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Abstract: This paper proposes a parity recognition of blade num-
ber and manoeuvre intention classification algorithm of rotor target
based on the convolutional neural network (CNN) using micro
Doppler features. Firstly, the time-frequency spectrograms are ac-
quired from the radar echo by the short-time Fourier transform.
Secondly, based on the obtained spectrograms, a seven-layer
CNN architecture is built to recognize the blade-number parity
and classify the manoeuvre intention of the rotor target. The con-
structed architecture contains a leaky rectified linear unit and a
dropout layer to accelerate the convergence of the architecture
and avoid over-fitting. Finally, the spectrograms of the datasets
are divided into three different ratios, i.e., 20%, 33% and 50%,
and the cross validation is used to verify the effectiveness of the
constructed CNN architecture. Simulation results show that, on
the one hand, as the ratio of training data increases, the recog-
nition accuracy of parity and manoeuvre intention is improved at
the same signal-to-noise ratio (SNR); on the other hand, the pro-
posed algorithm also has a strong robustness: the accuracy can
still reach 90.72% with an SNR of – 6 dB.
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1. Introduction

With the rapid advancement of radar intelligence, effective
recognition and classification of aircraft targets become
more and more significant in the next-generation radar
[1,2]. Feature extraction is the core procedure of radar tar-
get recognition and classification [3], and micro-Doppler
features are widely used in rotor target classification [4,5].
For example, the micro-Doppler signature and cadence-
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velocity diagram are merged as a new image to realize
drone classification based on the convolutional neural net-
work (CNN) [6]. In [7], several physically interpretable
features are extracted to recognize human activities. How-
ever, most of the existing references on target classifica-
tion are about the classification of target types and models
[8,9]. At present, there is no study on the problem of tar-
get manoeuvre intention classification. The micro-Doppler
feature can represent not only the difference of dynamic
components between different types of targets but also the
difference between different manoeuvre intentions of the
same target [10]. Taking a helicopter in the rising state
as an example, its dynamic components will generate a
Doppler modulation with an increasing frequency on the
echo; conversely, when the target is falling, its dynamic
components will generate a Doppler modulation with a de-
creasing frequency on the echo. Extraction of the blade
characteristic [11] and manoeuvre intention information
of a rotor target from micro-Doppler features [12] will be
widely used in airspace surveillance and remote sensing
applications.

Recently, the CNN is one of the most frequently used
methods in intelligent classification algorithms [13 – 17].
Chen et al. proposed a multistatic CNN algorithm based on
micro-motion features to improve the classification proba-
bility [18,19]. In [20], a contextual deep CNN (DCNN)
was proposed to clarify the hyperspectral image which is
different from the other existing networks because of not
only the deeper and wider architecture but also the lo-
cal optimization. In addition, on the basis of raw micro-
Doppler spectrograms, the DCNN was utilized to realize
human activity recognition without any explicit features
extraction [21]. However, the research on the application of
the CNN to the artificial target is less and difficult. In this
paper, inspired by intelligent classification algorithms, we
propose an effective CNN architecture for the parity recog-
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nition of blade number and manoeuvre intention classifi-
cation of a rotor target. First, time-frequency spectrograms
are acquired by the short-time Fourier transform (STFT)
based on the analysis of the target echo model [22]. More-
over, a CNN architecture with seven layers is built to rec-
ognize the blade number parity and classify the manoeuvre
intention of the rotor target, which consists of three convo-
lutional layers (CLs), two down sampling layers (DSLs),
and two full connection layers (FCLs). In addition, the ac-
tivation function of the leaky rectified linear unit and the
dropout layer are carried out in the constructed architec-
ture to accelerate the convergence of the architecture and
avoid over-fitting. Different from the existing CNN-based
methods where the CNN algorithms are mainly used for
target type classification, this paper applies the CNN to the
field of rotor target manoeuvre intention classification.

2. Background

2.1 Signal model

Assume that there is a scene of radar detection of a rotor
target, and Fig. 1(a) shows the spatial geometry model. RC

refers to the initial distance between the radar and the rotor
target center, and β refers to the angle of pitch. Consid-
ering a 2-D slant-range plane, the simplified geometry is
shown in Fig. 1(b), in which the radar coordinate system is
established as XOY , and X ′O′Y ′ refers to the target co-
ordinate system with the rotor target rotation center O′ as
the origin. The rotational radius of the scatterer P on the
rotor blade is assumed as r, i.e., the distance from P to O′

is r, and the distance from the radar to the scatterer P can
be expressed as RP . The rotational angular velocity of the
scatterer P is denoted as ω, and the initial phase is denoted
as θ0.

Fig. 1 Geometry model between the radar and the rotor target

According to the geometry model, the instantaneous
distance of OP can be represented as

RP (tm) =
√

(RC + Rx(tm))2 + Ry(tm)2 (1)

where Rx(tm) and Ry(tm) are the abscissa and the ordi-
nate of the scatterer P respectively, tm = mTr is the slow
time, m is the order number of the transmitted pulse and Tr

refers to the pulse repetition period. Under the condition of
the far field, (1) can be rewritten as

RP (tm) ≈ RC + Rx(tm) = RC + r cos(ωtm + θ0). (2)

Suppose there is the radar that transmits linear fre-
quency modulation (LFM) signals, which can be expressed
as

st(t̂, tm) = rect(t̂/Tp) exp(j2π(fct + μt̂2/2)) (3)

where rect(·) is the rectangular window, Tp refers to the
pulse width, fc refers to the signal carrier frequency, μ is
the chirp rate of the LFM signal, t refers to the total time,
t̂ is the fast time, and t = t̂ + tm. The echo signal of the
scatterer P can be expressed as

sr(t̂, tm) = σrect(tm/Ta)rect((t̂ − 2RP (tm)/c)/Tp)·
exp(j2πfc(t − 2RP (tm)/c))·
exp(jπμ(t̂ − 2RP (tm)/c)2) (4)

where σ refers to the scattering coefficient of the scatterer
P , Ta is the observation time, and c refers to the speed of
light. The following expression can be obtained by pulse
compression of the echo signal:

sc = σTp sin c[B(t̂ − 2RP (tm)/c)]rect(tm/Ta)·
exp(−j4πRC/λ) exp(−j4πr cos(ωtm + θ0)/λ) (5)

where B is the signal bandwidth, and λ is the wave-
length. The Doppler frequency can be obtained by taking
the derivative of the phase as

fmd =
1
2π

dφ

dtm
=

1
2π

d[−4πr cos(ωtm + θ0)/λ]
dtm

=

2ωr sin(ωtm + θ0)/λ. (6)

According to the above formula, we can conclude that
the Doppler frequency of the scatterer on the rotor blade
takes the form of sine function and is related to the rotor
target parameters of ω and r. We can also obtain the maxi-
mum of the Doppler frequency as

fmd−max = 2ωr/λ. (7)

In the next section, we will describe how to identify the
number information of blades and the manoeuvre intention
based on the micro-Doppler features.
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2.2 Radar data pre-processing

In this paper, we consider and clarify three different ma-
noeuvre intentions of a rotor target, such as rising, hove-
ring and falling. As we know, the change trend of rota-
tional angular velocity of the scatterer P varies with dif-
ferent manoeuvre intentions, and the maximum Doppler
frequency also presents different forms. For example, the
rotational angular velocity of the scatterer P in the rotor
blade increases approximately linearly in the rising state.
The instantaneous angular velocity can be defined as

ω(tm) = ω0 + atm (8)

where ω0 is the rotational angular velocity of the scatter P

at the initial observation time, a is the rotational angular
acceleration, and a > 0 indicates that the rotational angu-
lar velocity increases with slow time and the rotor target is
rising. By that analogy, a = 0 and a < 0 represent the ma-
noeuvre intentions which are hovering and falling, respec-
tively. Correspondingly, the maximum Doppler frequency
of the scatterer P in the rotor blade can be rewritten as

fmd−max = 2(ω0 + atm)l/λ (9)

where l refers to the rotor blade length.
Especially, we may change the manoeuvre intention

through changing the propeller pitch and keeping a con-
stant angular velocity. However, if the rotational angular
velocity of the scatterer P in the rotor blade keeps un-
changed and the rotor target is on the rising or falling state
by changing the propeller pitch, the projection of the ro-
tating radius of the scatterer P on the radar line of sight
will also change, and then the sinusoidal time-frequency
chart with a constant frequency and amplitude cannot be
obtained. In addition, in this case, the rotor target will have
a horizontal thrust and radial motion. We can classify the
manoeuvre intentions by measuring the change of the ra-
dial distance.

As a typical algorithm of linear time-frequency trans-
form, the STFT has received more and more attention,
which clearly describes the relationship between the sig-
nal frequency and the time variation and can be expressed
as

S[m, k] = STFT{s[n]} =

+∞∑
n=−∞

s[n]w[n − m] exp(−j2πnk/N) (10)

where n = 1, 2, . . . , N − 1, S[m, k] refers to the result
of the STFT of the signal s[n], s[n] refers to the discrete
echo signal in the distance unit of the rotor target, and
w[n] denotes the discrete window function which is usua-

lly a Gaussian function, N refers to the size of the win-
dow function, k refers to the sampling point of discrete
Doppler frequency, and k = Nf/fs, where f refers to the
discrete Doppler frequency, and fs refers to the sampling
frequency.

Fig. 2(a) – Fig. 2(c) plot the spectrograms of three ma-
noeuvre intentions under the signal-to-noise ratio (SNR)
of – 10 dB. The simulation parameters of the transmitting
signal and rotor target are shown as follows. Assume that
there are four blades in the rotor target with the rotor blade
length of 6 m, the fuselage of the rotor target consists of
four scatterers, and the rotational angular velocity of the
rotating parts is 4 r/s in the state of hovering.

Fig. 2 Spectrograms under three manoeuvre intentions
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The pulse repetition period Tr is 0.25 ms, the pulse
width Tp is 50 μs, the observation time Ta is 1 s, the band-
width B of the LFM signal is 1 MHz and the carrier fre-
quency fc is 1 GHz.

3. The proposed algorithm

3.1 CNN architecture

A CNN architecture with seven layers is built to extract
information from time-frequency spectrograms for parity
recognition of blade number and manoeuvre intention clas-
sification of the rotor target, as shown in Fig. 3. As we can
see from the CNN architecture model, the numbers fol-

lowed by “@” refer to the size of each feature map, and the
numbers followed by “#” represent the parameters of the
convolutional kernel, where the first three numbers refer
to the size and the last number is the kernel depth. It com-
prises three CLs, two DSLs, and two FCLs. First, to reduce
the computational complexity, the spectrogram inputs of
the CNN architecture are down-sampled to 250×250 pix-
els. Although the image size is compressed, it still contains
enough information for recognition and classification. Se-
cond, the features represented by the variation of the
micro-Doppler frequency are extracted by CLs of the ar-
chitecture. Finally, the vector reshaped after C5 is fed into
two FCLs (Fc6 and Fc7) to produce the final output.

Fig. 3 CNN architecture

3.2 Training details

In this paper, the constructed CNN architecture is imple-
mented by Tensorflow. To accelerate the convergence of
the architecture and avoid over-fitting, we utilize batch pro-
cessing and the dropout method when the architecture is
trained, respectively. According to our several trails, it can
be found that the architecture has the best ability to reco-
gnize and clarify the rotor target with the learning rate of
0.001 (training data ratio of 20%) and 0.002 (training data
ratio of 50%) and with a size of 10 in batch processing.

To verify the effectiveness of the constructed CNN ar-
chitecture, we partition the spectrograms of the datasets
into three different radios of 20%, 33% and 50%. The
datasets are divided randomly and evenly into five folds
when the training data radio is 20%, and a fivefold cross
validation method is used to acquire a stable and universal
recognition and classification accuracy. In the same way,
triple and double cross validations are respectively con-
ducted in terms of 33% and 50% training data radios.

4. Simulation results

4.1 Randomly divided datasets

We first validate the manoeuvre intention classification of

the rotor target and the parity recognition performance of
the blade number by the randomly divided training data
radio mentioned above. Assume that there are two types
of the rotor blades in the experiment, the blade numbers
are two and three, respectively. The distance between the
scatterer and the scatterer center on the rotor blade ranges
from 4 m to 8 m, which contains 15 kinds of simulation
data. The angular velocity of the rotor blade is simulated
with 10 data in each manoeuvre intention, which ranges
from 2 r/s to 6 r/s. Generally speaking, there are three ma-
noeuvre intentions of the rotor target, and the number of
samples for each state is 300. Table 1 shows the maximum,
minimum and average accuracies for manoeuvre intentions
classification and parity recognition of the blade number
after the cross validation at SNR = 0 dB. As shown in Ta-
ble 1, we can conclude that with an increasing training data
ratio, the recognition accuracy of parity and manoeuvre in-
tention is obviously improved at the same SNR. We also
find that the manoeuvre intention classification accuracy
is high enough and can reach 93.34% on average in terms
of the 20% training data ratio, and the parity recognition of
the blade number accuracy reaches 89.34% on average and
92% at maximum in terms of the 50% training data ratio.
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Table 1 Parity recognition of blade number and manoeuvre inten-
tion classification accuracy %

Parity recognition
of blade number

Manoeuvre intention
classificationAccuracy

Max. Min. Average Max. Min. Average

Training 20 87.08 75.42 83.17 95.00 91.39 93.34
data 33 89.83 83.50 87.11 96.83 93.67 95.33
ratio 50 92.00 86.67 89.34 99.11 97.34 98.23

4.2 Training data ratio of 33%

To investigate the manoeuvre intention classification per-
formance of this proposed algorithm under different SNRs,
the time-frequency spectrograms with the training data ra-
tio of 33% are input to the constructed CNN architecture
for training. In this experiment, the datasets are the same as
those in Section 4.1; we divide the datasets into three folds
randomly and utilize the triple cross validation method.
The classification accuracy is shown in Fig. 4, from which
we can conclude that as the model training iterations in-
crease, the classification accuracy of the triple cross vali-
dation improves and eventually reaches a steady state. We
also conclude that the classification accuracy when SNR is
0 dB is higher than that when the SNR is – 5 dB.

Fig. 4 Manoeuvre intention classification accuracy

Fig. 5 shows the manoeuvre intention classification per-
formance under different SNRs from – 10 dB to 3 dB.
The maximum, minimum and average classification accu-
racies are given under each SNR. With the improvement of
SNR, the average accuracy increases gradually and reaches
97.17% when SNR = 3 dB.

Fig. 5 Manoeuvre intention classification accuracy under different
SNRs

5. Conclusions

A CNN architecture with seven layers is proposed based
on micro-Doppler features for parity recognition of the
blade number and manoeuvre intention classification of a
rotor target. The spectrograms obtained by the STFT are
divided into different folds and put into the constructed
CNN model. The corresponding cross validation method is
used to validate the effectiveness of the constructed CNN
architecture. Simulation results show that, as the training
data ratio increases, the parity recognition performance of
the blade number and manoeuvre intention classification is
all improved under the same SNR. The classification ac-
curacy of manoeuvre intentions can reach 93.34% on av-
erage in terms of the training data radio of 20% and reach
over 98% on average in terms of the training data radio of
50% when the SNR is 0 dB because the spectrograms ob-
tained from the STFT of a rotor target with different ma-
noeuvre intentions have different micro-Doppler features.
In the experiment with different SNRs, the manoeuvre in-
tention classification accuracy on average increases gradu-
ally from 79.50% at SNR = –10 dB to 97.17% at SNR =
3 dB. Measured radar data will be collected to verify the
effectiveness of the constructed CNN architecture and the
proposed algorithm in the future.
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