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Abstract: Time delay and Doppler shift between the echo sig-
nal and the reference signal are two most commonly used mea-
surements in target localization for the passive radar. Doppler
rate, which can be obtained from the extended cross ambiguity
function, offers an opportunity to further enhance the localization
accuracy. This paper considers using the measurement Doppler
rate in addition to measurements of time delay and Doppler shift
to locate a moving target. A closed-form solution is developed to
accurately and efficiently estimate the target position and velocity.
The proposed solution establishes a pseudolinear set of equa-
tions by introducing some additional variables, imposes weighted
least squares formulation to yield a rough estimate, and utilizes
the function relation among the target location parameters and
additional variables to improve the estimation accuracy. Theoreti-
cal covariance and Cramer-Rao lower bound (CRLB) are derived
and compared, analytically indicating that the proposed solution
attains the CRLB. Numerical simulations corroborate this analysis
and demonstrate that the proposed solution outperforms existing
methods.
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1. Introduction

Multistatic passive radar (MPR), which employs ambient
signals (FM radio [1 – 3], digital TV [4 – 6], digital audio
broadcast [7 – 9], cellphone basestation [10 – 13], WiMax
[14,15], WiFi [16 – 18], satellite [19 – 21], non-cooperative
radar signal [22], etc.) as the transmitters to detect and
locate potential targets, is an attractive system for surveil-
lance purposes. Owing to its distinct merits, such as covert
operation, wide coverage, small size and hence easy to
deploy, low costs of operation and maintenance, immune
to directional interference, capabilities against stealth air-
craft, etc., MPR has been studied for several decades
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and is still a hot area of research [23,24].
The receiver of passive radar usually deploys two re-

ceiving channels: the reference channel and the echo chan-
nel [25]. The reference channel, which can be implemented
as a directional antenna or a digitally formed beam, points
towards the transmitter to receive the original transmitted
signal, i.e., the direct path signal. The echo channel looks
towards the area of interest to collect echo signals from po-
tential targets [26]. The echo signal is usually much weaker
in power, hence coherent integration is needed to improve
the signal-to-noise ratio (SNR) [27]. One of the most ty-
pical coherent integration methods is the cross ambiguity
function (CAF) [28], from which time delay and Doppler
shift between the echo signal and the reference signal can
be acquired by locating the correlation peak. Time delay
and Doppler shift are two most commonly used measure-
ments to estimate the target position and velocity, and co-
pious localization methods are developed based on these
two measurements [29 – 32].

The CAF method works well in most of the cases. How-
ever, in some situations, such as detection and localization
of manoeuvring targets, the simplified assumptions made
in the derivation of the CAF lead to suboptimal perfor-
mance. Another situation where more complicated signal
processing is required is when long time coherent inte-
gration (of the order of 1 s) is desired. For this purpose,
recently some novel coherent integration methods [33 –
35], such as the modified CAF [34], are proposed, from
which time delay, Doppler shift and Doppler rate can be
obtained simultaneously. In source localization problem,
the Doppler rate measurement has been used in addition to
time delay and Doppler shift measurements to improve the
localization accuracy [36,37]. Inspired by this, for mov-
ing target localization in the multistatic passive radar, we
hopefully determine the target position and velocity with a
higher accuracy by jointly using the Doppler rate measure-
ments. However, despite the fine prospects, up to now there
does not exist any publication in the open literature that ad-
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dresses combining measurements of time delay, Doppler
shift and Doppler rate to estimate the target position and
velocity in the multistatic passive radar.

Extracting the target position and velocity from mea-
surements of time delay, Doppler shift and Doppler rate
acquired at a single observation is a crucial and chal-
lenging operation, on account of the extreme nonlinearity
implied in the measurement equations. Exhaustive search
in the solution space seems to be a basic alternative to
tackle the nonlinearity. Nevertheless, this technique usua-
lly endures a heavy computational burden because of
the high dimensionality, which prohibits real-time im-
plementation. Iterative approaches, such as Taylor series
approach, Newton-Raphson approach and expectation-
maximization approach, therefore, have to be envisaged, to
achieve desirably accurate results with an acceptable com-
plexity. However, iterative approaches are known to con-
verge to the global optimal solution only if the initial solu-
tion guess is close enough to the true values of parameters.
Otherwise, they may converge to a local optimum or even
diverge. Therefore, there is yet a need for an alternative
solution method that requires no initial guess.

Closed-form solutions are always compelling to re-
searchers due to their advantages of independence on ini-
tial guess and acceptable computational complexity. Moti-
vated by this, we derive in this paper a closed-from solution
for moving target localization using measurements of time
delay, Doppler shift and Doppler rate in the multistatic pas-
sive radar. The proposed solution follows the basic idea of
two-step weighted least squares (WLS) [38], and further
extends our previous work in [32] that determines the tar-
get position and velocity only using measurements of time
delay and Doppler shift. It is generally composed of two
WLS steps. In the first WLS step, by introducing some ex-
tra additional variables, the proposed solution first trans-
lates the time delay, Doppler shift and Doppler rate equa-
tions to a set of linear equations, from which a rough esti-
mate of target location and additional variables is obtained
by using WLS minimization. Next, in the second WLS
step, by using the functional relation between the addi-
tional variables and target location, we extract another set
of linear equations, from which a refined estimate of tar-
get location is finally obtained by using WLS minimization
again. To the best of our knowledge, the proposed solution
is the first localization method jointly by using measure-
ments of time delay, Doppler shift and Doppler rate in the
multistatic passive radar literature. Theoretical error analy-
sis and numerical simulations are performed and verify the
validity and efficiency of the proposed solution.

The remaining sections of this paper are organized as
follows. In Section 2, we present the measurement model
and the target localization problem. In Section 3, the pro-

posed closed-form solution for the target position and ve-
locity is given. In Section 4, we analyze the bias, covari-
ance as well as the Cramér-Rao lower bound (CRLB). In
Section 5, the performance of the proposed solution is eva-
luated via several numerical examples. Finally, in Sec-
tion 6, we make some concluding remarks.

2. Problem formulation

In general, as illustrated in Fig. 1, an MPR system with
M transmitters and N receivers is deployed to locate a
moving target with an unknown position u = [x, y, z]T

and velocity u̇ = [ẋ, ẏ, ż]T. The position and the ve-
locity of the mth transmitter are known and denoted by
st

m = [xt
m, yt

m, zt
m]T and ṡt

m = [ẋt
m, ẏt

m, żt
m]T, and the

position and the velocity of the nth receiver are known and
denoted by sr

n = [xr
n, yr

n, zr
n]T and ṡr

n = [ẋr
n, ẏr

n, żr
n]T.

Fig. 1 Localization geometry

Using the above notations, the range, rate and accelera-
tion between the mth transmitter and the target are respec-
tively expressed as

Rt
m = ‖u − st

m‖, (1)

Ṙt
m =

(u − st
m)T(u̇ − ṡt

m)
Rt

m

, (2)

R̈t
m =

(u̇ − ṡt
m)T(u̇ − ṡt

m) − (Ṙt
m)2

Rt
m

. (3)

Likewise, the range, rate and acceleration between the
target and the nth receiver are respectively stated as

Rr
n = ‖u − sr

n‖, (4)

Ṙr
n =

(u − sr
n)T(u̇ − ṡr

n)
Rr

n

, (5)

R̈r
n =

(u̇ − ṡr
n)T(u̇ − ṡr

n) − (Ṙr
n)2

Rr
n

. (6)

Subsequently, as defined in [34], the bistatic range,
bistatic velocity and bistatic acceleration subject to the mth
transmitter and the nth receiver, are respectively described
by

ro
m,n = Rt

m + Rr
n, (7)

ṙo
m,n = Ṙt

m + Ṙr
n, (8)

r̈o
m,n = R̈t

m + R̈r
n. (9)
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In the presence of the additive noise, the observed
bistatic range, bistatic velocity and bistatic acceleration,
which are directly converted from measurements of time
delay, Doppler shift and Doppler rate respectively, can be
stated as

rm,n = ro
m,n + Δrm,n, (10)

ṙm,n = ṙo
m,n + Δṙm,n, (11)

r̈m,n = r̈o
m,n + Δr̈m,n (12)

where Δrm,n, Δṙm,n and Δr̈m,n are the measurement
noises of bistatic range, bistatic velocity and bistatic ac-
celeration, respectively.

Next, by defining the following vector notations:

r = [rT
1 , rT

2 , . . . , rT
M ]T, rm = [rm,1, rm,2, . . . , rm,N ]T,

ṙ = [ṙT
1 , ṙT

2 , . . . , ṙT
M ]T, ṙm = [ṙm,1, ṙm,2, . . . , ṙm,N ]T,

r̈ = [r̈T
1 , r̈T

2 , . . . , r̈T
M ]T, r̈m = [r̈m,1, r̈m,2, . . . , r̈m,N ]T,

ro = [(ro
1)

T, . . . , (ro
M )T]T, ro

m = [ro
m,1, . . . , r

o
m,N ]T,

ṙo = [(ṙo
1)

T, . . . , (ṙo
M )T]T, ṙo

m = [ṙo
m,1, . . . , ṙ

o
m,N ]T,

r̈o = [(r̈o
1)

T, . . . , (r̈o
M )T]T, r̈o

m = [r̈o
m,1, . . . , r̈

o
m,N ]T,

the bistatic range, bistatic velocity and bistatic accelera-
tion subject to the M transmitters and N receivers, can be
compactly described by

r = ro + Δr, (13)

ṙ = ṙo + Δṙ, (14)

r̈ = r̈o + Δr̈ (15)

where

Δr=[ΔrT
1 , . . . , ΔrT

M ]T, Δrm =[Δrm,1, . . . , Δrm,N ]T,

Δṙ=[ΔṙT
1 , . . . , ΔṙT

M ]T, Δṙm =[Δṙm,1, . . . , Δṙm,N ]T,

Δr̈=[Δr̈T
1 , . . . , Δr̈T

M ]T, Δr̈m =[Δr̈m,1, . . . , Δr̈m,N ]T.

Putting the three sets of measurements together forms
the total measurement vector α = [rT, ṙT, r̈T]T. Then,
the corresponding true value of the measurement vector is
denoted by αo = [(ro)T, (ṙo)T, (r̈o)T]T, and the noise
vector is denoted by Δα = [ΔrT, ΔṙT, Δr̈T]T, which
follows the Gaussian distribution with the mean zero and
the covariance

E{ΔαΔαT} = Q. (16)

Given M transmitters and N receivers, there are MN

bistatic range measurements, MN bistatic velocity mea-
surements, and MN bistatic acceleration measurements.
Now, the problem can be stated as, given the observations

α, find the target position u and velocity u̇ accurately.
Nevertheless, despite a clear appeal, determining the tar-
get position u and velocity u̇ from the observations α is
not tractable, since the target location parameters are non-
linearly related to the observations.

3. The proposed localization method

In this section, borrowing the basic framework of two-step
WLS [38], we deduce a closed-from solution for the tar-
get position and velocity estimation. As mentioned above,
the proposed solution generally comprises two WLS steps,
from which a rough WLS solution and a refined WLS so-
lution are produced respectively.

3.1 The first WLS step

Begin by reformulating (10) as

rm,n − Rt
m = Rr

n + Δrm,n. (17)

Recalling the definitions of Rt
m and Rr

n, squaring both
sides of (17), and then simplifying, yield

2(st
m − sr

n)Tu + 2rm,nRt
m =

r2
m,n + (st

m)Tst
m − (sr

n)Tsr
n − 2Rr

nΔrm,n (18)

where the second-order noise term has been neglected.
By taking the derivative of (18) versus time, we estab-

lish a relation between the measurement Doppler shift and
the parameter target location as follows:

2(ṡt
m−ṡr

n)Tu+2(st
m−sr

n)Tu̇+2ṙm,nRt
m+2rm,nṘt

m =

2rm,nṙm,n + 2(st
m)Tṡt

m − 2(sr
n)Tṡr

n−
2Ṙr

nΔrm,n − 2Rr
nΔṙm,n. (19)

Further, taking the time derivative of (19) yields a re-
lation between the measurement Doppler rate and the pa-
rameter target location as follows:

4(ṡt
m − ṡr

n)Tu̇ + 2r̈m,nRt
m + 4ṙm,nṘt

m + 2rm,nR̈t
m =

2ṙm,nṙm,n + 2rm,nr̈m,n + 2(ṡt
m)Tṡt

m − 2(ṡr
n)Tṡr

n−
2R̈r

nΔrm,n − 4Ṙr
nΔṙm,n − 2Rr

nΔr̈m,n. (20)

Define an auxiliary vector as

θ1 = [uT, Rt
1, R

t
2, . . . , R

t
M , u̇T, Ṙt

1, Ṙ
t
2, . . . , Ṙ

t
M ,

R̈t
1, R̈

t
2, . . . , R̈

t
M ]T (21)

where Rt
1, R

t
2, . . . , R

t
M , Ṙt

1, Ṙ
t
2, . . . , Ṙ

t
M , R̈t

1, R̈
t
2, . . . , R̈

t
M

are the introduced additional variables. By stacking (18),
(19) and (20) for m = 1, 2, . . . , M and n = 1, 2, . . . , N ,
we can compactly recast the pseudolinear equations ex-
tracted from measurements of time delay, Doppler shift
and Doppler rate as

G1θ1 = h1 + Δh1 (22)
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and G1, h1 and Δh1 are expressed in submatrix as

G1 =

⎡⎣ 2G1s 2G1r 0 0 0
2G1ṡ 2G1ṙ 2G1s 2G1r 0

0 2G1r̈ 4G1ṡ 4G1ṙ 2G1r

⎤⎦ , (23)

h1 =

⎡⎣h1r

h1ṙ

h1r̈

⎤⎦ (24)

where

G1s =

⎡⎢⎢⎢⎣
s1

s2

...
sM

⎤⎥⎥⎥⎦ , sm =

⎡⎢⎢⎢⎣
(st

m − sr
1)T

(st
m − sr

2)
T

...
(st

m − sr
N )T

⎤⎥⎥⎥⎦ , G1r =

⎡⎢⎢⎢⎣
r1 0N×1 · · · 0N×1

0N×1 r2 · · · 0N×1

...
...

. . .
...

0N×1 0N×1 · · · rM

⎤⎥⎥⎥⎦ , rm =

⎡⎢⎢⎢⎣
rm,1

rm,2

...
rm,N

⎤⎥⎥⎥⎦ ,

G1ṡ =

⎡⎢⎢⎢⎣
ṡ1

ṡ2

...
ṡM

⎤⎥⎥⎥⎦ , ṡm =

⎡⎢⎢⎢⎣
(ṡt

m − ṡr
1)T

(ṡt
m − ṡr

2)
T

...
(ṡt

m − ṡr
N )T

⎤⎥⎥⎥⎦ , G1ṙ =

⎡⎢⎢⎢⎣
ṙ1 0N×1 · · · 0N×1

0N×1 ṙ2 · · · 0N×1

...
...

. . .
...

0N×1 0N×1 · · · ṙM

⎤⎥⎥⎥⎦ , ṙm =

⎡⎢⎢⎢⎣
ṙm,1

ṙm,2

...
ṙm,N

⎤⎥⎥⎥⎦ ,

h1r =

⎡⎢⎢⎢⎣
h1r1

h1r2

...
h1rM

⎤⎥⎥⎥⎦ , h1rm =

⎡⎢⎢⎢⎣
r2
m,1 + (st

m)Tst
m − (sr

1)
Tsr

1

r2
m,2 + (st

m)Tst
m − (sr

2)
Tsr

2
...

r2
m,N + (st

m)Tst
m − (sr

N )Tsr
N

⎤⎥⎥⎥⎦ , h1ṙ =

⎡⎢⎢⎢⎣
h1ṙ1

h1ṙ2

...
h1ṙM

⎤⎥⎥⎥⎦ ,

h1ṙm = 2

⎡⎢⎢⎢⎣
rm,1ṙm,1 + (st

m)Tṡt
m − (sr

1)Tṡr
1

rm,2ṙm,2 + (st
m)Tṡt

m − (sr
2)

Tṡr
2

...
rm,N ṙm,N + (st

m)Tṡt
m − (sr

N )Tṡr
N

⎤⎥⎥⎥⎦ , h1r̈ =

⎡⎢⎢⎢⎣
h1r̈1

h1r̈2

...
h1r̈M

⎤⎥⎥⎥⎦ ,

h1r̈m = 2

⎡⎢⎢⎢⎣
ṙm,1ṙm,1 + rm,1r̈m,1 + (ṡt

m)Tṡt
m − (ṡr

1)
Tṡr

1

ṙm,2ṙm,2 + rm,2r̈m,2 + (ṡt
m)Tṡt

m − (ṡr
2)

Tṡr
2

...
ṙm,N ṙm,N + rm,N r̈m,N + (ṡt

m)Tṡt
m − (ṡr

N )Tṡr
N

⎤⎥⎥⎥⎦ .

The corresponding composite noise vector Δh1 is given
by

Δh1 = B1Δα (25)

where B1 is expressed in the submatrix form as

B1 =

⎡⎣ 2B 0MN×MN 0MN×MN

2Ḃ 2B 0MN×MN

2B̈ 4Ḃ 2B

⎤⎦ , (26)

and B, Ḃ and B̈ are block diagonal matrices, i.e.,

B = diag(B11, B12, . . . ,B1M ),

Ḃ = diag(Ḃ11, Ḃ12, . . . , Ḃ1M ),

B̈ = diag(B̈11, B̈12, . . . , B̈1M ),

with
B1m = −diag{Rr

1, R
r
2, . . . , R

r
N},

Ḃ1m = −diag{Ṙr
1, Ṙ

r
2, . . . , Ṙ

r
N},

B̈1m = −diag{R̈r
1, R̈

r
2, . . . , R̈

r
N}.

From (22), an estimate of θ1 is given, based on the
weighted least squares minimization, as

θ̂1 = (GT
1 W1G1)−1GT

1 W1h1 (27)

where W1 is the weighting matrix determined by

W1 = [E(Δh1ΔhT
1 )]−1 = [B1QBT

1 ]−1. (28)

Troublingly, as indicated in (28), W1 is a matrix related
to the unknown target location. Toward this end, we turn
to iteratively updating values of W1. To be more specific,
by setting W1 = I3MN×3MN , we find an initial estimate
of θ1 using (27). Based on this, a better weighting matrix
W1 can be formed by substituting the estimated θ1 into
(28). Then, a more accurate estimate of θ1 is acquired by
using the formed weighting matrix W1. Usually, repeating
the computation of θ1 and W1 one to two times is enough
to achieve an acceptably accurate estimate.

Subtracting both sides of (27) by the true value θ1 =
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(GT
1 W1G1)−1GT

1 W1G1θ1 gives rise to

Δθ1 = (GT
1 W1G1)−1GT

1 W1Δh1. (29)

Suppose the measurement noise in G1 and B1 is small
enough to be neglected. Then, taking expectation on (29)
and invoking the fact that E{Δα} = 03MN×1 yield
E{Δθ1} � 0(3M+6)×1, which indicates the unbiasedness
over a small noise region. Accordingly, the covariance (as
well as the mean square error) is given, by multiplying (29)
with its transpose and taking expectation, as

Cov(θ1) = (GT
1 W1G1)−1. (30)

3.2 The second WLS step

Observe that, in the first WLS step, to rearrange the non-
linear measurement equations into linear forms, we have
introduced extra additional variables Rt

1, R
t
2, . . . , R

t
M , Ṙt

1,

Ṙt
2, . . . , Ṙ

t
M , R̈t

1, R̈
t
2, . . . , R̈

t
M , which are functions of the

target position and velocity as seen in (1), (2) and (3). Fol-
lowing the basic idea of two-step WLS, the second WLS
step exploits these functional relations to upgrade the lo-
calization accuracy.

Toward this end, begin by letting û, ̂̇u, R̂t
m, ̂̇Rt

m and̂̈Rt
m be the estimates of u, u̇, Rt

m, Ṙt
m and R̈t

m obtained in
the first WLS step, and Δu, Δu̇, ΔRt

m, ΔṘt
m and ΔR̈t

m

be the corresponding estimation errors. First of all, the fi-
nal target position and velocity estimate should maintain
as close as possible to the target location values obtained
in the first WLS step by minimizing the errors of the fol-
lowing equations:

u = û − Δu, (31)

u̇ = ̂̇u − Δu̇. (32)

Meanwhile, to exploit the functional relations between
additional variables and target location parameters to re-
fine the estimate, reformulate (1), (2) and (3), respectively,
as

2(st
m)Tu = uTu − (Rt

m)2 + (st
m)Tst

m, (33)

(ṡt
m)Tu + (st

m)Tu̇ = uTu̇−Rt
mṘt

m + (st
m)Tṡt

m, (34)

2(ṡt
m)Tu = u̇Tu̇ + (ṡt

m)Tṡt
m − (Ṙt

m)2 −Rt
mR̈t

m. (35)

Inserting u = û − Δu, u̇ = ̂̇u − Δu̇, Rt
m = R̂t

m −
ΔRt

m, Ṙt
m = ̂̇Rt

m − ΔṘt
m and R̈t

m = ̂̈Rt
m − ΔR̈t

m, into
the right side of (33), (34) and (35), and retaining only the
linear error terms, lead to

2(st
m)Tu = ûTû − (R̂t

m)2 + (st
m)Tst

m−
2ûTΔu + 2R̂t

mΔRt
m, (36)

(ṡt
m)Tu + (st

m)Tu̇ = ûT ̂̇u − R̂t
m

̂̇Rt
m + (st

m)Tṡt
m−

̂̇uTΔu + ̂̇Rt
mΔRt

m − ûTΔu̇ + R̂t
mΔṘt

m, (37)

2(ṡt
m)Tu = ̂̇uT ̂̇u + (ṡt

m)Tṡt
m − ( ̂̇Rt

m)2 − R̂t
m

̂̈Rt
m+̂̈Rt

mΔRt
m − 2̂̇uTΔu̇ + 2 ̂̇Rt

mΔṘt
m + R̂t

mΔR̈t
m. (38)

Now, the final target position and velocity estimate
should also minimize the equation errors in (36), (37) and
(38). Therefore, defining θ2 = [uT, u̇T]T and combining
(31), (32) and (36), (37), (38), another integrated linear
equation is established in the matrix form as

G2θ2 = h2 + Δh2 (39)

where

G2 =

⎡⎣G2r

G2ṙ

G2r̈

⎤⎦ , G2r =

⎡⎢⎢⎢⎢⎢⎣
I3×3 03×3

2(st
1)

T 0T
3×1

2(st
2)

T 0T
3×1

...
...

2(st
M )T 0T

3×1

⎤⎥⎥⎥⎥⎥⎦ ,

G2ṙ =

⎡⎢⎢⎢⎢⎢⎣
03×3 I3×3

2(ṡt
1)T 2(st

1)T

2(ṡt
2)

T 2(st
2)

T

...
...

2(ṡt
M )T 2(st

M )T

⎤⎥⎥⎥⎥⎥⎦ ,

G2r̈ =

⎡⎢⎢⎢⎣
2(ṡt

1)
T 0T

3×1

2(ṡt
2)

T 0T
3×1

...
...

2(ṡt
M )T 0T

3×1

⎤⎥⎥⎥⎦ ,

h2 =

⎡⎣h2r

h2ṙ

h2r̈

⎤⎦ , h2r =

⎡⎢⎢⎢⎢⎢⎣
û

ûTû − (R̂t
1)2 + (st

1)Tst
1

ûTû − (R̂t
2)

2 + (st
2)

Tst
2

...
ûTû − (R̂t

M )2 + (st
M )Tst

M

⎤⎥⎥⎥⎥⎥⎦ ,

h2ṙ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

̂̇u
ûT ̂̇u − R̂t

1
̂̇Rt

1 + (st
1)Tṡt

1

ûT ̂̇u − R̂t
2
̂̇Rt

2 + (st
2)

Tṡt
2

...

ûT ̂̇u − R̂t
M

̂̇Rt
M + (st

M )Tṡt
M

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

h2r̈ =

⎡⎢⎢⎢⎢⎢⎣
̂̇uT ̂̇u + (ṡt

1)Tṡt
1 − ( ̂̇Rt

1)2 − R̂t
1
̂̈Rt

1̂̇uT ̂̇u + (ṡt
2)

Tṡt
2 − ( ̂̇Rt

2)
2 − R̂t

2
̂̈Rt

2
...̂̇uT ̂̇u + (ṡt

M )Tṡt
M − ( ̂̇Rt

M )2 − R̂t
M

̂̈Rt
M

⎤⎥⎥⎥⎥⎥⎦ .

The corresponding composite noise vector Δh2 is de-
scribed by

Δh2 = B2Δθ1 (40)

where B2 is expressed in the submatrix form as
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B2 =

⎡⎢⎢⎢⎢⎢⎣
−I3×3 03×M 03×3 03×M 03×M

−2 × 1M×1û
T 2B̃ 0M×3 0M×M 0M×M

03×3 03×M −I3×3 03×M 03×M

−1M×1
̂̇uT ˙̃

B −1M×1û
T B̃ 0M×M

0M×3
¨̃
B −2 × 1M×1

̂̇uT 2 ˙̃
B B̃

⎤⎥⎥⎥⎥⎥⎦ (41)

with
B̃ = diag(R̂t

1, R̂
t
2, . . . , R̂

t
M ), (42)

˙̃
B = diag( ̂̇Rt

1,
̂̇Rt

2, . . . ,
̂̇Rt

M ), (43)
¨̃
B = diag( ̂̈Rt

1,
̂̈Rt

2, . . . ,
̂̈Rt

M ). (44)

Invoking the WLS minimization formula yields from
(39):

θ̂2 = (GT
2 W2G2)−1GT

2 W2h2 (45)

where W2 is the weighting matrix given by

W2 = [E(Δh2ΔhT
2 )]−1 = [B2Cov(θ1)BT

2 ]−1. (46)

4. Error analysis

The CRLB, which designates a fundamental lower bound
on the variance for any unbiased estimators, usually serves
as a benchmark for the performance of target localization
algorithms. This section evaluates the performance of the
proposed solution and compares it with the CRLB, under
the small noise conditions.

4.1 Bias and covariance

Combining (45) and the fact that θ2 = (GT
2 W2G2)−1 ·

GT
2 W2G2θ2, we obtain the estimate bias as

Δθ2 = (GT
2 W2G2)−1GT

2 W2Δh2. (47)

Assume that the noise in G2 and B2 is small enough
to be neglected. Then, taking expectation on (47) and re-
calling E{Δθ1} � 0(3M+6)×1, result in E{Δθ2} � 06×1,
which indicates the unbiasedness for a low noise level. The
resulting covariance (as well as the mean square error) is
determined, by multiplying (47) with its transpose and tak-
ing expectation, as

Cov(θ2) = (GT
2 W2G2)−1. (48)

4.2 CRLB

To obtain the performance limit for the target localiza-
tion, the CRLB is derived next. As previously mentioned,
the unknown parameter vector to be estimated and the
measurement vector for the CRLB evaluation are θ2 =
[uT, u̇T]T and α = [rT, ṙT, r̈T]T respectively. From the
measurement noise model described in Section 2, the loga-

rithm of the probability density function under θ2 (after ig-
noring the constant term) is of the form

ln p(α|θ2) = −1
2
(α − αo)TQ−1(α − αo). (49)

By definition, the Fisher information matrix (FIM),
whose inverse yields the CRLB, is calculated as

FIM(θ2) = E

[
ln p(α|θ2)

θ2

(
ln p(α|θ2)

θ2

)T
]

=

(
α

θ2

)T

Q−1

(
α

θ2

)
(50)

where
α

θ2
is the partial derivative with respect to target lo-

cation parameters and can be written into submatrices form
as

α

θ2
=

⎡⎢⎢⎢⎢⎢⎢⎣

r

u

r

u̇
ṙ

u

ṙ

u̇
r̈

u

r̈

ü

⎤⎥⎥⎥⎥⎥⎥⎦ . (51)

Recalling the parametric form of the true measurement
vector with respect to target location parameters given in
(7), (8) and (9), the entries of submatrices are given as

r

u
((m − 1)N + n, 1 : 3) =

(u − st
m)T

Rt
m

+
(u − sr

n)T

Rr
n

,

ṙ
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(u̇ − ṡt
m)T

Rt
m
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m)TṘt

m

(Rt
m)2

+
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n)T

Rr
n

− (u − sr
n)TṘr

n

(Rr
n)2

,

ṙ

u̇
((m − 1)N + n, 1 : 3) =

(u − st
m)T

Rt
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(u − sr

n)T

Rr
n

,
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u
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+

2(Ṙt
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2(Ṙr
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n(u − sr

n)T

(Rr
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,
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2(u̇ − ṡt
m)T
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2(u − st
m)TṘt

m

(Rt
m)2

+
2(u̇ − ṡr

n)T

Rr
n

− 2(u − sr
n)TṘr

n

(Rr
n)2

for m = 1, 2, . . . , M ; n = 1, 2, . . . , N and zero elsewhere.
Form (50), it follows that the CRLB can be given by

CRLB(θ2) = FIM(θ2)−1. (52)

It is not difficult to show that the CRLB in (52) and the
covariance in (48) are of the same form. Not only that, un-
der the assumptions that the measurement noises are suffi-
ciently small, we have after some algebraic manipulations

G2 � α

θ2
. (53)

By now, it is reasonable to arrive at the conclusion that
the covariance is approximately equivalent to the CRLB,
implying that the CRLB is achieved by using the proposed
solution for small measurement noises.

5. Numerical examples

In this section, numerical examples are performed to ve-
rify the theoretical development of the proposed solution.
In the numerical examples, we consider a geolocation sce-
nario as illustrated in Fig. 1, where the positions and
velocities of the transmitters T1−T5 and receivers R1−R5

are enumerated in Table 1. Note that in the following simu-
lations only three transmitters T1 − T3 and three receivers
R1−R3 are employed, unless otherwise specified. The po-
sition of the aircraft target is [30 000,−30 000, 1 000]T m,
and it moves with a velocity of [−500, 500, 50]T m/s.

Table 1 Position and velocity of transmitters and receivers

Station x/m y/m z/m ẋ/(m/s) ẏ/(m/s) ż/(m/s)

T1 4 000 4 000 – 250 50 50 0
T2 4 000 – 4 000 250 50 50 25
T3 – 4 000 4 000 750 50 50 50
T4 – 4 000 – 4 000 500 50 50 100
T5 10 000 5 000 100 200 100 25
R1 0 5 000 0 200 0 0
R2 5 000 0 500 0 200 100
R3 0 – 5 000 1 000 – 200 0 200
R4 – 5 000 0 1 500 0 – 200 50
R5 0 0 0 0 0 0

Simulation results illustrate the performance of the pro-
posed solution for different measurement noise levels [39],
which can be obtained from the following equations:

Var(r) = c2 1
B2

s

1
BnT

1
SNR

, (54)

Var(ṙ) = λ2 3
π2T 2

1
BnT

1
SNR

, (55)

Var(r̈) = λ2 180
π2T 4

1
BnT

1
SNR

(56)

where c is the signal propagation speed, λ is the signal
wavelength, Bn is the noise bandwidth, Bs is the sig-
nal bandwidth, T is the integration time. Assume that the
MPR system employs digital video broadcasting (DVB)
broadcasters as illuminators, and the corresponding pa-
rameters are λ = 0.375 m, Bs = 8 MHz, T = 1 s
and Bn = 20 MHz. The SNR is related to many factors
including transmit power, transmitter-to-target and target-
to-receiver ranges, target bistatic radar cross-section, and
so on. Combining the study in [40] and [41], we let the
SNR ranges from – 70 dB to – 20 dB to characterize the
performance of the proposed solution for different SNR
levels. The root mean squared error (RMSE) and bias are
employed as the performance measures, which come from
1 000 independent runs for various SNR values.

5.1 Delay – Doppler-based localization versus
delay –Doppler – Doppler rate-based localization

In order to demonstrate that using the Doppler rate mea-
surement in addition to measurements of time delay and
Doppler shift provides the estimation of target position and
velocity with a higher accuracy, we present and compare
the CRLB of localization using delay and Doppler against
localization using delay, Doppler and Doppler rate, versus
various SNRs. The results are shown in Fig. 2.

Fig. 2 CRLB comparison between delay –Doppler-based localiza-
tion and delay –Doppler –Doppler rate-based localization
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With the increase of SNR, both delay – Doppler-based
localization and delay –Doppler –Doppler rate-based lo-
calization give better localization performance. Over the
whole SNR range, the CRLB of delay – Doppler – Doppler
rate-based localization is remarkably below the delay –
Doppler-based localization, especially for velocity estima-
tion. The former benefit from the additional measurement
Doppler rate. This signifies the necessity of taking into ac-
count the measurement Doppler rate during the design of
localization algorithms.

5.2 Evaluation of different localization methods

Next, we study the localization performance of the pro-
posed solution in terms of RMSE and bias, as SNR varies.
We also compare its performance against the Taylor-series
method (with the true position and velocity as the initial
guess) and the delay –Doppler localization method sug-
gested in [32]. Moreover, the CRLB is also plotted as a
benchmark. The results are illustrated in Fig. 3 and Fig. 4.

As can be seen from Fig. 3, the localization RMSE
of delay –Doppler-based localization is apparently higher,
compared to the family of delay –Doppler – Doppler rate-
based localization methods. The excess RMSE for the de-
lay – Doppler-based localization is of course due to the fact
that it does not employ the Doppler rate measurements.
Both the Taylor-series method and the proposed solution
give the similar performance by attaining the CRLB at suf-
ficiently high SNR conditions. Note that the localization
problem here is highly nonlinear, and hence in practice,
both the Taylor-series method and the proposed solution
will suffer from the threshold phenomenon when the SNR
is small enough. As analyzed, the Taylor-series method de-
viates from the CRLB and gives an inaccurate solution at
SNR values below – 50 dB, whereas the proposed solution
still coincides with the CRLB at this level of SNR. Even at
SNR values below – 60 dB, the proposed solution is still
significantly superior to the Taylor-series method, although
its RMSE begins to digress from the CRLB.

Fig. 3 Localization RMSE versus SNR

Fig. 4 Localization bias versus SNR

In terms of bias, it is clear from Fig. 4 that the pro-
posed solution offers excellent localization performance
compared with other methods. Note that as the SNR de-
creases, the biases of the three localization methods in-
crease. Such findings are partially explained by the non-
linearity nature of the localization problem.

5.3 Effect of number of transmitters and receivers on
performance of the proposed solution

It is intuitively reasonable that increasing the number of
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transmitters and receivers will improve the performance
of localization methods. To numerically show the effect
of the number of transmitters and receivers on the perfor-
mance of the proposed solution, three cases with different
numbers of transmitters and receivers are considered. We
choose M = 3 and N = 3 (T1 −T3, R1 −R3) for the first
case, M = 4 and N = 4 (T1−T4, R1−R4) for the second
case, and M = 3 and N = 3 (T1 − T5, R1 − R5) for the
third case. The resulting RMSEs and biases are shown in
Fig. 5 and Fig. 6.

Fig. 5 Effect of number of transmitters and receivers on localization
RMSE of the proposed solution

Not surprisingly, as displayed in Fig. 5 and Fig. 6, as
the number of transmitters and receivers increases, the pro-
posed solution performs better in terms of both RMSE and
bias.

Fig. 6 Effect of number of transmitters and receivers on localization
bias of the proposed solution

On the other hand, however, as the number of trans-
mitters and receivers increases, the improvement rate de-
creases rapidly. That is to say, as the number of transmitters
and receivers increases, the performance curve of the pro-
posed solution versus SNR shows a tendency to a bound
curve.

5.4 Comparison of computational cost

As mentioned above, in the proposed solution, the ad-
ditional measurement Doppler rate provides the estima-
tion of target position and velocity with a higher accu-
racy, but meanwhile, it certainly will require a higher
computational load. To numerically evaluate the com-
putational burden of the proposed solution, in Table 2,
we enumerate and compare the time cost of the pro-
posed solution and delay –Doppler-based localization sug-
gested in [32]. It should be pointed out that, the time
cost is obtained from the average time of 1 000 in-
dependent runs. Main configuration of the computer
is CPU: Intel(R) Core (TM) i5-7200U @ 2.50 GHz;
RAM: 8.00 G; Operating system: Windows 10 64 bit; Soft-
ware: Matlab 2018a.

Table 2 Time cost of localization methods ms

Method Time cost

Delay – Doppler-based localization
(method in [32])

0.52

Delay – Doppler – Doppler rate-based
localization (the proposed solution)

0.66

As evident in Table 2, the proposed solution costs more
time than the delay – Doppler-based localization method,
due to the additional measurement Doppler rate. Neverthe-
less, the excess time cost is not remarkable (an increase
of 27%). That is to say: it is at the expense of more time
cost that the proposed solution achieves a higher localiza-
tion accuracy. Recalling remarkable performance improve-
ment, the excess time cost is worthy and acceptable.
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6. Conclusions

The CAF is a standard method used in passive radar, which
produces time delay and Doppler shift between the echo
signal and the reference signal, two most commonly used
measurements in target localization. The Doppler rate,
obtained from the extended CAF, makes it possible to
dramatically improve the localization accuracy. This paper
uses Doppler rate in addition to time delay and Doppler
shift as measurements to estimate the target position and
velocity. A closed-form solution is explored, by follow-
ing the basic idea of two-step. The proposed closed-form
solution requires no initial estimate and guarantees global
convergence. Simulation results demonstrate that delay –
Doppler –Doppler rate-based localization has a higher lo-
calization accuracy than delay –Doppler-based localiza-
tion although the former requires higher but acceptable
time cost, and the proposed solution is proved to perform
better than existing methods.
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