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Abstract: The investigation on quantum radar requires accurate
computation of the state vectors of the single-photon processes
of the two-level system in free space. However, the traditional
Weisskopf-Wigner (W-W) theory fails to deal with those processes
other than spontaneous emission. To solve this problem, we pro-
vide a new method based on the renormalization theory. We evalu-
ate the renormalized time-ordered Green functions associated with
the single-photon processes, and relate them to the corresponding
state vectors. It is found that the ultraviolet divergences generated
by the Lamb shift and higher-order interactions can be systemat-
ically subtracted in the state vectors. The discussions on sponta-
neous emission and single-photon absorption are then presented
to illustrate the proposed method. For spontaneous emission, we
obtain the same results of the W-W theory. For single-photon ab-
sorption where W-W theory fails, we find that the two-level electric
dipole first gets excited rapidly and then decays exponentially, and
that the efficiency of the single-photon absorption declines as the
bandwidth of the incident photon becomes narrow. The proposed
method can improve the investigation on quantum radar.
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1. Introduction

Single-photon processes exist in numerous phenomena,
such as Rabi flopping [1 – 3], resonance fluorescence [4 –
6], spontaneous emission [3], etc. In describing these pro-
cesses, the two-level system (2LS) that a two-level elec-
tric dipole couples to the electromagnetic field via rotating-
wave interaction is widely used. Even recently, the single-
photon processes of the 2LS in free space are introduced
in the study of quantum radar [7,8], where the target is
regarded as a two-level electric dipoles. The dynamics of
the single-photon processes of the 2LS are determined by
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the corresponding state vectors. Generally, if the 2LS is
confined in a cavity with a finite size, the state vector can
be obtained by solving the equation of motion (EOM) and
is found oscillating periodically, as we see in Rabi flop-
ping. However, things get subtle when the 2LS is in free
space. The single-photon processes taking place in free
space are usually irreversible, and therefore the state vector
should contain terms that are damping rather than oscillat-
ing. However, this cannot be easily achieved, because the
EOM in free space cannot be solved analytically, and the
perturbative or numerical solutions of the EOM can only
give oscillating results. To handle this problem, Weisskopf
and Wigner introduced Markov approximation in solving
the EOM for spontaneous emission and obtained the expo-
nential decay of the excited electric dipole [3], which has
been confirmed by experiments. All the ultraviolet diver-
gences in the Weisskopf-Wigner (W-W) theory are owed
to Lamb shift and are dropped explicitly. Nevertheless, the
direct use of the W-W theory on single-photon absorption
will lead to an unphysical result that the electric dipole
keeps unexcited throughout the process, in contrast with
which the electric dipole in reality will first get excited
by absorbing the incident photon and will then decay by
emitting another photon. Though there are other ways to
investigate the single-photon processes of the 2LS in the
one-dimensional system with infinite linear extension [9 –
20], the dynamics of the single-photon processes in free
space except for spontaneous emission remain uncovered.

In this article, we shall not solve the EOM, but use
renormalization theory [21 – 23] to study the single-photon
processes of the 2LS in free space. In Section 2, we derive
the renormalized Lagrangian and the corresponding Feyn-
man rules in the mass-shell scheme by analyzing the bare
time-ordered Green functions (BTGFs). In Section 3, the
renormalized time-ordered Green functions (RTGFs) are
computed with the renormalized Lagrangian and the Feyn-
man rules, and the state vector is obtained as the super-
position of the RTGFs. We find that the ultraviolet diver-
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gences originate not only from the Lamb shift but also from
higher-order interactions, and that these divergences are
systematically subtracted in the state vector. In Section 4,
spontaneous emission and single-photon absorption are
discussed to illustrate the proposed method. For sponta-
neous emission, our results are the same as the W-W the-
ory. While for single-photon absorption, it is found that the
surviving amplitude of the excited electric dipole first in-
creases rapidly to its maximum and then gradually decays
to zero, and that the efficiency of single-photon absorption
declines as the bandwidth of the incident photon becomes
narrow, which has not been noticed by the previous studies.
As for quantum radar, we obtain a more accurate norma-
lized energy density of the scattered quantum electromag-
netic field (SQEF) than [7].

2. Renormalized Lagrangian and
Feynman rules

Suppose a two-level electric dipole possesses a ground
state |0〉d with the energy 0 and a bare excited state |e〉
with the energy �ωA, and denote |0〉p and |k, s〉 as the
vacuum state of the electromagnetic field and the single-
photon state with the momentum k and the helicity index
s, respectively. Then the dynamics of the 2LS are well de-
scribed by the following Hamiltonian in the Schrödinger
picture [3]:

H = �ωAâ
+â+

∑
k,s

�ωkb̂
+
k,sb̂k,s+

i�
∑
k,s

λ · u∗
k,s(0)̂b+k,sâ− i�

∑
k,s

λ · uk,s(0)̂bk,sâ
+ (1)

where ωk = c|k|, λ is the bare moment of the electric
dipole, and

â = |0〉d〈e|, b̂k,s = |0〉p〈k, s| (2)

are the annihilation operators of |e〉 and |k, s〉, respectively.
Confine the 2LS in a cubic with the volume V and impose
periodic boundary conditions, then uk,s reads

uk,s(r) =
√

�ωk

2V ε0
e(k, s)eik,r, s = ±1 (3)

with e(k, s) as the unit-polarization vector:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
e(k, 1) · e(k,−1) = e(k,−1) · k = 0
e(k, 1) × e(k,−1) = k/|k|∑

s

eα(k, s)eβ(k, s) = δαβ − kαkβ

k2

. (4)

where δαβ (α, β = 1, 2, 3) is the Kronecker delta.
We will take V → ∞ in the following to obtain a conti-

nuous spectrum of the electromagnetic field. By employing
Hamilton’s principle, one explicitly writes down the bare
Lagrangian corresponding to (1) as

L = �Φ+
A(t)

[
i
t
− ωA

]
ΦA(t)+

�

∑
k,s

Φ+
k,s(t)

[
i
t
− ωk

]
Φk,s(t)−

i�
∑
k,s

λ · u∗
k,s(0)Φ+

k,s(t)ΦA(t)+

i�
∑
k,s

λ · uk,s(0)Φk,s(t)Φ+
A (t) (5)

where

ΦA(t) = eiHt/�âe−iHt/�, (6)

Φk,s(t) = eiHt/�b̂k,se−iHt/�. (7)

Via functional derivation [21, 22], we achieve the cor-
responding Feynman rules as shown in Fig. 1. The straight
line and the fold line on the first row come from the first
and the second terms of (5), respectively. The solid ver-
tices in the second row represent the interaction between
the electric dipole and electromagnetic field. All the un-
fixed k, s should be summed up.

Fig. 1 Feynman rules for (5)

The BTGFs can be evaluated with the above Feynman

rules. Consider
∫

eiωt〈VAC|T {ΦA(t)Φ+
A (0)}|VAC〉dt

where |VAC〉 = |0〉d ⊗ |0〉p. The non-vanishing Feyn-
man diagrams are illustrated in Fig. 2.
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Fig. 2 Feynman diagram of
∫
eiωt 〈VAC|T{ΦA(t)Φ+

A(0)}|VAC〉dt

It is straightforward to obtain
∫

eiωt 〈VAC|T {ΦA(t)Φ+
A (0)} |VAC〉dt =

i
ω − ωA + i0+

·

∞∑
N=0

⎛
⎝∑

k,s

−i |λ · uk,s(0)|2
ω − ωk + i0+

i
ω − ωA + i0+

⎞
⎠

N

=

i

ω − ωA −
∑
k,s

|λ · uk,s(0)|2
ω − ωk + i0+

. (8)

Replace
1
V

∑
k

with
∫

d3k

(2π)3
, then the denominator of

the right hand side of (8) reads

D(ω) = ω − ωA −
∑

s

∫
d3k

(2π)3
|λ · e(k, s)|2
ω − ωk + i0+

�ωk

2ε0
. (9)

The zero point of ReD(ω) is the physical frequency
ωAR of the excited state:

ωAR − ωA −
∑

s

P

∫
d3k

(2π)3
|λ · e(k, s)|2
ωAR − ωk

�ωk

2ε0
= 0 (10)

with P

∫
. . . as the principle-valued integral. Expand

ReD(ω) around ω = ωAR:

ReD(ω) = ω − ωA − C0(λ2) − C1(λ2)(ω − ωAR)−

C2(λ2)(ω − ωAR)2 − C3(λ2)(ω − ωAR)3 + F (λ2, ω)

(11)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C0(λ2) =
∑

s

P

∫
d3k

(2π)3
|λ · e(k, s)|2
ωAR − ωk

�ωk

2ε0

C1(λ2) = −
∑

s

P

∫
d3k

(2π)3
|λ · e(k, s)|2
(ωAR − ωk)2

�ωk

2ε0

C2(λ2) =
∑

s

P

∫
d3k

(2π)3
|λ · e(k, s)|2
(ωAR − ωk)3

�ωk

2ε0

C3(λ2) = −
∑

s

P

∫
d3k

(2π)3
|λ · e(k, s)|2
(ωAR − ωk)4

�ωk

2ε0

, (12)

F (λ2, ω) =
�λ2

π2c3ε0

(
11
48
ω3 − 3

8
ω2ωAR +

3
16
ωω2

AR−

1
24
ω3

AR − 1
8
ω3 ln

ω

ωAR

)
. (13)

It is obvious that not only C0, which is exactly the ul-
traviolet divergence owed to the Lamb shift, but also C1,
C2 and C3 diverge when k is integrated over |k| � ωAR.
In fact, the latter three terms come from higher-order in-
teractions between the electric dipole and the electromag-
netic field, and are ignored in the W-W theory. Though
these divergences may interfere with the validity of our
calculation, they can be subtracted by introducing the
renormalized Lagrangian, so that the RTGFs and thus the
state vector are well-defined. Specifically, the renorma-
lized Lagrangian, as suggested by the renormalization the-
ory, should contain four species of counter terms to elimi-
nate Cn for n = 0, 1, 2, 3, respectively.

LR = �Φ+
AR(t)

[
i
t
− ωAR

]
ΦAR(t)+

�

∑
k,s

Φ+
k,s(t)

[
i
t
− ωk

]
Φk,s(t)−

i�
∑
k,s

λR · u∗
k,s(0)Φ+

k,s(t)ΦAR(t)+

i�
∑
k,s

λR · uk,s(0)Φk,s(t)Φ+
AR(t)+

�

3∑
n=0

DnΦ+
AR(t)

[
i
t
− ωAR

]n

ΦAR(t) (14)

where the last line are the counter terms with
Dn to be determined. Then the denominator of∫

eiωt 〈VAC|T {ΦAR(t)Φ+
AR(0)} |VAC〉dt, analogous to

(10), reads

DR(ω) ≡ i∫
eiωt 〈VAC|T {ΦAR(t)Φ+

AR(0)} |VAC〉dt
=

ω − ωAR −
∑

s

∫
d3k

(2π)3
|λR · e(k, s)|2
ω − ωk + i0+

�ωk

2ε0
+

3∑
n=0

Dn(ω − ωAR)n = ω − ωAR + F (λ2
R, ω)+
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ImDR(ω) +
3∑

n=0

[Dn − Cn(λ2
R)](ω − ωAR)n. (15)

Next, we shall take the mass shell scheme that λR

and ΦAR(t) are defined as the physical moment and
the physical operator of the electric dipole, respectively.
This demands ReDR(ω) = ω − ωAR + F (λ2

R, ω),
and thus Dn = Cn(λ2

R). The Feynman rules for the
renormalized Lagrangian are therefore given in Fig. 3.
The shaded vertex in the third row originates from the
counter terms. Remark that, since ImDR(ω) is finite with
the notion Im (ω − ωk + i0+)−1 = −iπδ(ω − ωk),∫

eiωt 〈VAC|T {ΦAR(t)Φ+
AR(0)} |VAC〉dt is indeed free

from ultraviolet divergences.

Fig. 3 Feynman rules for (14)

3. RTGFs and state vector

The state vector |ψ(t)〉 describing the arbitrary single-
photon process of the 2LS can be decomposed as the su-
perposition of |e〉 and |k, s〉.

|ψ(t)〉 = Ce(t) |e〉 +
∑
k,s

Ck,s(t) |k, s〉 (16)

where Ce(t) and Ck,s(t) are the surviving amplitudes of
|e〉 and |k, s〉, respectively. Noting that, in the mass-shell
scheme,

Φ+
AR(0) |VAC〉 = |e〉 (17)

Φ+
k,s(0) |VAC〉 = |k, s〉 (18)

where |VAC〉 = |0〉d |0〉p is the vacuum state of the sys-
tem, and one has

Ce(t) = Ce(0) 〈VAC|T {ΦAR(t)Φ+
AR(0)} |VAC〉+∑

k′,s′
Ck′,s′(0) 〈VAC|T {ΦAR(t)Φ+

k′,s′(0)} |VAC〉 , (19)

Ck,s(t) = Ce(0) 〈VAC|T {Φk,s(t)Φ+
AR(0)} |VAC〉+

∑
k′,s′

Ck′,s′(0) 〈VAC|T {Φk,s(t)Φ+
k′,s′(0)} |VAC〉 . (20)

Therefore, the four RTGFs in the right hand side of (19)
and (20) are the key to evaluating |ψ(t)〉. Fig. 4 shows the
corresponding Feynman diagrams of these RTGFs, then
we get

∫
eiωt 〈VAC|T {ΦAR(t)Φ+

AR(0)} |VAC〉dt =

i
ω − ωAR + F (λ2

R, ω) + iΓ (ω)/2
, (21)

∫
eiωt 〈VAC|T {Φk,s(t)Φ+

AR(0)} |VAC〉dt =

i
ω − ωAR + F (λ2

R, ω) + iΓ (ω)/2
λR·

u∗
k,s(0)

i
ω − ωk + i0+

, (22)

∫
eiωt 〈VAC|T {ΦAR(t)Φ+

k′,s′(0)} |VAC〉dt =

− i
ω − ωk′ + i0+

λR·

uk′,s′(0)
i

ω − ωAR + F (λ2
R, ω) + iΓ (ω)/2

, (23)

∫
eiωt 〈VAC|T {Φk,s(t)Φ+

k′,s′(0)} |VAC〉dt =

− i
ω − ωk′ + i0+

λR·

uk′,s′(0)
i

ω − ωAR + F (λ2
R, ω) + iΓ (ω)/2

·

λR·u∗
k,s(0)

i
ω − ωk + i0+

+
i

ω − ωk + i0+
δkk′δss′ (24)

where

Γ (ω) = 2π
∑

s

∫
d3k

(2π)3
|λ · e(k, s)|2 �ωk

2ε0
δ(ω − ωk) =

�λ2
Rω

3

3πε0c3
. (25)

In the above computation, all the ultraviolet divergences
are subtracted by the counter terms in (14), and therefore
the RTGFs and |ψ(t)〉 are well-defined.

Once Ce(0) and Ck,s(0) are given, Ce(t), Ck,s(t), and
hence |ψ(t)〉 can be obtained explicitly by substituting
(21) – (25) into (19) and (20).
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Fig. 4 Feynman diagrams of the considered RTGFs

4. Spontaneous emission and single-photon
absorption

It is straightforward but quite lengthy to evaluateCe(t) and
Ck,s(t) numerically. However, in free space, λR is small
enough for one to apply the well-known Breit-Wigner ap-
proximation [21, 22].

Γ (ω) ≈ Γ :=
�λ2

Rω
3
AR

3πε0c3
, F (λ2

R, ω) ≈ 0 (26)

where Γ denotes the decay width of the excited state. Sub-
stituting (26) into (21) – (24) and performing the Fourier
transformations, we have

〈VAC|T {ΦAR(t)Φ+
AR(0)} |VAC〉 = e−iωARt−Γt/2,

(27)

〈VAC|T {Φk,s(t)Φ+
AR(0)} |VAC〉 =

iλR · u∗
k,s(0)

e−iωARt−Γt/2 − e−iωkt

ωAR − ωk − iΓ/2
, (28)

〈VAC|T {ΦAR(t)Φ+
k′,s′(0)} |VAC〉 =

−iλR · uk′,s′(0)
e−iωARt−Γt/2 − e−iω′

kt

ωAR − ω′
k − iΓ/2

, (29)

〈VAC|T {Φk,s(t)Φ+
k′,s′(0)} |VAC〉 =

e−iωktδss′δkk′ + λR · uk′,s′(0)λR·

u∗
k,s(0)

[
1

ωk − ω′
k

1
ωAR − ω′

k − iΓ/2
e−iω′

kt−

1
ωk − ω′

k

1
ωAR − ωk − iΓ/2

e−iωkt+

1
ωAR − ωk − iΓ/2

1
ωAR − ω′

k − iΓ/2
e−iωARt−Γt/2

]
.

(30)

Note that since there may exsit a virtual state rather than
a resonance [24 – 28] for some |λR|, which would violate
Breit-Wigner approximation, and we assume that |λR| is
sufficiently small to satisfy (26).

In the following, we shall discuss spontaneous emission
and single-photon absorption with the aid of (27) – (30).

(i) Spontaneous emission. For spontaneous emission,
the incident condition reads

Ce(0) = 1, Ck,s(0) = 0. (31)

Combining (19), (20), (27), (28) and (31), one has

Ce(t) = e−iωARt−Γt/2, (32)

Ck,s(t) = iλR · u∗
k,s(0)

e−iωARt−Γt/2 − e−iωkt

ωAR − ωk − iΓ/2
. (33)
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Indeed, (32) and (33) agree with the results achieved by
the W-W theory [3] exactly.

(ii) Single-photon absorption. For single-photon absorp-
tion where the W-W theory fails, the electric dipole is ini-
tially on the ground state, and the incident photon is pre-
pared in a wave packet.

Ce(0) = 0, Ck,s(0) =
1√
V
f(k, s) (34)

where f(k, s) is a smooth function with respect to k, sa-
tisfying ∑

s

∫
d3k

(2π)3
|f(k, s)|2 = 1. (35)

Analogous to spontaneous emission, we can obtain

Ce(t; f) =
1√
V

∑
k′,s′

f(k′, s′)·

〈VAC|T {ΦAR(t)Φ+
k′,s′(0)} |VAC〉 , (36)

Ck,s(t; f) =
1√
V

∑
k′,s′

f(k′, s′)·

〈VAC|T {Φk,s(t)Φ+
k′,s′(0)} |VAC〉 . (37)

Remark that, no matter what form f(k, s) takes, it is
governed by the Riemann-Lebesgue lemma that

lim
t→∞Ce(t; f) = 0, ∀f. (38)

Equation (38) indicates that the electric dipole first gets
excited by absorbing the incident photon and eventually
decays with the emission of another photon, which is con-
sistent with the physics of single-photon absorption.

In particular, consider that the incident photon is pre-
pared in a Gaussian packet with s = +1 helicity,

f(k, s) =
(

4π
α

) 3
4

exp{− (k− q0)2

2α
}δs+1. (39)

The coordinate is chosen such that q0 is along the z-axis
and λR is written as

λ = λ(sin δ, 0, cos δ) (40)

where δ is the intersecting angle between λR and q0. By
combining (29), (36), (39) and (40), we get |Ce(t; f)| for
different α and |q0| and plot them in Fig. 5.

Fig. 5 |Ce(t; f)| for different Gaussian packets

It is easy to see that
(i) |Ce(t; f)| arises rapidly to its maximum (< 1) and

then decays slowly.
(ii) The non-vanishing detuning Δ = ωAR − |q0| c,

shown in Fig. 5(a) and Fig. 5(c), causes a dissipative oscil-
lation of |Ce(t; f)|. This phenomenon, analogous to Rabi
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flopping, comes from reemission and reabsorption of a sin-
gle photon.

(iii) The efficiency of absorption of the incident photon
declines as α → 0, i.e., as the bandwidth of the incident
photon becomes narrow. This phenomenon has not been
noticed by previous investigations, and is easy to be under-
stood: the density of the photon around the electric dipole
is reciprocal to the bandwidth of the photon, and is propor-
tional to the strength of the interaction between the photon
and the electric dipole, and therefore a smaller bandwidth
of the incident photon yields stronger absorption by the
electric dipole.

The investigation on quantum radar concerns the nor-
malized energy density of the SQEF. It is obvious that the
scattering of the incident photon by the target is just single-
photon absorption of the 2LS by regarding the target as
a two-level electric dipole, and therefore the normalized
energy density can be obtained from (37). Specifically,
note that the first and the second term and of the right hand
side of (29) come from the incident photon and the SQEF,
respectively, and thus the electromagnetic component of
the state vector can be divided into two parts:

|ψSC(t; f)〉 =∑
k,s

[
Ck,s(t; f) − 1√

V
f(k, s)e−iωkt

]
|k, s〉 , (41)

|ψIN (t; f)〉 =
1√
V

∑
k,s

f(k, s)e−iωkt |k, s〉. (42)

Then the normalized energy density reads

ρ(r, t; f) =

4πr2
〈ψSC(t; f)|E+(r) ·E(r) |ψSC(t; f)〉
〈ψIN (0; f)|E+(0) ·E(0) |ψIN (0; f)〉 (43)

where

Eα(r) = i
∑
k,s

√
�ωk

2ε0V
eα(k, s)eik·rΦk,s(0) (44)

is the electric field intensity operator. In contrast, the pre-
vious studies, e.g. [7], neglect the arising period ofCe(t; f)
and approximate the decaying period as spontaneous emis-
sion. As a consequence, the normalized energy density in
them is actually obtained from (28), and thus is free from
the incident photon. The ρ − δ relation achieved by the
proposed approach and by [7] are shown in Fig. 6 where
r = (0, 0,−1 000ω−1

ARc), t = 1 035ω−1
AR, |q0| = ωARc

−1,
Γ = 0.01ωAR, α = 0.009ω2

ARc
−2. We see that, by con-

sidering the entire evolution of Ce(t; f), the normalized
energy density indeed depends on the wave packet of the
incident photon. Therefore, one has to adopt the proposed
method, instead of [7], to achieve an accurate normalized
energy density of the SQEF.

Fig. 6 ρ − δ relations obtained by the proposed approach and [7]

5. Conclusions

We present a new approach based on the renormalization
theory to the single-photon processes of the 2LS in free
space. The state vector of the 2LS is obtained as the su-
perposition of the RTGFs involved in the single-photon
processes, where all the ultraviolet divergences originat-
ing from the Lamb shift and higher-order interactions are
systematically subtracted. We include the discussions on
spontaneous emission and single-photon absorption with
the proposedmethod. For spontaneous emission, we obtain
the same result with the W-W theory. For single-photon ab-
sorption, we find that the electric dipole first gets excited
rapidly and then decays slowly, and that the efficiency of
single-photon absorption declines as the bandwidth of the
incident photon becomes narrow, which has not been no-
ticed before. The proposed method improves the computa-
tion of the normalized energy density of the SQEF.
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