕ2 sin ϕ1]2

σ4
rσ2R2

2

+

cos2 ϕ1 sin2(β2 − β1)
σ4

rσ2R2
2

+

[sin ϕ1 cosϕ2 − cosϕ1 sinϕ2 cos(β1 − β2)]2

σ6R4
1R

2
2

+

cos2 ϕ1 sin2(β2 − β1)
σ6R4

1R
2
2

+

[sin ϕ2 cosϕ1 − cosϕ2 sinϕ1 cos(β1 − β2)]2

σ6R2
1R

4
2

+

cos2 ϕ2 sin2(β2 − β1)
σ6R2

1R
4
2

+

2 sin2 ϕ1 sin2(β1 − β2)
σ2

rσ4R2
1R

2
2

+
2 sin2 ϕ2 sin2(β1 − β2)

σ2
rσ4R2

1R
2
2

+

2 cos2(β1 − β2)
σ2

rσ4R2
1R

2
2

+

2[sinϕ1 sinϕ2 cos(β1 − β2) + cosϕ1 cosϕ2]2

σ2
rσ4R2

1R
2
2

. (43)

Let r(ϕi, βi) = (cosϕi sin βi, cosϕi cosβi, sinϕi), we
can get

cos θ12 = r(ϕ1, β1)r(ϕ2, β2) =

cosϕ1 cosϕ2 cos(β2 − β1) + sin ϕ1 sin ϕ2, (44)

[cosϕ2 sin ϕ1 − sin ϕ2 cosϕ1 cos(β2 − β1)]2+

cos2 ϕ1 sin2(β2 − β1) =

1 − [r(ϕ1, β1)r(ϕ2, β2)]2 =

1 − cos2 θ12, (45)

sin2 ϕ1 sin2 ϕ2 cos2(β1 − β2) =

(1 − cos2 ϕ1)(1 − cos2 ϕ2) cos2(β1 − β2) =

(sin2 ϕ1 +sin2 ϕ2−1+cos2 ϕ1 cos2 ϕ2) cos2(β1−β2) =

sin2 ϕ1[1− sin2(β1 − β2)] + sin2 ϕ2[1− sin2(β1 − β2)]−
cos2(β1 − β2) + cos2 ϕ1 cos2 ϕ2 cos2(β1 − β2). (46)

From (46), we can get

sin2 ϕ1 sin2 ϕ2 cos2(β1 − β2) + sin2 ϕ1 sin2(β1 − β2)+

sin2 ϕ2 sin2(β1 − β2) + cos2(β1 − β2) =

sin2 ϕ1 + sin2 ϕ2 + cos2 ϕ1 cos2 ϕ2 cos2(β1 − β2). (47)

cos2 ϕ1 cos2 ϕ2 =

(1 − sin2 ϕ1)(1 − sin2 ϕ2) =

1 − sin2 ϕ1 − sin2 ϕ2 + sin2 ϕ1 sin2 ϕ. (48)
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From (48), we can get

sin2 ϕ1 + sin2 ϕ2 + cos2 ϕ1 cos2 ϕ2 =

1 + sin2 ϕ1 sin2 ϕ2. (49)

Substituting (44), (45), (47) and (49) into (43), we ob-
tain (41) as follows:

det(J2) = det(F2) det(F T
2 ) =

(1 + cos2 θ12)
σ2

rσ4

(
1

R4
1

+
1

R4
2

)
+

(1 − cos2 θ12)
σ4

rσ2

(
1

R2
1

+
1

R2
2

)
+

(1 − cos2 θ12)
σ6

(
1

R2
1R

4
2

+
1

R4
1R

2
2

)
+

2(1 + cos2 θ12)
σ2

rσ4R2
1R

2
2

. �

3.3 Analysis of optimal observation configuration
for N = 3

Let F (i, j) be a function of (i, j) (i, j ∈ N+) and

F (i, j) =
(1 + cos2 θij)

σ2
rσ4

(
1

R4
i

+
1

R4
j

)
+

(1 − cos2 θij)
σ4

rσ2

(
1

R2
i

+
1

R2
j

)
+

(1 − cos2 θij)
σ6

(
1

R2
i R

4
j

+
1

R4
i R

2
j

)
+

2(1 + cos2 θij)
σ2

rσ4R2
i R

2
j

. (50)

Let E(i, j, k) be a function of (i, j, k) (i, j, k ∈ N+)
and

E(i, j, k) =
2

σ6R2
i R

2
jR

2
k

(1 − cos θij cos θik cos θjk)+

1
σ4

rσ2R2
i

(cos2 θij + cos2 θik − 2 cos θij cos θik cos θjk)+

1
σ4

rσ2R2
j

(cos2 θij + cos2 θjk − 2 cos θij cos θik cos θjk)+

1
σ4

rσ2R2
k

(cos2 θik + cos2 θjk − 2 cos θij cos θik cos θjk)+

1
σ2

rσ4R2
i R

2
j

(1 − cos2 θij + 2 cos θij cos θik cos θjk)+

1
σ2

rσ4R2
i R

2
k

(1 − cos2 θik + 2 cos θij cos θik cos θjk)+

1
σ2

rσ4R2
jR

2
k

(1 − cos2 θjk + 2 cos θij cos θik cos θjk)+

1
σ6

r

(1 − cos2 θij − cos2 θik − cos2 θjk+

2 cos θij cos θik cos θjk). (51)

When N = 3, that is, three UAVs observe the target, the
total determinant of FIM is

det(J) = det(J3) det(JT
3 ) =∑

1�i<j�3

F (i, j) +
∑

1�i<j<k�3

E(i, j, k). (52)

The process of proof refers to N = 2.
From (52), we can get when three UAVs observe, Ri =

rmin (i ∈ {1, 2, 3}) is a necessary condition for the maxi-
mum determinant of FIM. When R1 = R2 = R3 = rmin,

det(J) =

1
σ6

rσ6r6
min

{(σ6r6
min +6σ2

rσ4r4
min +15σ4

rσ
2r2

min +8σ6
r)−

(σ2r6
min + 5σ4

rσ2r2
min + 2σ6)(cos2 θ12 + cos2 θ13+

cos2 θ23) + [2(σ4r4
min + 3σ4

r )(σ2r2
min − 3σ2

r)+

16σ6
r ] cos θ12 cos θ13 cos θ23}. (53)

The problem is transformed into finding the extreme
value of (53). It can be obtained that (53) achieves the
maximum value when θ12 = θ13 = θ23 = π/2, so
when the three UAVs observe a single target, the opti-
mal observation configuration between the three UAVs is
θ12 = θ13 = θ23 = π/2. Fig. 3 shows the optimal obser-
vation geometry configuration of three UAVs. When the
distance between the UAV and the target is r, the distance
between UAVs is

√
2r.

Fig. 3 Optimal observation geometry configuration of three UAVs

3.4 Analysis of optimal observation configuration
for N ��� 4

The total determinant of FIM for N � 4 is

det(J) = det(JN ) det(JT
N ) =∑

1�i<j�N

F (i, j) +
∑

1�i<j<k�N

E(i, j, k). (54)
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When there is a minimum observation distance Ri =
rmin (i ∈ {1, 2, . . . , N}), maximizing (54) is equivalent to
minimizing∑
1�i<j�N

a cos2 θij −
∑

1�i<j<k�N

b cos θij cos θik cos θjk

(55)

where a and b are constants about rmin, σr and σ [23].
When the sea surface target is measured by N UAVs, the

problem becomes how to distribute N UAVs on the hemi-
sphere with the target as the center to minimize (55). Some
studies on the problem of optimally arranging points on a
sphere that maximize or minimize some quantity are still
unsolved [24], so it is a worldwide problem.

Through observation, we can see that (55) is an expres-
sion with strict symmetry, and it is conjectured that the
geometric configuration maximizing (55) is also strictly
symmetrical. One possible geometric configuration is that
N UAVs are uniformly distributed on the hemispheric sur-
face. Unfortunately, the strict mathematical proof cannot
be given yet, which is the direction of future work.

4. Cooperative target tracking

The problem of two UAVs cooperating on target tracking
is considered [25], and the UAV flies at the same altitude.
According to the analysis of the optimal observation con-
figuration of two UAVs, we can get from (42) that

[R1, R2, θ12] = arg max
R1,R2∈[rmin,−∞)

θ12∈[0,π]

det(J2) =

[rmin, rmin,π/2]. (56)

Equation (56) shows that when two UAVs are as close
as possible to the safe observation distance and maintain a
line of sight angle of π/2, the target tracking error is the
smallest, and the target state estimation is more accurate.

4.1 Optimal observation control for cooperative
target tracking

The optimal control method is designed to make the angle
between UAVs and the target close to or maintain at 90◦

in three-dimensional space, so as to improve the accuracy
and real-time performance of target tracking.

It is only necessary to design the control method in the
approaching phase because the UAV is far away from the
target and is close to the target motion for over-the-horizon
target tracking. In order to reach the line of sight angle of
90◦, the heading angle control of UAVs [26 – 28] is de-
signed as follows:{

α1 = β1 + k1(θ12) sin(θ12 − π/2)
α2 = β2 − k2(θ12) sin(θ12 − π/2) . (57)

According to (35)

θ12 =

arccos(cosϕ1 cosϕ2 cos(β1 − β2) + sinϕ1 sin ϕ2).

(58)

The β1 and β2 components guide the UAV to fly to the
target and shorten the distance to the target, the sin(θ12 −
π/2) component makes the line-of-sight angle between the
two UAVs and the target approach 90◦. Adjust the degree
of tending to 90◦ through proportional coefficients k1(θ12)
and k2(θ12).{

k1(θ12) = K1 · | sin(θ12 − π/2)|
k2(θ12) = K2 · | sin(θ12 − π/2)| (59)

where K1 and K2 are proportional coefficients.

K1 =

⎧⎨⎩
D

D1 − rmin
,

D

D1 − rmin
< 1.21

1.21, otherwise
,

K2 =

⎧⎨⎩
D

D2 − rmin
,

D

D2 − rmin
< 1.21

1.21, otherwise
,

where D is a distance factor; D1 and D2 are the distance
from two UAVs to the target respectively; and rmin repre-
sents the minimum safe observation distance. When it is
far from the target, increase the control amount of UAV in
the direction of the target movement to approach the target.
When it is close, increase the control amount of the angle
between the UAV and the target line of sight to achieve the
optimal observation angle.

4.2 Fusion filtering algorithm

In order to make effective use of observation information
and reduce the impact of observation errors on positioning
accuracy, a certain filtering algorithm is needed. In this pa-
per, the classical extended Kalman filter (EKF) algorithm
is used to filter the observation data of UAV.

Assume that two UAVs get two trajectories i and j after
EKF with state estimates x̂i and x̂j , error covariances Pi

and Pj . The purpose of estimation fusion is to find the best
estimate x̂ and error covariance matrix P .

x̂ = Pj(Pi + Pj)−1x̂i + Pi(Pi + Pj)−1x̂j =

P (P−1
i x̂i + P−1

j x̂j) (60)

P = Pi(Pi + Pj)−1Pj = (P−1
i + P−1

j )−1 (61)
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5. Numerical simulation and analysis

It is assumed that the target is moving with a constant
speed at 8 m/s and direction at π/4, the initial position of
the target is at (0 m, 200 000 m, 0 m). The speeds of UAVs
are 100 m/s with the fly attitude at 2 500 m. The initial
positions of UAV1 and UAV2 are (12 500 m, 48 412 m,
2 500 m) and ( – 12 500 m, 48 412 m, 2 500 m) respec-
tively. The random and system errors of sensors are (1 m,
0.05◦, 0.05◦) and (3 m, 0.1◦, 0.1◦) with random error
obeying Gauss distribution. The minimum safe distance is
rmin = 50 km and the entire simulation lasts 1 250 s. The
simulation results are shown in Figs. 4 – 7. In Fig. 4, ∗ and
Δ represent the initial position of the UAV and the target,
respectively.

Fig. 4 Trajectory of UAVs and target

Fig. 5 Angle of sight between UAVs and target

Fig. 6 Determinant of FIM

Fig. 7 Tracking error of the target
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From the simulation results, it can be seen that the two
UAVs separate a certain angle when tracking as shown in
Fig. 4, and the line-of-sight angle between the UAVs and
the target increases as shown in Fig. 5. As the UAVs ap-
proach the target and the line-of-sight angle increases, the
determinant of the system FIM becomes larger as shown in
Fig. 6, the error of the target state which the UAV estimates
is smaller as shown in Fig. 7, and the target positioning is
more accurate.

Through the analysis of Fig. 6, the change rate of the de-
terminant of FIM is getting larger as a result of the UAV is
getting closer to the target, and it can be derived from (41).
Combined with Fig. 5, although the line-of-sight angle be-
tween the UAVs and the target increases slowly with time,
it has little effect on the growth rate of the determinant of
FIM. Therefore, it is necessary to make the UAV close to
the target as soon as possible under the condition that the
line-of-sight angle approaches 90◦.

As seen from Fig. 7, the target error observed by UAV1

is 196.2 m at the initial time, and the target error of cooper-
ative tracking observation by two UAVs is 133.4 m, which
improves the error accuracy by 32%. Therefore, compared
with the single UAV, it can effectively improve the posi-
tioning accuracy of the target by two UAVs’ observations.
Moreover, the cooperative tracking error of the target is
133.4 m at the initial time in Fig. 7, and the cooperative
tracking error is 56.2 m at 1 250 s, which improves the
tracking error accuracy by 58%. It can be concluded that
the theory analyzed in this paper and the proposed control
algorithm can effectively improve the positioning accuracy
of the over-the-horizon target.

6. Conclusions and future work

In this paper, the problem of optimal configuration based
on range and angle measurements is extended from two-
dimensional space to three-dimensional space, which can
be widely used in military and engineering fields. This pa-
per focuses on the observation model of sensors based on
range and angle measurements and takes the FIM deter-
minant of UAV observation in three-dimensional space as
the cost function. The expression of optimal observation
geometry and the conditions of optimal configuration so-
lution of UAVs observation are given. It is pointed out
that the optimal observation configuration is usually not
unique. The optimal control method of cooperative target
tracking by two UAVs is proposed based on the analysis
of optimal observation configuration of the two UAVs. The
simulation results show that the theoretical analysis and the
control algorithm in this paper can effectively improve the
positioning accuracy of the over-the-horizon target.

However, only an optimal control method for coopera-

tive tracking of two UAVs is proposed, how to realize the
optimal observation control of three or more UAVs is the
focus of the next research. Moreover, when using UAVs
as the observation platform to estimate the target state, we
should also consider the influence of the UAV attitude an-
gle accuracy on the tracking error. How to improve the ac-
curacy of the UAV attitude angle is also the next research
direction.
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