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Abstract: For the detection of marine ship objects in radar ima-
ges, large-scale networks based on deep learning are difficult to
be deployed on existing radar-equipped devices. This paper pro-
poses a lightweight convolutional neural network, LiraNet, which
combines the idea of dense connections, residual connections and
group convolution, including stem blocks and extractor modules.
The designed stem block uses a series of small convolutions to
extract the input image features, and the extractor network adopts
the designed two-way dense connection module, which further re-
duces the network operation complexity. Mounting LiraNet on the
object detection framework Darknet, this paper proposes Lira-you
only look once (Lira-YOLO), a lightweight model for ship detec-
tion in radar images, which can easily be deployed on the mobile
devices. Lira-YOLO’s prediction module uses a two-layer YOLO
prediction layer and adds a residual module for better feature de-
livery. At the same time, in order to fully verify the performance of
the model, mini-RD, a lightweight distance Doppler domain radar
images dataset, is constructed. Experiments show that the net-
work complexity of Lira-YOLO is low, being only 2.980 Bflops, and
the parameter quantity is smaller, which is only 4.3 MB. The mean
average precision (mAP) indicators on the mini-RD and SAR ship
detection dataset (SSDD) reach 83.21% and 85.46%, respectively,
which is comparable to the tiny-YOLOv3. Lira-YOLO has achieved
a good detection accuracy with less memory and computational
cost.

Keywords: lightweight, radar images, ship detection, you only
look once (YOLO).

DOI: 10.23919/JSEE.2020.000063

1. Introduction

In the field of military reconnaissance and object strike, the
detection of marine ships in radar images has been exten-
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sively studied. Traditional detection algorithms, for ex-
ample, the constant false-alarm rate (CFAR) [1 – 5], al-
ways have the problem of low detection accuracy. In recent
years, due to the significant advantages of deep learning in
the field of object detection [6 – 12], the application of deep
learning to the detection of marine objects in radar images
has become a research hotspot. For example, Li et al. [13]
applied fast region convolutional neural network (R-CNN)
[14] to ship detection in synthetic aperture radar (SAR) im-
age and proposed a new data set named SAR ship detection
dataset (SSDD). In [15], Qu et al. used the improvedOTSU
method to segment the SAR image and selected the target
through the trained convolutional neural network (CNN).
The algorithm improves the detection speed while reduc-
ing false positives.

The above algorithms have outstanding performance in
the detection accuracy, much higher than that of traditional
methods. However, aircraft equipment with radar sensors
has limited storage space and computing power, so it is dif-
ficult for large object detection models to deploy then. De-
signing a lightweight network detection model is an effec-
tive way to solve this problem [16 – 19]. The lightweight
network detection model aims to achieve a better detec-
tion accuracy through efficient network design, using less
memory and computing power. Researchers have proposed
some models for the lightweight network [20 – 22]. In the
field of object detection, a common method is to load some
lightweight CNN into object detection models. At present,
it is mainly mounted in single shot multi-box detector
(SSD) [23] to form a lightweight target detection network.
Typical networks, such as MobileNet [24], use deep sep-
arable convolution to design the network. The ShuffleNet
[25] reduces the amount of parameters through applying
group convolution and solves the problem of poor informa-
tion between groups through the channel shuffle operation.
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Based on the Pelee [26] model, this paper designs a
new CNN LiraNet and puts the network on the you only
look once (YOLO) [27 – 29] model. Then, Lira-YOLO, a
lightweight model for ship detection in radar images is
proposed. At the same time, in order to solve the redun-
dancy problem of the radar images data set used in [30],
this paper reconstructs the previous data set, then proposes
a new small dataset named mini-RD. Finally, the good per-
formance of Lira-YOLO is verified by experiments on the
mini-RD and SSDD datasets.

2. Related work

2.1 Why YOLO, not SSD?

SSD is an end-to-end real-time object detection model pro-
posed by Liu in 2016 [23]. It has a good network portabi-
lity and is one of the most widely used models. The exi-
sting lightweight object detection networks basically use
SSD models, such as deeply supervised object detector
(DSOD) [31] and Pelee. The original YOLO is based on
the Darknet framework and is developed by the author
alone. Its model mobility is not as good as SSD, and
therefore it is less used. We proposed the YOLOv3 net-
work in 2018. YOLOv3 uses a three-layer predictive struc-
ture and incorporates multiple layers of feature informa-
tion. In comparison, although the SSD has feature fusion
on the five convolution kernel scales, there is only one
prediction layer, and the use of features does not nec-
essarily have excellent YOLOv3 performance. Based on
the above analysis, this paper attempts to use the origi-
nal YOLO model based on the Darknet framework as
the underlying module to build LiraNet. Through subse-
quent experiments, the good generalization performance
of the YOLO model is verified. You can access the relevant
code in this paper from https://github.com/longlongZ/Lira-
YOLO.

2.2 Pelee

Pelee was published on International Conference on
Learning Representations 2018 and a variant version of
DenseNet named PeleeNet was proposed, which is a
lightweight network for mobile devices [26]. It is deployed
in the SSD model for object detection. PeleeNet follows
the DenseNet’s innovative connectivity model and some
key design principles, applying group convolution, and a
two-way dense layer for different receptive fields was pro-
posed. One of the dense layers uses a 3×3 smaller convolu-
tion kernel, which is a good way to capture small-scale ob-
jects. The other uses two 3×3 convolution kernels to learn
the visual characteristics of large-scale objects. The stem
block designed can effectively extract features with mini-
mal computational resources. When PeleeNet is loaded

into the SSD, the 38×38 feature map is discarded to re-
duce the computational cost. At the same time, before each
feature map is added to the prediction layer, a ResBlock is
passed for better features transfer. Finally, on the visual
object classes (VOC) dataset, Pelee surpasses the object
detection performance of YOLOv2 [28] at a lower cost.

2.3 Dataset preparation

The mini-RD is a small dataset of radar ship objects in
the range-Doppler (R-D) domain constructed in this pa-
per. The dataset covers radar images of different sizes such
as 320×32, 320×64, 320×128, 800×64, and 1 200×128.
The final mini-RD contains more than 1 500 pictures, in-
cluding ships and two types of jammers, and the ratio of
the training set to the test set is about 8:2.

The SSDD dataset is the ship object dataset of the SAR
images proposed in [13], which contains 1 260 pictures,
including only a class of ships, and the sizes of the radar
images are between 300×200 and 550×450. This paper
divides the training set and the test set roughly by 8:2.

In the process of making datasets, in order to increase
the difficulty of training, this paper manually adds a lot of
hard examples in the test set, including background noise,
occlusion between objects, and a large number of small
objects, as shown in Table 1.

Table 1 Datasets used in this paper

Dataset Class Training set Test set
Mini-RD 3 1 280 267
SSDD 1 878 282

3. Lira-YOLO

Based on PeleeNet, this paper proposes a new lightweight
CNN, LiraNet, then mounts it on YOLO, and proposes an
object detection model for radar images detection, Lira-
YOLO.

3.1 LiraNet

(i) A new dense layer
In the original two-way dense layer of the PeleeNet, the

1×1 and 3×3 convolutions of the previous layers are re-
peatedly used for group convolution. We try to reuse these
two levels of convolution operations. This is because the
multiplexing of convolution kernels does not change the
perception of densely connected layers on different scales
of targets. After multiplexing, the dense layers are still two
branches, corresponding to large-scale and small-scale tar-
gets. At the same time, LiraNet uses a total of 21 dense
layers. The multiplexing of 1×1 and 3×3 convolutional
layers can effectively reduce the total computational over-
head of the network. Through the experimental verification
in the SSDD and mini-RD datasets, after sharing, the net-
work reduces the complexity of 1.3 Bflops, and has little



952 Journal of Systems Engineering and Electronics Vol. 31, No. 5, October 2020

effect on the accuracy. Fig. 1 shows the dense layers of
PeleeNet and the proposed one.

Fig. 1 Dense layer

(ii) A new stem block
Motivated by tiny-DSOD [6], we design an efficient

stem block. The structure is shown in Fig. 2. The stem
block first extracts features from the input images by a con-
volution kernel of the size 3×3, then concatenates the 1×1
and 3×3 convolution operations, applies a smaller convo-
lution kernel depth, and finally is downsampled with a 2×2
maximum pooling operation.

Fig. 2 The proposed stem block

Compared with the stem block in PeleeNet, the new
stem block designed is more streamlined, and the channels
number of the convolution kernel is smaller, which is more

in line with the lightweight design of the network. The ad-
vantage of this stem block is that it not only extracts the
features of the input images well, but also consumes less
computational complexity.

(iii) Other
The design of the transition layer and the selection of

the number of the dense block lagers follow the practice of
PeleeNet. The transition block is shown in Fig. 3.

Fig. 3 Transition block

Table 2 shows the network structure of LiraNet.
Table 2 Network structure of LiraNet

Stage Layer Output size
Input size 416×416×3
Stem block 104×104×16

Dense layer×3+ Transition layer 52×52×128
Dense layer×4+ Transition layer 26×26×128Extractor
Dense layer×8+ Transition layer 13×13×128

Dense layer×6+ Conv 1×1/1 13×13×128

3.2 Lira-YOLO

To meet the needs of the object detection task, we equip
LiraNet to the YOLO model. Through experiments, the
two-layer YOLO prediction layer can better utilize features
under a small amount of computational power, but the 3×3
convolution operation before the second prediction layer
of Tiny-YOLOv3 consumes a large amount of computa-
tion and memory [32]. At the same time, this operation has
a great impact on the accuracy of the SSDD dataset. We
refer to the ResBlock operation before accessing the SSD
prediction layer in Pelee [33], but we finally use a convo-
lution kernel with a depth of 128 to better apply to object
detection tasks with a small number of classes. The Res-
Block module is shown in Fig. 4. H represents the height
of the convolution kernel, W represents the width of the
convolution kernel, D represents the depth of the convolu-
tion kernel, and F represents the depth after processing.

Fig. 4 ResBlock module (F=(classes+5)×3)
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Finally, we provide two different prediction modules:
the v1 module uses the original YOLO prediction layer,
whose precision is higher on the SSDD dataset; the v2
module adds the ResBlock module before prediction, and

the advantage of v2 is that the calculation amount and
the occupied memory are smaller. In summary, the model
structure of Lira-YOLO is shown in Fig. 5.

Fig. 5 Lira-YOLO

4. Experiment

4.1 Experimental environment

The experimental environment configuration in this paper
is shown in Table 3.

Table 3 Experimental environment configuration

System Ubuntu18.04

CPU Intel Core i5-8400 CPU @2.80 GHz×6
GPU GeForce GTX 1070

Hardware acceleration CUDA9.0; CUDNN7.5

4.2 Contrast experiment with other models

For an objective assessment, we compile some excellent
lightweight networks based on the Darknet framework.

We experiment with stem block modules of several net-
works on DSOD backbone networks, which are based on
the SSDD dataset firstly. The specific experimental results
are shown in Table 4, where mAP refers to mean average
precision.

Table 4 Stem block experiments of group A based DSOD

Parameter DSOD #A1 #A2 #A3
The

proposed
model

PeleeNet

Weight/MB 13.6 13.6 13.6 14.4 13.5 10.1
Computation/

Bflops
13.716 14.181 13.282 17.973 13.028 6.105

mAP/% 88.16 87.86 87.70 88.05 87.93 86.93

Experiments of group A validate the performance of
the proposed stem block. #A1–#A3 use the backbone net-
work of DSOD, and the stem block uses the correspond-
ing parts of tiny-DSOD, PeleeNet and Inception-v4 respec-
tively. The designed stem block consumes less computa-
tion. However, the backbone network of DSOD consumes
more computing cost and memory space than PeleeNet.

Later, we conduct experiments based on PeleeNet and get
better results. The results are shown in Table 5.

Table 5 Experiments of group B based PeleeNet

Parameter PeleeNet #B1 #B2 Lira-YOLO.v1

Weight/MB 10.1 7.6 7.6 7.6
Computation/

Bflops
6.105 4.287 4.720 4.232

mAP/% 86.93 86.39 86.30 88.04

As can be seen from Table 5, #B1 uses the dense layer
designed on the basis of PeleeNet, which has obvious
advantages in terms of calculation amount and memory
space. Compared with the original PeleeNet, it reduces the
operation amount of 1.818 Bflops and the memory usage
of 2.5 MB.

Based on the designed dense layer, #B1, #B2 and Lira-
YOLO.v1 use the stem blocks designed by PeeleNet,
DSOD and this paper respectively. The final experiments
show that Lira-YOLO.v1 has good performance in various
indicators.

All the above experiments use the prediction layer of the
v1 version. Then we experiment with the v1 and v2 ver-
sions on the mini-RD and SSDD datasets. What is encour-
aging is that on the mini-RD dataset, the version with the
added ResBlock operation has better performance than the
original YOLO prediction layer. We add the spatial pyra-
mid pooling (SPP) [34] module to the YOLO prediction
layer, but the experimental results are not ideal. The com-
parison results of the model are shown in Table 6.

In the end, compared to YOLOv3 and tiny-YOLOv3,
Lira-YOLO achieves a good detection accuracy with less
memory storage space and network complexity. YOLOv3
is not as accurate as tiny-YOLOv3 on the mini-RD dataset.
We think that in a small dataset, an overly complex net-
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work may overfit the training set, so the generalization per-
formance on the test set is not good enough.

Table 6 Performance comparison of models

Parameter YOLOv3
Tiny-

YOLOv3
Lira-

YOLO.v1
Lira-

YOLO.v2

Weight/MB 246.3 34.7 7.6 4.3
Computation/Bflops 65.290 5.448 4.232 2.980

SSDD 89.72 88.69 88.04 86.30
mAP/%

Mini-RD 83.96 84.14 82.06 82.37

Fig. 6 and Fig. 7 show the loss curve of Lira-YOLO on
the SSDD and mini-RD datasets, respectively.

Fig. 6 Loss of SSDD

Fig. 7 Loss of mini-RD

We can see that Lira-YOLO has a good convergence and
a strong feature learning ability.

4.3 Results and analysis

Fig. 8 and Fig. 9 show the results of Lira-YOLO on the
SSDD and Mini-RD datasets. The results are satisfactory.
Lira-YOLO has a good detection ability of small objects,
and good detection results for radar images of different
resolutions.

The Lira-YOLO model has a good performance.
Through analysis, we think the main reasons are as fol-
lows.

Fig. 8 Test results of SSDD
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Fig. 9 Test results of mini-RD

(i) The design of LiraNet is simple and efficient. By
applying group convolution, dense connection, bottleneck
design, etc., LiraNet not only extracts features efficiently,
but also reduces the amount of parameters and calcula-
tions.

(ii) The improved feature fusion layer of this paper takes
into account the lightweight design and feature expression
capabilities of the model [33]. Firstly, we add the resi-
dual module to better relate the context features, then do
multi-scale feature fusion, and finally use two sub-layers
of the YOLO prediction layer. These designs and improve-
ments have significantly improved the performance of the
model.

(iii) The Darknet frame provides good support for model
performance. The contributions of the Darknet include the
calculation of the anchor point coordinates suitable for the
dataset by the K-means algorithm, the loss function provid-
ing good guidance for model training, and the good mobi-
lity of the Darknet frame and its applicability to different
scale target detection.

5. Conclusions

This paper proposes a lightweight model for ship detec-
tion in radar images named Lira-YOLO, which uses the
idea of dense connection and group convolution. We de-
sign a CNN named LiraNet, which has a low complexity,
few parameters and a strong feature expression ability. The
network is loaded into the YOLO model and good experi-
mental results are obtained. The model can effectively de-
tect ship targets in different resolution radar images. The
generalization performance of the YOLO model is veri-
fied.
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