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Abstract: From the view of information flow, a super-network equi-
librium optimization model is proposed to compute the solution of
the operation architecture which is made up of a perceptive level, a
command level and a firepower level. Firstly, the optimized condi-
tions of the perceptive level, command level and firepower level are
analyzed respectively based on the demand of information relation,
and then the information supply-and-demand equilibrium model of
the operation architecture super-network is established. Secondly,
a variational inequality transformation (VIT) model for equilibrium
optimization of the operation architecture is given. Thirdly, the con-
traction projection algorithm for solving the operation architecture
super-network equilibrium optimization model with fuzzy demands
is designed. Finally, numerical examples are given to prove the
validity and rationality of the proposed method, and the influence
of fuzzy demands on the super-network equilibrium solution of
operation architecture is discussed.
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1. Introduction

Ballistic missiles play an significant role in the future mi-
litary struggle due to their own advantages. All countries
in the world regard it as the punch weapon in future wars
and put it in the first place in the development of military
forces. The research of anti-missile warfare has become
a hot topic at present [1,2]. As a complex and large sys-
tem, the operation system consists of three parts: early
warning detection system, command and control system,
and intercept and strike system [3]. Each part is made up
of many entities, which interact, complement and restrict
each other according to a certain hierarchy. It stimulates a
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characteristic of emergence [4] that a system as a whole
has but that the constituent entities alone do not, such as
the ability emergence. The emergence effect of system ca-
pability often depends on the complex interaction between
entities. This interaction is essentially determined by the
information flows between entity nodes. Therefore, infor-
mation flow [5] is very important in the operation architec-
ture. The more quantity and quality of the battlefield infor-
mation are obtained, the more comprehensive the battle-
field situation is available. However, a mass of information
means huge time cost. Excessive information also causes
the information process and distribution system to become
congested or ineffective. Therefore, the value of informa-
tion flow of the operation architecture is to provide the
suitable quantity and quality of information at right time to
meet operational task demands. The supply and demand re-
lationship of the information value among different levels
of the operation architecture network should be adjusted
reasonably to achieve the balance, in which each node of
the architecture can achieve maximum operational profits
without full load running, and it is helpful to advance the
networked warfare efficiency. In this paper, the network
equilibrium steady state problem of the operation architec-
ture based on the information flow is studied, which has an
important supporting role for the research on emergence
and adaptive evolution of the system.

Nowadays, most research on the network equilibrium
optimization is about route planning [6,7], supply chain
network [8 – 10] and transportation network [11 – 13]. Un-
fortunately, there are few studies on super-network equi-
librium optimization for the operation architecture. Many
experts and scholars have paid great attention on super-
network modeling and network performance analysis.

Jeffrey et al. [14,15] of the United States explored the
principle of distributed networked warfare and then con-
ducted relevant research. They first used the complex net-
work theory to build a model of warfare in the information
age, which divided the force nodes in the battlefield into
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four categories, decision node, sensor node, response node
and target node, according to the different roles played by
different forces in the battlefield. Then the network was es-
tablished according to the relationship between the nodes,
and a method of measuring network efficiency by the ad-
jacency matrix was proposed. Although Jeffrey only de-
scribes the combat network at a macro level and lacks the
description of micro behaviors, it still has a high reference
value. Sean et al. [16] of Old Dominion University in 2009
further discussed and improved the information age en-
gagement model established by Jeffrey, and analyzed an
example.

Also, multiple quality assessments of the system of
systems architecture were discussed as reported in [17],
where an extended influence diagram method was de-
veloped to assess the operation architecture functionality.
Huang et al. [18] proposed the construction and analysis
method of the combat system based on the extension space.
Zou et al. [19,20] established the super-network model of
the air defense system and its evolution method was stu-
died. Then, he proposed an extended granularity calcula-
tion method to solve the quantitative mapping process and
the system quantification problem of functional networks
at different granularity layers. Zhang’s team [21,22] estab-
lished a super-network model of the networked command,
control, communication, computer, intelligence, surveil-
lance, reconnaissance (C4ISR) system structure, and de-
scribed the characteristics and applicability of the super-
network. Hu [23], a professor of National Defense Univer-
sity, built a three-layer view of combat system from the
physical domain, information domain and cognitive do-
main. Through the analysis of information interaction and
characteristics in the command process, the influence of in-
formation interaction on the command efficiency was stu-
died and the observe-orient-decide-act (OODA) combat
ring extraction method of the system super-network model
was discussed. Yang et al. [24] put forward the concept of
information flow super-network, established a hierarchical
network structure, and built an information flow equilib-
rium model considering optimization objectives of every
layer and the overall equilibrium. Wang et al. [25] opti-
mized the modeling of the combat network structure of
surface warship formation in the anti-ship combat. Zhao
et al. [26] proposed a weapon system of systems based
on a granular analysis of super-network. Xing et al. [27]
proposed a missile defense system-of-systems architecture
super-network equilibrium optimization model based on
information stream. Shao et al. [28] established the net-
work structure of the shore-to-ship missile combat system
under the platform central warfare mode based on the com-
plex network theory. The network structure of the system
was optimized through the network coordination of fire-

power layer, command layer, and pre-alarming detection
layer.

The operation system is generally composed of early
warning detection equipment, command and control
equipment, interception and strike equipment. The opti-
mization of the operation architecture has always been a
difficult problem in the field of military operations.

This paper tries to improve the equilibrium optimiza-
tion model of Xing [27]. In the revised objective function
model, the information conversion rate and the information
value coefficient are used to replace the information value
conversion rate. It advances the scope of application of the
model where information value conversion rate must be
less than 1. In the revised constraints model, the constraint
between the amount of information transmitted from the
command level to the firepower level and the amount trans-
mitted from the perception level to the command level is
present, and the contraction projection algorithm is used to
replace the projection algorithm for solving the variational
inequality model iteratively.

2. Problem description and modeling

2.1 Problem analysis

Operation architecture super-network is composed of per-
ception node (PN), command node (CN) and firepower
node (FN). Engagement chain is a complete information
flow link, which completes a process of perceiving target
information, making interception decisions and destroying
targets. Each flow can be seen as a combat alliance, which
can be represented by a hyper-edge in the logic layer. As
shown in Fig. 1, the dotted line in the diagram is the hyper-
edge indication of the engagement chains of the operation
architecture. If the numbers of PNs, CNs and FNs of the
operation architecture are I , J and K , then the operation
architecture has I × J × K engagement chains.

Fig. 1 Network structure of engagement chains

Super-network equilibrium state (SNES) refers to the
state in which the information flow among the nodes of
perception level, command level and firepower level is in
a stable state and the information value generated by the
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information flow among the nodes of all levels and the de-
gree to which the information value demand is satisfied
are the largest. The information flows of operational tasks
in the operation architecture super-network correspond to
the structure of engagement chains. When the information
flow is transmitted step by step on the link, not only the
information value at each node of the flow is guaranteed to
be maximum, but also the information value between le-
vels is guaranteed to match the supply and demand re-
lationship. Therefore, the operation architecture super-
network achieves the overall equilibrium state.

In the operation architecture super-network, the PN re-
alizes battlefield situational awareness by obtaining target
state information. On the one hand, the PNs share informa-
tion with each other to further enhance the value of their
existing information. On the other hand, the PNs also need
to transfer the information they acquire to command levels.
Information value increment and transformation of PNs is
achieved only by realizing this kind of information flow.
However, information value loss is caused by wastage or
error information in the process of information transmis-
sion.

The command level is a connecting link between the
preceding and the following in the engagement chain. On
the one hand, it needs to receive the target situation infor-
mation from the perception level for decision-making. On
the other hand, it needs to send operational command in-
formation to the firepower level, so that the firepower level
equipment could respond quickly to complete the intercep-
tion task in time. Only when the CNs obtain enough valu-
able information can they make correct decisions and se-
lect appropriate firepower equipment for interception. This
requires that the information value provided by the per-
ception level must match the information value demand of
the command level. Only in this way can the information
flow of the engagement chain be guaranteed to continue.
Thus, for CNs, the supply-demand matching relationship
between the perception level and the command level is
mainly manifested in two aspects. Firstly, when the infor-
mation quantity transmitted by PNs to CNs is more than
that required by CNs, it will impose additional burden on
the information processing of the CN. What is worse, if
the information value of the excessive information cannot
be transformed in time, the generation efficiency of the in-
formation value would be affected and information value
loss would occur. Secondly, when the information quan-
tity transmitted by PNs to CNs is less than that required by
CNs, the information quantity received does not meet the
requirement of CNs. The information quantity of the miss-
ing part may affect the information fusion effect and the
information value generation, which will result in the loss
of information value.

The FN completes the interception task by receiving
command instructions from the command level. Correct
and timely command instructions are particularly impor-
tant for response, tracking and target interception. In the
information transmission process of the whole engagement
chain, the firepower level is the final demander. It does
not produce information value, but expects to obtain infor-
mation that can meet the needs of firepower interception.
The matching relationship between the command level and
the firepower level is mainly manifested in two aspects.
When the information quantity transmitted by CNs to FNs
is more than that required by FNs, it will impose additional
burden on the target allocation of the FNs. Too much task
instruction information may exceed the interception capa-
bility of the FN, so the information value of the excessive
information quantity cannot be transformed in time and
the efficiency of information value generating would be
affected. Thus the loss of information value would occur.
However, when the amount of information transmitted by
the command level to the firepower level is less than that
required by FNs, the information quantity received does
not reach the amount required by FNs. The missing part
of information may affect the information value needed by
FNs, e.g., guidance and tracking accuracy, and affect the
generation of information value. This will result in the loss
of information value.

2.2 Problem formulation

The operation architecture super-network information flow
realizes the information transmission and increment of in-
formation value through the engagement chain. For the
operation mission requirements, the perception level is
mainly to generate the target situation information for the
command level. The greater the effective information value
is generated, the better the combat status of the perception
level is. The information generated by the perception level
and required by the command level is not as much as pos-
sible, but rather the information can meet the desired infor-
mation value needs of command and decision. Therefore,
the perception level should consider the command level’s
demand for information value while pursuing the maxi-
mization of information value. The relationship between
supply and demand of the information value must reach a
balanced state. Similarly, between the command level and
the firepower level, since the command level mainly pro-
duces decision instruction information and the target situa-
tion information which is processed by the command level
and used by the firepower level, the greater the effective in-
formation value generates, the better the operational status
of the command level is. However, the firepower level does
not require the information value of the command level to
be as large as possible. Instead, it can obtain information
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that can be used for fire interception to meet the desired in-
formation value requirement. In the pursuit of maximizing
the value of information, the command level must also take
into account the firepower level of the information demand.
The information supply and demand relationship between
the two levels must also reach a balanced state. In this
way, for the entire operation architecture super-network,
it is necessary to comprehensively balance the optimiza-
tion objectives at all levels in order to achieve the optimal
equilibrium state of the architecture.

Accordingly, the equilibrium state of the super-network
based on the information value demand mainly depends
on the decision-making state at all levels. When the effec-

tive information value and information value demand of
all levels in the super-network reach their optimal state at
the same time, the state parameters of the super-network
are the characteristic parameters of the operation architec-
ture super-network, of which the informationflow achieves
equilibrium. That is to say, we must find a set of solutions
to maximize the effective information value generated by
the perception level and the command level, and to maxi-
mize the information value expected by the command level
and the firepower level. For the purpose, Xing et al. [27] set
up a hypernetwork equilibrium optimization model. How-
ever, in the subsequent research, it is found that there are
the following two expressions in the model:{

max(v2
j E[min{q1

j , d̃j(v2
j )}] − α1

jE[max{0, q1
j − d̃j(v2

j )}] − α2
jE[max{0, d̃j(v2

j ) − q1
j }])

max(v3
kE[min{q2

k, d̃k(v3
k)}] − β1

kE[max{0, q2
k − d̃k(v3

k)}] − β2
kE[max{0, d̃k(v3

k) − q2
k}])

, (1)

where q1
j is the information quantity of perception node

j, q1
j =

I∑
i=1

q1
ij , I is the number of nodes at the percep-

tion level, q1
ij is the information transmitted by perception

node i to command node j; v2
j is an information conversion

rate of perception node (ICRPN); α1
j/α2

j is the information
value loss coefficient (IVLC) of unit information redun-
dancy/deficiency between command node j and perception
nodes; d̃j(v2

j ) is an information fuzzy demand function of

command node j; E[min{q1
j , d̃j(v2

j )}] is the expected in-
formation quantity value transmitted by perception nodes
to command node j; E[max{0, q1

j − d̃j(v2
j )}] is the ex-

pected information redundancy value transmitted by per-
ception nodes to command node j; E[max{0, d̃j(v2

j )−q1
j }]

is the expected information deficiency value transmitted by
perception nodes to command node j; q2

k is the information
quantity got by firepower node k from nodes at the com-

mand level, q2
k =

J∑
j=1

q2
jk, J is the number of nodes at the

command level, q2
jk is the information quantity transmitted

by command node j to firepower node k; v3
k is an informa-

tion conversion rate of command node (ICRCN); β1
k/β2

k

is the IVLC of unit information redundancy/deficiency be-
tween firepower node k and the command level; d̃k(v3

k) is
the information fuzzy demand function of firepower node
k; E[min{q2

k, d̃k(v3
k)}] is the expected information quan-

tity value transmitted by command nodes to firepower node
k; E[max{0, q2

k − d̃k(v3
k)}] is the expected information re-

dundancy value transmitted by the command nodes to fire-
power node k; E[max{0, d̃k(v3

k) − q2
k}] is the expected

information deficiency transmitted by command nodes to
firepower node k.

In the model, v2
j E[min{q1

j , d̃j(v2
j )} is not on the same

level as α2
jE[max{0, d̃j(v2

j )− q1
j }] and α1

jE[max{0, q1
j −

d̃j(v2
j )}], v3

kE[min{q2
k, d̃k(v3

k)}] is not on the same level as

β1
kE[max{0, q2

k−d̃k(v3
k)}] and β2

kE[max{0, d̃k(v3
k)−q2

k}].
v2

j E[min{q1
j , d̃j(v2

j )} reflects the amount of information,

while the latter two reflect the value of information. They

are not on the same level. The condition for direct sub-

traction is that the conversion rate of the information value

is 1.

In addition, we find that the model lacks constraints on

the flow of information between different levels, so the

constraints model of the information flow between differ-

ent levels is added. The constraints formula is
K∑

k=1

q2
jk <

I∑
i=1

v1
ijq

1
ij . Thus, we set up the following objective func-

tion and constraints formula groups:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
I∑

i=1

⎛⎝ J∑
j=1

v1
ijq

1
ij + f1

i (Q1) −
J∑

j=1

c1
ij(q

1
ij)

⎞⎠
max(ε2

jv
2
j E[min{q1

j , d̃j(v2
j )}]−

α1
jE[max{0, q1

j − d̃j(v2
j )}]−

α2
jE[max{0, d̃j(v2

j ) − q1
j }])

max
J∑

j=1

(
K∑

k=1

v2
jkq2

jk + f2
j (Q2) −

K∑
k=1

c2
jk(q2

jk)

)
max(ε3

kv3
kE[min{q2

k, d̃k(v3
k)}]−

β1
kE[max{0, q2

k − d̃k(v3
k)}]−

β2
kE[max{0, d̃k(v3

k) − q2
k}])
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s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 � q1
ij � q1 max

ij

0 � v1
ij � v1 max

ij

0 � q2
jk � q2 max

jk

0 � v2
jk � v2max

jk

K∑
k=1

q2
jk <

I∑
i=1

v1
ijq

1
ij

, i = {1, 2, . . . , I};

j = {1, 2, . . . , J}; k = {1, 2, . . . , K} (2)

where Q1 is the IJ dimensional vector matrix being com-
posed of information transmitted by nodes at the percep-
tion level to nodes at the command level, Q1 ∈ RIJ

+ ; v1
ij is

the information value conversion coefficient (IVCC) from
PNi to CNj; f1

i (Q1) is the information value gain func-
tion of PNi, which reflects the influence of the synergistic
relationship of the peer PNs on the information value of
the PNi; c1

ij(q
1
ij) is the information value wastage function

from PNi to CNj; ε2
j is IVCCPN; K is the number of FNs;

Q2 is the JK dimensional vector matrix composed of in-
formation transmitted by all nodes at the command level to
all nodes at the firepower level, Q2 ∈ RJK

+ ; f2
j (Q2) is the

information value gain function of CNj, which reflects the
influence of the synergistic relationship of the peer CNs on
the information value of the CNj; v2

jk is the information
value conversion coefficient from CNj to FNk; c2

jk(q2
jk) is

the information value wastage function from CNj to FNk;
and ε3

k is an IVCCCN.
Due to the influence of equipment performance, the in-

formation quantity generated by PNs is limited. Assuming
that the maximum amount of information transmitted by
PNi to CNj is q1 max

ij , then q1
ij ∈ [0, q1max

ij ]. Similarly, the
IVCC between adjacent nodes from the perception to the
command level is also limited, when the equipment per-
formance characteristics of PNs and CNs are considered.
Assuming that the upper limit of the IVCC from PNi to
CNj is v1 max

ij , then v1
ij ∈ [0, v1max

ij ]. In this way, the opti-
mization goal of information value at the perception level
is to maximize the effective information value generated
by all PNs.

Similar to the optimization condition of information
value at the perception level, the information quantity
generated by each CN is limited due to the influence
of equipment performance. Assuming that the maximum
amount of information transmitted by CNj to FNk is
q2max
jk , then q2

jk ∈ [0, q2max
jk ]. Similarly, the information

value conversion coefficient between adjacent nodes from
the command level to the firepower level is also limited,
when the equipment performance characteristics of nodes
at the command level and the firepower level are consid-
ered. Assuming that the upper limit of the IVCC transmit-
ted by CNj to the FNk is v2 max

jk , then v2
jk ∈ [0, v2max

jk ].

When there is no other information source provided to
the command level, the amount of information transmit-
ted from the command level to the firepower level and the
amount transmitted from the perception level to the com-

mand level satisfy the constraint
K∑

k=1

q2
jk <

I∑
i=1

v1
ijq

1
ij . In

this way, the optimization goal of the information value
of the command level is to maximize the expected infor-
mation value obtained and the effective information value
generated by all CNs as much as possible.

If there is a set of solutions (Q1∗, Q2∗), the operation
architecture super-network achieves a balanced stability in
the information value demand at all levels. The value of the
super-network information relationship is the greatest, and
the structural benefit is the best. In this case, the operation
architecture is the optimal information relationship struc-
ture that can carry out an operation task, and its optimized
information flow can effectively enhance the execution of
operation tasks.

2.3 Variational inequality transformation (VIT) for
optimization model with fuzzy demands

For (2), it is difficult to directly prove the existence and
uniqueness of its solution, and it is also difficult to solve the
model directly. Considering the relationship between the
optimization problem and the variational inequality prob-
lem, the equilibrium model can be transformed into a vari-
ational inequality form with more convenient analysis and
solution.

Variational inequality originates from mathematical
problems, physical problems and non-linear programming
problems. Its modeling framework is rigorous and smooth
and very suitable for theoretical analysis. At present, it has
been widely used in supply chain network equilibrium op-
timization and traffic flow network equilibrium optimiza-
tion [29,30]. Generally speaking, an optimization problem
can be transformed into a variational inequality problem
when certain conditions are satisfied.

Consider the constrained optimization problems [31]:

min
m∑
i

Fi(Xi)

{
aT

j X � bj , j = 1, . . . , r
Xi ∈ Ui, i = 1, . . . , m

(3)

where Ui is a closed convex set, Fi : Rni �→ R is a dif-
ferentiable convex function, aT

j is the vector matrix com-
posed of correlation coefficient of constraint condition j,
X = (X1, . . . ,Xm). Such an optimization problem (3)
can be transformed into a variational inequality problem
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X∗
i ∈ Ui, μ∗

j � 0, which is shown as

m∑
i=1

〈⎛⎝∇Fi(X∗
i ) +

r∑
j=1

μ∗
jaji

⎞⎠T

, (Xi − X∗
i )

〉
+

r∑
j=1

(bj − aT
j X∗)(μj − μ∗

j ) � 0,

∀Xi ∈ Ui; μj � 0; ∀j. (4)

This is a basic principle of solving variational optimiza-
tion problems by variational inequalities. In the optimiza-
tion model given in (2), the command level contains fuzzy
variables [32,33] and their expected expressions. In order
to realize the transformation from the optimization prob-
lem to the variational inequality problem, the properties of
fuzzy variables and their expected expressions need to be
studied. Assuming that d̃j(v2

j ) is an information fuzzy de-
mand of CNj, when its demand for the information value
conversion rate of the perception level is v2

j , its support is
regarded as [d−j (v2

j ), d+
j (v2

j )], and its confidence distribu-
tion function [34,35] is regarded as

Ψ j(x, v2
j ) = Cr{d̃j(v2

j ) � x}. (5)

Theorem 1 For the CNj, the information quantity
expectation, the information quantity redundancy expec-
tation and the information quantity deficiency expectation
transmitted by the perception level are as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E[min{q1
j , d̃j(v2

j )}]=q1
j−

∫ q1
j

d−
j (v2

j )

(q1
j−x)d[Ψj(x, v2

j )]

E[max{0, q1
j−d̃j(v2

j )}] =
∫ q1

j

d−
j (v2

j )

(q1
j−x)d[Ψj(x, v2

j )]

E[max{0, d̃j(v2
j )−q1

j }] =
∫d+

j (v2
j )

q1
j

(x−q1
j )d[Ψj(x, v2

j )]

.

(6)
Corollary 1 For CNj, let

Y (Q1) = ε2
jv

2
j E[min{q1

j , d̃j(v2
j )}] − α1

jE[max{0, q1
j−

d̃j(v2
j )}] − α2

jE[max{0, d̃j(v2
j ) − q1

j }], (7)

then Y (Q1) is a continuous concave function for q1
ij .

For the firepower level, there are a fuzzy demand vari-
able d̃k(v3

k) and its expectation expression in the equi-
librium model of the firepower level, whose support is
denoted as [d−k (v3

k), d+
k (v3

k)]. Its confidence distribution
function is denoted as

Ψk(x, v3
k) = Cr{d̃k(v3

k) � x}. (8)

Theorem 2 For FNs, the information quantity expecta-
tion, the information quantity redundancy expectation and
the information quantity deficiency expectation transmit-
ted by the command level are as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E[min{q2
k, d̃k(v3

k)}]=q2
k−

∫q2
k

d−
k (v3

k)

(q2
k−x)d[Ψk(x, v3

k)]

E[max{0, q2
k−d̃k(v3

k)}] =
∫ q2

k

d−
k (v3

k)

(q2
k−x)d[Ψk(x, v3

k)]

E[max{0, d̃k(v3
k)−q2

k}] =
∫d+

k (v3
k)

q2
k

(x−q2
k)d[Ψk(x, v3

k)]

.

(9)
Corollary 2 For FNk, let

Y (Q2) = ε3
kv3

kE[min{q2
k, d̃k(v3

k)}] − β1
kE[max{0, q2

k−
d̃k(v3

k)}] − β2
kE[max{0, d̃k(v3

k) − q2
k}], (10)

then Y (Q2) is a continuous concave function for q2
jk .

The proof of theorem and corollary is in [27]. On this
basis, an equilibrium state optimal model of the operation
architecture super-network based on the information de-
mand value can be obtained.

In the SNES, the information quantity (Q1∗, Q2∗) ∈
U = RIJ+JK

+ transmitted by the perception level to the
command level, and the command level to the firepower
level, satisfy the following variational inequalities as

I∑
i=1

J∑
j=1

(
∂cij(q1∗

ij )
∂q1

ij

− ∂fi(Q1∗)
∂q1

ij

− v1
ij

)
(q1

ij − q1∗
ij )+

I∑
i=1

J∑
j=1

[
α1

jΨj(q1∗
j , v2

j ) − (α2
j + ε2

jv
2
j )·

[1 − Ψj(q1∗
j , v2

j )]
]
[q1

ij − q1∗
ij ]+

J∑
j=1

K∑
k=1

(
∂cjk(q2∗

jk)
∂q2

jk

− ∂fj(Q2∗)
∂q2

jk

− v2
jk

)
(q2

jk − q2∗
jk)+

J∑
j=1

K∑
k=1

[
[β1

kΨk(q2∗
k , v3

k)] − (β2
k + ε3

kv3
k)·

[1 − Ψk(q2∗
k , v3

k)]
]
[q2

jk − q2∗
jk ] � 0,

∀(Q1, Q2) ∈ U = RIJ+JK
+ (11)

where U = {(Q1, Q2)|q1 max
ij � q1

ij � 0, q2max
jk � q2

jk �
0, ∀i, j, k}, Ψj(x, v2

j ) and Ψk(x, v3
k) are confidence distri-

bution of the fuzzy demands d̃j(v2
j ) and d̃k(v3

k).
Variational inequality (11) is the condition for the ope-

ration architecture super-network to reach an equilibrium
state based on the information value demand, but whether
this equilibrium state can be achieved depends on whether
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there is a solution in (11). Considering that its feasible re-
gion U is a bounded compact convex set, according to
the existence condition of solutions in the theory of vari-
ational inequalities, it is easy to know that the solutions of
the above-mentioned variational inequality (11) exist.

3. Solution algorithm

Generally, projection algorithms [36,37], improved projec-
tion algorithms [38] and external gradient methods [39 –
41] are used to solve the problem of variational inequali-
ties. The projection method is widely used as one of the
most important and effective methods in many algorithms.
The basic idea of the projection method is to find out some
connection between the variational inequality problem and
the fixed point problem according to projection, and then
some equations that have been proved are used to solve
problems [42,43]. The projection method is considered to
be one of the most effective algorithms for solving vari-
ational inequality problems because of its low computa-
tional complexity and easy operation in each iteration. It
is very suitable for solving some large-scale optimization
problems, the author [27] presented revised projection al-
gorithms for solving the variational inequality model. In
the algorithm, parameter β is constant, and cannot be ad-
justed with the error vector. In this paper, the contraction
projection algorithm is used to solve problems iteratively.

For the sake of expression, the solution of the network
equilibrium problem is expressed in the vector form. Ω =
{(q1

ij)IJ , (q2
jk)JK

∣∣q1max
ij � q1

ij � 0, q2max
jk � q2

jk � 0},
u = (Q1, Q2), and PΩ (u) represents the projection of u

on Ω . Let

F = {(F 1
ij)IJ , (F 2

ij)IJ , (G1
jk)JK , (G2

jk)JK} (12)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

F 1
ij =

∂cij(q1∗
ij )

∂q1
ij

− ∂fi(Q1∗)
∂q1

ij

− v1
ij

F 2
ij = α1

jΨj(q1∗
j , v2

j ) − (α2
j + ε2

jv
2
j )[1 − Ψj(q1∗

j , v2
j )]

G1
jk =

∂cjk(q2∗
jk )

∂q2
jk

− ∂fj(Q2∗)
∂q2

jk

− v2
jk

G2
jk = β1

kΨk(q2∗
k , v3

k) − (β2
k + ε3

kv3
k)[1−Ψk(q2∗

k , v3
k)]

.

(13)
Then the original variational inequality (4) is trans-

formed to solve u∗ = (Q1∗, Q2∗), that satisfies

I∑
i=1

J∑
j=1

(F 1
ij(q

1∗
ij ) + F 2

ij(q
1∗
ij ))(q1

ij − q1∗
ij )+

J∑
j=1

K∑
k=1

(G1
jk(q2∗

jk ) + G2
jk(q2∗

jk))(q2
jk − q2∗

jk) � 0. (14)

The contraction projection algorithm for solving the
operation architecture super-network equilibrium opti-
mization model with fuzzy demands is as follows.

Step 1 Initialize parameter β0, accuracy ε, and initial
iteration point u0, and set k = 0.

Step 2 Calculate uk+1 = PΩ (uk − βkF (uk)).
Step 3 Calculate error e(uk+1, βk) = uk+1 − uk for

variational inequalities on Ω .
Step 4 If ‖e(uk+1, βk)‖ � ε, then return the opti-

mal value uk+1 and the algorithm stops; otherwise, go to
Step 5.

Step 5 Adjust parameters βk+1 =
‖e(uk+1, βk)‖
‖F (uk+1)‖ ,

k = k + 1, and go to Step 2.
The information value of each engagement chain is

fl =
(
F 1

ij(q
1∗
ij ) + F 2

ij(q
1∗
ij )
)
q1∗
ij +

(
G1

jk(q2∗
jk ) + G2

jk(q2∗
jk)
)
q2∗
jk ,

l = J · K · (i − 1) + K · (j − 1) + k (15)

where i ∈ {1, 2, . . . , I}, j ∈ {1, 2, . . . , J}, k ∈
{1, 2, . . . , K}.

The total information value of the network (TIVN) can
be calculated as

falls =
I∑

i=1

J∑
j=1

(F 1
ij(q

1∗
ij ) + F 2

ij(q
1∗
ij )) · q1∗

ij +

J∑
j=1

K∑
k=1

(G1
jk(q2∗

jk) + G2
jk(q2∗

jk )) · q2∗
jk . (16)

4. Numerical example and discussion

We present a numerical example to demonstrate how the
proposed model can be used in practice. The information
flow of the operation architecture is transmitted among
the perception level, the command level and the firepower
level. No loss of generality, it is assumed that there exist
two PNs noted as PN1 and PN2, two CNs noted as CN1
and CN2, two FNs noted as FN1 and FN2, in the operation
architecture super-network. Suppose that the information
flow is a unit value and its interval is [0, 1].

The information value gain functions for PN are⎧⎪⎪⎨⎪⎪⎩
f1
1 (Q1) = 0.5(q1

1)2 + q1
1q

1
2 + 3.5q1

1=0.5(q1
11+q1

12)
2+

(q1
11 + q1

12)(q1
21 + q1

22) + 3.5(q1
11 + q1

12)
f1
2 (Q1) = (q1

1)2 + q1
1q

1
2 + 2.5q1

2 = (q1
11 + q1

12)
2+

(q1
11 + q1

12)(q
1
21 + q1

22) + 2.5(q1
21 + q1

22)

.

(17)
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The information value gain functions for CN are⎧⎪⎪⎨⎪⎪⎩
f2
1 (Q2) = 2.5(q2

1)2 + q2
1q

2
2 + q2

1 = 2.5(q2
11 + q2

12)2+
(q2

11 + q2
12)(q

2
21 + q2

22) + (q2
11 + q2

12)
f2
2 (Q2) = (q2

1)2 + q2
1q

2
2 + 3q2

2 = (q2
11 + q2

12)
2+

(q2
11 + q2

12)(q2
21 + q2

22) + 3(q2
21 + q2

22)

.

(18)
The information value loss functions between the per-

ception level and the command level are⎧⎪⎪⎨⎪⎪⎩
c1
11(q

1
11) = 0.5(q1

11)
2 + q1

11

c1
12(q

1
12) = 0.4(q1

12)
2 + q1

12

c1
21(q

1
21) = 0.9(q1

21)
2 + 2q1

21

c1
22(q

1
22) = 0.8(q1

22)
2 + 2q1

22

. (19)

The information value loss functions between the com-
mand level and the firepower level are⎧⎪⎪⎨⎪⎪⎩

c2
11(q2

11) = 2(q2
11)2 + q2

11

c2
12(q

2
12) = 3(q2

12)
2 + q2

12

c2
21(q

2
21) = 0.5(q2

21)
2 + 3q2

21

c2
22(q

2
22) = 0.5(q2

22)
2 + 0.2q2

22

. (20)

Let α1
1 = α1

2 = 0.45, α2
1 = α2

2 = 0.52, β1
1 =

β1
2 = 0.35, β2

1 = β2
2 = 0.41, v1

11 = 0.65, v1
12 = 0.75,

v1
21 = 0.85, v1

22 = 0.85, v2
11 = 0.75, v2

12 = 0.82,
v2
21 = 0.75, v2

22 = 0.80.
Suppose that fuzzy demands d̃j(v2

j ) and d̃k(v3
k) are

triangular fuzzy variables. The triangular fuzzy number

is

[
bj

rj
− Δ,

bj

rj
,
bj

rj
+ Δ

]
, bj is the fuzzy demand mean

(FDM), and rj is the information conversion rate (ICR).
The confidence distribution of the variable is defined as

Ψ(x, rj) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x <
bj

rj
− Δ

1
2Δ

·
(

x + Δ − bj

rj

)
,

bj

rj
− Δ � x <

bj

rj

1
2Δ

·
(

x + Δ − bj

rj

)
,

bj

rj
� x <

bj

rj
+ Δ

1, x � bj

rj
+ Δ

. (21)

For CN1, CN2, FN1 and FN2, the mean value of the
fuzzy demands are 0.6, 0.7, 0.7 and 0.8, respectively.
q1max
ij , v1 max

ij , q2max
jk , v2 max

jk , ICRPN v2
j , IVCCPN ε2

j ,
ICRCN v3

k, and IVCCCN ε3
k (i = 1, 2; j = 1, 2; k = 1, 2)

are set to 1 respectively. The initial value of β0 is set to
0.001 and the accuracy which is less than or equal to 10−6

is the convergence criterion. When (Δ, Δ) is set to differ-
ent values, according to the variational inequality formula
(14), the super-network equilibrium of the operation ar-
chitecture with fuzzy demands is solved.The correspond-
ing objective function values are shown in Table 1 and
Table 2.

Table 1 Information quantity and its value of SNES with invariant lower limit and variant upper limit of fuzzy demands

(Δ, Δ)
Solution

(0.1,0.1) (0.1,0.2) (0.1,0.3)

(q1∗
ij )2×2

"
0.738 751 0.740 729
0.540 398 0.746 047

# "
0.745 517 0.741 164
0.540 444 0.748 228

# "
0.748 187 0.741 311
0.540 460 0.748 979

#

“
q2∗
jk

”
2×2

"
0.332 965 0.461 255
0.354 305 0.537 711

# "
0.332 965 0.461 255
0.354 305 0.537 711

# "
0.332 965 0.461 255
0.354 305 0.537 711

#

f1 5.383 737 5.618 464 5.804 293
f2 5.484 444 5.719 171 5.905 000
f3 5.037 161 5.192 352 5.245 138
f4 6.946 881 7.102 072 7.154 858
f5 3.502 892 3.506 619 3.508 080
f6 3.603 598 3.607 325 3.608 787
f7 2.202 057 2.369 927 2.429 921
f8 4.111 776 4.279 647 4.339 641

falls 36.272 547 37.395 578 37.995 718

As shown in Table 1 and Table 2, f1 – f8 are the ex-
pected information values of the engagement chains and
falls is the total information value of the operation archi-
tecture super-network. As revealed in Table 1, with the in-
crease of the upper limit of fuzzy demands, the information

value of each engagement chain and the sum information
value increase. In Table 2, with the increase of the lower
limit of the fuzzy demands, the information value of each
engagement chain and the sum of the information value
decrease.
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Table 2 Information quantity and its value of SNES with invariant upper limit and variant lower limit of fuzzy demands

(Δ, Δ)
Solution

(0.05,0.15) (0.15,0.15) (0.25,0.15)“
q1∗
ij

”
2×2

"
0.746 082 0.746 623
0.542 023 0.753 959

# "
0.739 391 0.736 535
0.535 276 0.742 692

# "
0.732 455 0.728 982
0.522 958 0.737 964

#

“
q2∗
jk

”
2×2

"
0.332 965 0.461 255
0.354 305 0.537 711

# "
0.332 965 0.461 255
0.354 305 0.537 711

# "
0.332 965 0.461 255
0.354 305 0.537 711

#

f1 5.450 146 5.429 956 5.412 106
f2 5.550 852 5.530 662 5.512 813
f3 5.153 658 5.125 557 5.099 989
f4 7.063 378 7.035 277 7.009 708
f5 3.728 150 3.403 675 3.309 222
f6 3.828 857 3.504 381 3.409 929
f7 2.290 700 2.326 105 2.334 961
f8 4.200 420 4.235 825 4.244 681

falls 37.266 160 36.591 438 36.333 409

If (Δ, Δ) = (0.1, 0.2), three FDMs of CN1, CN2, FN1
and FN2 are fixed and one is variant. The change of the
objective function value with fuzzy demands is shown in
Fig. 2. When the FDM is certain, the relationship of the
objective function value and the ICR is shown in Fig. 3.

If (Δ, Δ) = (0.1, 0.2), when the FDMs of FN1 and FN2
are fixed and the FDMs of CN1 and CN2 are variant, the
change of the objective function value is shown in Fig. 4.
Similarly, when the FDMs of CN1 and CN2 are fixed and
the FDMs of FN1 and FN2 change, the change of the ob-
jective function value is shown in Fig. 5.

When the FDM and the ICR of FN1 and FN2 are fixed,
and the ICRs of CN1 and CN2 change, the change of the
objective function value is shown in Fig. 6. Similarly, when
the ICRs of CN1 and CN2 are fixed and the ICRs of FN1
and FN2 change, the change of the objective function value
is shown in Fig. 7.

Fig. 2 Relationship between TIVN and FDM

Fig. 3 Relationship between TIVN and ICR

Fig. 4 Relationship between TIVN and FDM of CNs
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Fig. 5 Relationship between TIVN and FDM of FNs

Fig. 6 Relationship between TIVN and ICRPN

Fig. 7 Relationship between TIVN and ICRCN

The results of Fig. 2, Fig. 4 and Fig. 5 show that with
the increase of the mean value of fuzzy demands, the in-
formation value increases. When the demand increases to
a certain extent, the information value does not increase or

grows slowly due to the limitation of the capacity of the in-
formation provider. As revealed in Fig. 3, Fig. 6 and Fig. 7,
when the ICRPN increases to a certain extent, the value of
the objective function is no longer improved. This is be-
cause the mean value of the fuzzy information demand is
related to the ICR. If the ICR increases, the information
quantity provided by PNs will increase. However, the in-
crease of information will inevitably lead to the increase
of information loss and redundancy, which will lead to the
decrease of the objective function value of the whole net-
work. For FNs, the value of the objective function will be
improved with the increase of ICR. That is because the in-
crease of the information value gain function is larger than
the decrease of the objective function caused by the in-
crease of information loss and redundancy.

When the fuzzy information demand function of the CN
d̃j(v2

j ) (j = 1, 2), the fuzzy information demand function

of the FN d̃k(v3
k) (k = 1, 2), and the IVCC between the PN

and CN, CN and FN v1
ij , v

2
jk (i, j, k = 1, 2) are fixed, the

relationship of the objective function value and the IVLC
of the CN/FN are shown in Figs. 8 – 10.

Fig. 8 Relationship between TIVN and IVLC
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Fig. 9 Relationship between TIVN and IVLC of CN information redundancy/deficiency

Fig. 10 Relationship between TIVN and IVLC of FN information redundancy/deficiency

The results of Fig. 8 and Fig. 9 show that, when the
IVLC of information redundancy/deficiency between PN
and CN, CN and FN changes slightly, the network infor-
mation flow changes a little, and the change of the network
information value is relatively stable. Fig. 10 shows that
when IVLC of the information redundancy/deficiency be-
tween PN and CN, CN and FN changes greatly, the value
of the network information changes greatly. Moreover,
when the IVLC between nodes becomes larger, the net-
work information value also becomes larger. This indicates
that when the i IVLC between nodes becomes larger, the
network information quantity optimization should avoid
information deficiency and increase the information quan-
tity as much as possible. Therefore, the value of network
information is increased. This is consistent with the actual
situation.

When the fuzzy demand function of the CN d̃j(v2
j ) (j =

1, 2) and the FN d̃k(v3
k) (k = 1, 2), the IVLC of the infor-

mation redundancy/deficiencyα1
j , β

1
k(α2

j , β
2
k) (j, k = 1, 2)

are certain, v1max
ij , v2max

jk (i = 1, 2; j = 1, 2; k = 1, 2) are
set to 6 respectively, and the IVCC between PN and CN,
CN and FN are variable. The overall network information
value changes as shown in Figs. 11 – 13.

The result of Fig. 11(a) shows that the changes of IVCC
between PN1 and CN1 has the greatest influence on the
overall network information value, and the second influ-
ence is the IVCC between PN1 and CN2. There is a rela-
tively stable impact on the network information value when
the IVCC between PN2 and CN is less than 2. Similarly,
the result of Fig. 11(b) shows that the change of the IVCC
between CN1 and FN1 has the greatest impact on the value
of the overall network information, and the second influ-
ence is CN1 to FN2 and CN2 to FN2. Moreover, the impact
on the network information value of the IVCC between
CN2 and FN1 is relatively stable. The results of Fig. 12
and Fig. 13 show that the value of the overall network in-
formation increases with the increment of the IVCC, which
is consistent with the actual situation.
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Fig. 11 Relationship between TIVN and IVCC

Fig. 12 Relationship between TIVN and IVCC of PN to CN

Fig. 13 Relationship between TIVN and IVCC of CN to FN

5. Conclusions

In this paper, the optimizationmethod of the super-network
equilibrium for the operation architecture with fuzzy de-
mands is studied. Firstly, the hypothesis of the informa-
tion relationship modeling of the operation architecture en-

gagement chain is given, the decision variables of the infor-
mation relationship are analyzed, and the value function of
the information relationship is constructed. Secondly, the
optimization conditions of the perception level, the com-
mand level and the firepower level of the operation archi-
tecture engagement chain are analyzed respectively based
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on information fuzzy demands. On this basis, the informa-
tion equilibrium model of the operation architecture super-
network is established. Thirdly, the equilibrium model is
analyzed and transformed using the theory of variational
inequality, and the improved projection algorithm is used
to solve the variational inequality optimization model. Fi-
nally, a case study is carried out to verify the proposed
super-network equilibrium optimization method. The re-
sults show that there exists a state of information flow,
which can make the generation and usage of information
value for the operation architecture reach a balanced state,
in which the operation architecture super-network gets the
maximum benefit. Therefore, the balance of information
of the operation architecture can be achieved by adjusting
the information quantity transmitted among the perception
level, the command level and the firepower level without
changing the physical relationship of the operation archi-
tecture. At this time, the information utilization rate of the
engagement chain is the highest. In addition, through the
analysis and verification from multiple aspects, we can find
the key links to improve the value of the overall network
information, which provides support for super-network op-
timization. The research result of this paper is very use-
ful for constructing the equilibrium and the steady state of
the operation architecture engagement, and it has an im-
portant supporting role for the study of emergence proper-
ties and evolution properties of the operation architecture
super-network.
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