
Journal of Systems Engineering and Electronics

Vol. 26, No. 2, April 2015, pp.367–380

Analysis of system trustworthiness based on information
flow noninterference theory

Xiangying Kong1,2,*, Yanhui Chen2, and Yi Zhuang1

1. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
2. Jiangsu Automation Research Institute, Lianyungang 222061, China

Abstract: The trustworthiness analysis and evaluation are the
bases of the trust chain transfer. In this paper the formal method
of trustworthiness analysis of a system based on the noninterfer-
ence (NI) theory of the information flow is studied. Firstly, existing
methods cannot analyze the impact of the system states on the
trustworthiness of software during the process of trust chain trans-
fer. To solve this problem, the impact of the system state on trust-
worthiness of software is investigated, the run-time mutual interfer-
ence behavior of software entities is described and an interference
model of the access control automaton of a system is established.
Secondly, based on the intransitive noninterference (INI) theory, a
formal analytic method of trustworthiness for trust chain transfer is
proposed, providing a theoretical basis for the analysis of dynamic
trustworthiness of software during the trust chain transfer process.
Thirdly, a prototype system with dynamic trustworthiness on a plat-
form with dual core architecture is constructed and a verification
algorithm of the system trustworthiness is provided. Finally, the
monitor hypothesis is extended to the dynamic monitor hypothe-
sis, a theorem of static judgment rule of system trustworthiness
is provided, which is useful to prove dynamic trustworthiness of a
system at the beginning of system construction. Compared with
previous work in this field, this research proposes not only a formal
analytic method for the determination of system trustworthiness,
but also a modeling method and an analysis algorithm that are
feasible for practical implementation.

Keywords: trusted computing, trust chain, intransitive noninterfer-
ence (INI), dynamic trustworthiness, access control.

DOI: 10.1109/JSEE.2015.00043

1. Introduction

Trusted computing proposed by the trusted computing
group (TCG) is regarded as an effective method for solving
the security problem of information systems, and the core
idea is to use a hardware module called trusted platform
module (TPM) which is independent of CPU control as the

Manuscript received April 25, 2014.
*Corresponding author.
This work was supported by the Natural Science Foundation of Jiangsu

Province (BK2012237).

source of trust. A chain of trust is established on the basis
of the trusted TPM, which means that all the software must
be verified to be trustable before running [1]. Software is
the soul of a modern computer system because the func-
tionality of a modern computer system is implemented in
the form of software programs. Trustworthiness of a com-
puter system is based on trustworthiness of all its running
software.

The concept of trustworthiness of a software program
originates from social science [2]. Trust in society is de-
fined as “a social behavior that prefers those who behave
according to societal rules” [3]. The trust relationship be-
tween two parties may vary with time and situations, so
trust relationships between groups or people are dynamic
[4,5]. In [4], trust is characterized as a social relationship
that is dynamically developed and spirally reinforced. In
[6], trust is viewed as a quantity that gradually changes
rather than a binary choice between trust and distrust. In
fact, the trust relationship between people varies as time
and situation change. For example, the trust relationship
between group members varies according to the nature of
their tasks and the progress of these tasks. Similar to that
in social science, the trust relationship between software
entities also possesses this dynamic nature. Trustworthi-
ness of a software entity depends on both internal and ex-
ternal causes. The internal causes are dynamic changes of
the software entity itself, and the external causes are the
dynamic environment in which the software entity is exe-
cuted, i.e. changes of the state of a computer system. How-
ever, the impact of the system state on trustworthiness of
software is largely overlooked in most existing researches.

Currently, there are many research achievements in the
measurement model of software trustworthiness. Patel and
Beth use the probabilistic approach to model and mea-
sure trustworthiness of software entities running in an open
network environment, but their approach emphasizes the
“trust and reputation” of a software entity [7,8]. In order



368 Journal of Systems Engineering and Electronics Vol. 26, No. 2, April 2015

to reflect the fuzzy nature of the trust relationship, Tang
and Mo employ the fuzzy set theory to model and as-
sess the management of trustworthiness of software en-
tities in an open network environment [9–11]. There are
some other approaches to model software trustworthiness.
In [12,13], trust models based on the process algebra and
evidence theory were proposed, and in [14], a trust model
based on software behaviorism was presented. All these
models represent the authors’ own understanding and def-
inition of the concept of trust, but they do not reflect the
nature of the run-time interaction between software enti-
ties. The TCG proposed a TPM-based binary attestation
(TBA) [1]. IBM proposed integrity measurement architec-
ture (IMA) based on the TBA, which is capable of doing
an integrity measurement before loading modules into the
system [15], but the integrity of modules is only one of
many trustworthiness-related properties of a software en-
tity. In [16], the limitations of trustworthiness measure-
ment before TCG loading was analyzed and a conclusion
was made that load-time trustworthiness does not imply
run-time trustworthiness, the integrity and trustworthiness
are not equivalent and static trustworthiness does not imply
run-time trustworthiness.

To solve the problem of software run-time trustworthi-
ness, some researchers take approaches based on the non-
interference (NI) theory of information flow. In [17], the NI
theory of information flows into the field of trusted com-
puting. Their approach instantiates the abstract term enti-
ties in the TCG’s definition of trustworthiness in processes,
maps processes to the security domain of the NI theory,
establishes a trust chain transfer model based on the NI
theory, and provides a formal description and validation
of this model, but the forms of interference are not ana-
lyzed in their papers, and the trust chain transfer function
needs further studies. Base on their work, in [18,19], an
abstraction was made that a running system is composed
of processes/modules, actions and state outputs. They em-
ployed the intransitive noninterference (INI) theory and
reference monitor assumptions (RMA) to present a for-
mal definition, description and analysis of the conditions
of a trusted running process/module. They also provided
the judgment method of trust chain transfer of the trusted
computing platform and proved it. A prototype of trusted
computing using the virtual machine separation technique
was also constructed.

There are two problems left [18,19]: (i) The prototype
system is implemented using the virtual machine which
uses a very coarse trustable unit. Trustworthiness within
the virtual machine itself and how the trust chain transfers
are not discussed. (ii) Any details about the implementa-
tion of the trustable communication channel are not given.

The software dynamic trustworthiness based on process
algebra is modelled, and a method of analyzing software
dynamic trustworthiness is proposed [20]. The method is
applied to analyze the interference relationship between
information flow within a single process and information
flow among multiple processes based on the INI theory.
These results provide a novel idea for using the INI the-
ory to analyze the software trustworthiness during load-
time and run-time. However, researches mentioned above
do not take into account the impact of system state on soft-
ware dynamic trustworthiness, and system trustworthiness
is not studied either.

NI of information flow was proposed first by Goguen
and Meseguer [21], which is a method for analyzing sys-
tem security from the perspective of information flow. Af-
ter that, Rushby improved it by proposing the INI model
of information flow [22]. The core idea of the INI model
is that for a particular access operation, if the system state
after a sequence of access actions are executed is identi-
cal to the state after all actions that do not interfere with
a particular domain are removed from the sequence of ac-
tions with the ipurge function, then the access operation
is considered to be secure, otherwise, there must be a po-
tential access operation that could interfere with the exe-
cution of the access operation, which results in an unsafe
operation. The INI model divides the system entity into
several different security domains according to the pre-
defined security levels. If actions of a security domain u

have no effect on the outputs of another security domain
v, then it can be considered that domain u does not inter-
fere with domain v. The interference rules of an INI model
are considered to be static, so the INI theory cannot de-
scribe changes of the interference relationship among soft-
ware entities caused by changes of the system states and
the INI theory cannot help to analyze the impact of the
system state on the transfer of the trust chain.

To reflect the impact of the system state on interfer-
ence rules, Leslie proposed a dynamic intransitive non-
interference (DINI) model [23], which uses the automaton
to model a system. An action will cause the state transition
of the system, and generate some outputs. To reflect the
dynamic characters of security rules of the system which
changes with time, the DINI model associates rules with
the state. That is to say, the system state is a dependent
variable of the interference relationship. In different sys-
tem states, the interference relationship between domain u
and domain v is also different, so DINI is able to describe
the interference relationship among security domains in
different system states.

In this paper, the impact of the system state on trustwor-
thiness of software is analyzed, the access control tech-



Xiangying Kong et al.: Analysis of system trustworthiness based on information flow noninterference theory 369

nique is employed to model the run-time states of soft-
ware, a formal analysis method to evaluate trustworthiness
of the software entity in the process of trust chain transfer
and the definition of trustworthiness of trust chain trans-
fer are proposed and a judgment rule of the system dy-
namic trustworthiness is provided. The main innovations
are: (i) we discuss the impact of system state on soft-
ware trustworthiness and establish an automaton model
of the dynamic systems; (ii) we propose a formal ana-
lysis method for analyzing trustworthiness of software en-
tities and systems, and give a judgment theorem; (iii) we
extend the RMA to the dynamic reference monitor as-
sumptions (DRMA) and give a judgment theorem of trust-
worthiness of a system.

The rest of this paper is organized as follows. In Sec-
tion 2, the access control technique is used to model the
run-time state of software systems. Section 3 first intro-
duces the DINI model based on which a formal analytic
model of run-time software trustworthiness is provided
and a DINI-based system dynamic judgment theorem is
proved. Section 4 uses examples to illustrate the process
of analyzing the software dynamic trustworthiness with
the DINI model, and presents a prototype system with dy-
namic trustworthiness. Section 5 is a conclusion of this pa-
per with a summary of all work in the previous sections
and gives a future research plan.

2. Modeling of the dynamic behavior of
a system

In a modern computer system, a software program is stored
in a data storage device in the form of a binary executable
image before it is loaded into the system. To run the soft-
ware program, the operating system (OS) will load the bi-
nary image into memory, allocate all necessary resources,
create a corresponding process and start it, so a process is
the form of a run-time software program. At the program
loading stage, trust chain transfer is carried out with the
software module as the basic unit of a transfer, so at this
stage the software entity is composed of all the indepen-
dently loadable modules. At the run-time stage when all
the processes are scheduled to run by the OS scheduler,
transfer of the system trust chain is carried out with the
process as the basic unit of a transfer, so at this stage the
process is the object of this study of dynamic trustworthi-
ness of systems.

2.1 Impact of the system state on trustworthiness of
processes

In [17–19], the assumption is made that the basic entity of
trusted computing is the process. In [19], a trusted com-

puting environment using the virtualization technology is
constructed. The entity of the trust chain transfer is called
a component, which is also a process from the perspective
of the hypervisor. All these researches are based on the INI
model, which assume that interferences among processes
are invariant, and do not take into account the impacts of
the system state on software trustworthiness.

In a practical system, trustworthiness of a software en-
tity is closely related to the system state in which it is run-
ning. Consider the following two cases.

Case 1 Assume there are two users Hu and Li in a
system and they belong to two different security levels (se-
curity domains). Normally information is only allowed to
flow from Li to Hu rather than the reverse direction of in-
formation flow, but under some particular conditions, the
system will temporarily upgrade the security level of Li,
and allow information flow from Hu to Li. For example,
Li obtains a temporary secret key, and is allowed to have
access to a file that belongs to Hu.

Case 2 The INI system constructed with the virtual
machine in [19] is shown in Fig. 1. The arrows represent
the direction of information flow, i.e. the interference re-
lationship. Due to the characteristics of software, updates
are unavoidable. Assume virtual machine A with a high se-
curity level needs to be updated, and then the system has
to do this via the update module of the HyperVisor. A new
domain A′ is introduced to minimize impacts of the updat-
ing process on the running system A. In the HyperVisor,
another new domain H should be introduced, which cre-
ates the domain A′, and copies information of A to A′.
The interference rule is A ∼> H , H ∼> A′ (A ∼> H

means domain A is allowed to interfere with domain H ,
i.e. information is allowed to flow from domain A to do-
main H). When domain H is copying information to con-
figure domain A′, domain A can still be communicating
with virtual machine C via a trusted channel B, as shown
in Fig 2. Once A′ is properly configured, A′ will replace A

to communicate with C via the trusted channel B and the
system rule now is changed to A /∼> H (A /∼> H means
domain A cannot interfere with domain H , i.e. informa-
tion flow from domain A to domain H is not allowed), but
domain H still keeps high level security information it ob-
tains while it is configuring domain A′, as shown in Fig. 3.
Since the system needs domain H to update domain C, a
new domain C′ has to be created, which introduces rules
C ∼> H and H ∼> C′, and then an insecure channel is
formed which allows information with a high security level
to flow to domains with a low security level, as shown in
Fig. 4. As a result, as the system state changes, trustworthi-
ness of modules which are used to update the virtual ma-



370 Journal of Systems Engineering and Electronics Vol. 26, No. 2, April 2015

chine in domain H also changes.
From the cases above, it can be seen that the interfer-

ence relationship among processes changes with the sys-
tem state, and trustworthiness of software at a particular
time and in a particular system environment does not im-
ply its trustworthiness when it is scheduled to run for the
second time in a different system environment.

Fig. 1 Trusted computing system constructed in [19] based on vir-
tual machine

Fig. 2 An illustration of the process of updating domain A

Fig. 3 Process after the upgrade

Fig. 4 An illustration of the process of updating domain C

2.2 Definition of trustworthiness of a software entity

Trustworthiness of a software entity RA includes not only
module-integrity trustworthiness, but also run-time dy-
namic trustworthiness. To make it simple, in this paper it
is assumed that each software entity has only one corre-
sponding process in the system. The following is the for-
mal definition of trustworthiness of a software entity.

Definition 1 Trustworthiness of software entity RA can
be formally described as

Trusted(RA) ⇔ (Load Trusted(MA)∧
Run Trusted(PA)) (1)

where MA denotes the binary module before RA is loaded

into the system memory. Load Trusted(MA) means MA

is trusted at the module loading stage, PA denotes the run-
time process of RA, and Run Trusted(PA) means PA is
trusted during the run-time.

The TCG specification gives a measurement method for
integrity trustworthiness [1]. In this paper, trustworthiness
of run-time processes is discussed.

In most computer systems, an independently loadable
software module MA is an object file such as a binary ex-
ecutable or a dynamic loadable library stored on a storage
device like a disk. Such a software module can be loaded
into the system memory through a system loading function
(data exchange between the primary memory and the sec-



Xiangying Kong et al.: Analysis of system trustworthiness based on information flow noninterference theory 371

ondary memory could happen when processes are resched-
uled and memory pages are swapped in and out), and will
possess codes and data that are used to perform a particu-
lar functionality, which is the same for OS kernels. These
software modules possess the independent text (code) seg-
ment and data segment, and exist in the form of one process
or a group of processes during the run-time. Each process
possesses a group of registers, stacks/heaps and other nec-
essary software and hardware recourses, such as CPU, I/O
ports, file/device descriptors (handles).

According to the definition of a trusted software entity
by the TCG, in a trusted system, an entity is considered
to be trusted if it behaves as the system expects. In other
words, it does not violate the predefined conventions of
the system and has no adverse effect on other entities in
the same system. In computer systems, during the trust
chain transfer process, a software entity is loaded into the
system memory, and is allowed to use system resources
such as CPU and I/O devices, which implies that the di-
rect control of registers, memory and I/O is handed over
to the software entity. This type of state changes in a com-
puter system could become the basis for a vicious process
to attack the system and cause critical information leak-
age. To be specific, the main ways a malicious process
can take to adversely affect other entities are: (i) violat-
ing CPU usage conventions, and occupying the CPU com-
pletely; (ii) using the system memory illegally, obtaining
information unauthorized for the malicious software entity
and viciously altering the contents in the memory of stor-
age devices; (iii) illegally accessing files and devices. CPU
usage is determined by the OS kernel, so this kind of attack
can be avoided with the improvement of the security of the
OS kernel. Attacks through (ii) and (iii) essentially take
advantage of the information flow in the system. When a
process has the CPU time, it will execute a series of actions
to obtain or revise the permissions, operations or informa-
tion of other software entities. These actions and outputs
will violate the predefined rules of the system, and have an
adverse effect on other entities. From this point of view,
software attacks and information leakage can be viewed as
an unexpected information flow in the system, which can
be analyzed with the NI theory of information flow.

Software and hardware resources such as system mem-
ories, files and devices can be viewed abstractly as inde-
pendently accessible (observable and changeable) objects.
Each object is given a name and an associated value. The
name of each object is fixed, but the corresponding value
changes with the system state. The rule of access to an
object of a process in the system is determined by a pre-
defined access control function. The access control func-

tion determines whether a given process has the right to
observe (read) or change (write) a given object’s value in a
particular state. A process in the system is composed of a
sequence of actions. Each action accesses the set of names
according to the access control rules, and generates some
outputs. Operation of the system is driven by actions, and
execution of each action will drive the system into a new
state. The system state is determined by all the name-value
pairs in the system. The following is the definition of the
dynamic behavior model of computer systems.

Definition 2 A computer system M is an octuple {N ,
V , A, S, s0, O, D, F}.

N is the set of names, representing the set of all the alter-
able resources in the system, such as memory space, vari-
ables, files, I/O ports etc. Italic letter m is used to represent
names in the set.

V is the set of values, which is all the possible values of
all the names. Greek letter ν represents the values.

A is the set of actions. Each action can be viewed as “in-
put”, “command” or “instruction” that the automaton exe-
cutes, and italic letter a and b are used to denote actions.
Greek letters α and β denote a sequence of actions.

S is the set of states, which is denoted using italic letters
s or t.

s0 is the initial state, s0 ∈ S.

O is the set of outputs, which is defined as all the values
corresponding to the names in N in states S.

D is the set of processes. Each process has a correspond-
ing security domain, and it is a one-to-one correspondence
between a domain and a process. The rest of this paper
makes no distinction between the security domain and its
corresponding process. u and v are used to denote the secu-
rity domain (process). Each process sends out operational
instructions to the system to interact with other parts of the
system, and the corresponding results can be observed.

F is the set of functions, which includes the following
six functions:

contents: S×N → V, contents(s, m) is the value cor-
responding to the name m in the state s.

observer: D × S → P (N), where P (N) is the power
set of the set of names, observer(u, s) is the set of names
whose values can be observed by process u in the state s.

alter: D × S → P (N), alter(u, s) is the set of names
whose values can be altered by process u in the state s.

dom: A → D, a mapping from an action to a process.
dom(a) denotes the associated process of action a.

step: S ×A → S, the single-step state transfer function
step(s, a) = t means when an action a takes place in the
state s, the system will transfer from state s to state t.



372 Journal of Systems Engineering and Electronics Vol. 26, No. 2, April 2015

output: S × A → O, the output function output(s, a)
is the returned result of an action a in the state s.

The first three functions determine the access matrix,
which can be used to dynamically describe the access con-
trol rules of the system. Notice that the state is a dependent
variable of the access matrix.

The last three functions are used in the DINI model.
Definition 3 In system M and state s, running a pro-

cess u is composed of executing a sequence of actions
au
0 , au

1 , . . . , au
n that belong to this process, where 0� i�n,

au
i ∈ A, dom(au

i ) = u. The system goes through a se-
quence of state transfers su

0 , su
1 , . . . , su

n, where su
i ∈ S,

0 � i � n, su
0 ∈ step(s, au

0 ), su
j ∈ step(su

j−1, a
u
j ),

1 � j � n. su
0 , su

1 , . . . , su
n is called the state trace of pro-

cess u produced when u begins to run in state s, which is
denoted by τu

s . au
0 , au

1 , . . . , au
n is called the action trace,

which is denoted by αu
s .

Since programs might jump to several different branches
according to different conditions, so in different states, the
external input might be different, and the action sequence
executed by the process is also different, resulting in dif-
ferent traces.

To make it simple, it is assumed that the length of the
action trace αu

s is n, I is the set of non-negative integers,
n ∈ I , i ∈ I and 0 � i < n.

The functions head, tail and one are defined as

head: A∗×I → A∗, head(αu
s , i) = au

0 , au
1 , . . . , au

i−1 (2)

tail: A∗×I → A∗, tail(αu
s , i) = au

i , au
i+1, . . . , a

u
n−1 (3)

one: A∗ × I → A∗, one(αu
s , i) = au

i . (4)

A∗ denotes the set of action sequences.
The functions head, tail and one can be used respec-

tively to obtain the prefix, suffix of the given length and
the action of the given position in an action trace.

3. Trustworthiness modeling of a process
based on DINI theory

In [19], the DINI model proposed by Leslie inherits many
basic thoughts of Rushby, and it views a computer system
as an automaton. An action will cause the transition of
the system state, and generate some outputs. The main im-
provement of the DINI model includes the revised defini-
tions of the sources function, the ipurge function and local
interference.

Functions run, do and test defined in [18] are applied
to the computer system model defined above in this paper.

For a system M , the system running function S ×
A∗ → S is an extension of the function step.

run(s, Λ) = s (5)

run(s, a ◦ α) = run(step(s, a), α) (6)

Λ denotes the empty sequence, ◦ denotes concatenation
and a ◦ α means a is the action before the action sequence
α.

Functions do and test are defined as follows:

do: A∗ → S,

do(α) = run(s0, α) (7)

test: A∗ × A → O,

test(α, a) = output(do(α), a). (8)

To reflect the dynamics of rules, the system state is in-
troduced into the interference relationship.

∼>: s∼ >:: D × D × S → Bool

It denotes the interference relationship among security
domains in state s. u

s∼ > v means domain u interferences
with domain v in state s, i.e. in state s, information is al-
lowed to flow from u to v, and v is able to observe the
result of the execution of actions of the process u.

s∼\ >

means there is no interference relationship.
Similarly, the system state into sources and ipurge

functions is introduced as a parameter to reflect system dy-
namics.

In order to differentiate the function sources from
ipurge in the INI model and reflect the dynamic nature
of the system model, these two functions are renamed as
dsources and dipurge respectively in this paper.

Definition 4 Function dsources : A∗×D×S → P (D)
where P (D) is the power set of D.

dsources(Λ, u, s) = {u} (9)

dsources(a ◦ αs, u, s) =
⎧⎨
⎩

dsources(αs, u, t) ∪ {dom(a)}, if ∃v : v ∈
dsource(αs, u, t) ∧ dom(a) s∼ > v

dsources(αs, u, t), otherwise
(10)

where t = step(s, a).
For a non-empty action sequence a ◦ αs executed in a

given state s, dsources checks whether a can directly in-
terfere with a domain in dsources(αs, u, step(s, a)) under
the rules of state s.

Defintion 5 Function dipurge: A∗ × D × S → A∗ is
defined as

dipurge(Λ, u, s) = Λ (11)

dipurge(a ◦ αs, u, s) =⎧⎨
⎩

a ◦ dipurge(αs, u, t), if dom(a) ∈
dsources(a ◦ αs, u, s)

dipurge(αs, u, t), otherwise
(12)

where t = step(s, a).



Xiangying Kong et al.: Analysis of system trustworthiness based on information flow noninterference theory 373

In short, the result of performing the function
dipurge(α, u, s) is to remove those actions in the sequence
α which have no inference effect on u, and leave actions
in the sequence that directly or indirectly interfere with do-
main u.

Definition 6 The dynamic security property of a sys-
tem. A system with dynamic rules is secure if an arbitrary
action sequence α and action a satisfy

test(α, a) = test(dipurge(α, dom(a), s0), a). (13)

The security property of the system dynamic rules can
be explained as follows: the system starts from the ini-
tial state s0, executes a series of actions α ∈ A∗, and
produces a series of state transitions. Each state transition
generates some outputs, and the system finally reaches the
state s = do(α). In this state, action a of domain u (where
u = dom(a)) is executed, an output test(α, a) is gener-
ated. Actions a and its output u are used in a test to obtain
some information about action sequence α. If u is able to
differentiate action sequence α from dipurge(α, u, do(α))
by their different outputs through this test, then in state
do(α), some domains v (v

s∼\ > u) which are supposed to
have no interference relationship with domain u contain
actions that interfere with u, which contradicts with the
predefined rule v

s∼\ > u, so the conclusion is that this sys-
tem is insecure.

In system M , processes are mapped to security domains
and the trust chain transfer of the system (module loading
and process scheduling) is equivalent to performing corre-
sponding actions belonging to different security domains,
so a given trust chain transfer process can be viewed as the
execution procedure of the corresponding action sequence.
If the interference relationship between the mapped do-
mains satisfies the conditions of DINI, then the informa-
tion flow between processes will obey the predefined secu-
rity rules and violations of security rules will not happen.
That means scheduling and execution of the processes are
performed according to the predefined ways and rules with
no illegal mutual interference, and then the corresponding
loading procedure is trustable.

The following is the definition of trustworthiness of pro-
cess execution in state s.

Definition 7 A system M performs a sequence of ac-
tions α ∈ A∗, and reaches state s = run(s0, α). u ∈ D is
a process in the system M . αu

s τu
s are the action trace and

the state trace of process u in state s, respectively.
If for ∀au

i , au
i = one(au

s , i) all satisfies (14), then it can
be said that process u is trusted in state s.

test(α ◦ head(αu
s , i), au

i ) =

test(dipurge(α ◦ head(αu
s , i)u, s0), au

i ) (14)

Next is the definition of trusted transfer of the system
trust chain.

Definition 8 The initial state of system M is s0. s0 is
the root of the trust chain. Processes u0, u1, . . . , un ∈ D

are sequentially scheduled and executed in the system.
State si is the system state at the beginning of the exe-
cution of process ui. If on the scheduling list of the OS
scheduler, the execution of each process ui is trusted in
its corresponding state si, then the trust chain transfer is
trusted.

4. Decision theorem of system dynamic
trustworthiness based on DINI

The process dynamic trustworthiness model and its analy-
sis method have been provided and the decision theorem
of computer system dynamic trustworthiness, which can
decide trustworthiness of the designed system, will be pro-
posed in the following part.

In order to give the decision theorem of system dynamic
trustworthiness, definitions of output consistency, weak
single step consistency and dynamic partial interference of
the computer system M are given as follows.

Definition 9 View partition and output consistency. The
system M is view partitioned. If every process u ∈ D has
an equivalent relationship

u∼ on S, and those equivalent re-
lationships are consistent, then it shall meet (15).

s
dom(a)t∼ ⇒ output(s, a) = output(t, a) (15)

Output consistency means if the two states s and t in the
system are the same for process u, then in these two states,
the execution of process u and the output result generated
by the system are also the same.

Definition 10 Weak single step consistency. M is weak
single step consistent if it meets (16).

s
u∼ t ∧ s

v∼ t ⇒ ∀a, dom(a) =

v, step(s, a) u∼ step(t, a) (16)

Weak single step consistency means for processes u and
v, if the two states s and t in the system are different, then
in these two states, the execution of one process is trans-
parent to the other, i.e. they cannot notice the execution of
each other.

Definition 11 Dynamic partial interference. For one
rule, if M is a view-partitioned output consistency system,
then it can be said that M is dynamic partial interfered, if
it meets (17).

v
s∼\ > u ⇒ ∀a, dom(a) = v, s

u∼ step(s, a) (17)

Namely, if the process v does not interfere with the pro-
cess u in the state s, then the activity effect of v in the state



374 Journal of Systems Engineering and Electronics Vol. 26, No. 2, April 2015

s cannot be noticed by u. From the perspective of state s, u
cannot differentiate the result of state s before it executes
action a from the result of state s after it executes action a

in process v.
Definition 12 Regulation interference. A system meets

regulation interference. If the two states are equivalent
from the perspective of process u, then under the regula-
tions of state s and t, the aggregates of the process that in-
terfere the process u are also the same. Then, (18) is valid.

s
u∼ t ⇒ (v s∼ > u ⇔ v

t∼ > u) (18)

Theorem 1 Expansion theorem of dynamic regulation.
M is a view-partitioned dynamic regulation system. If it
meets all the following conditions:

(i) output consistency;
(ii) weak single step consistency;
(iii) dynamic partial interference;
(iv) regulation interference,

then M is safe relative to the dynamic regulation, which
means (12) is valid.

In order to apply the expansion theorem of the dynamic
regulation to the model system just established, it is ne-
cessary to introduce the DRMA, which is different from
Rushby’s RMA. It introduces dynamic characters that re-
flect the operation of the system.

First, the definition of equivalent relationship
u≈ of state

aggregation S is given.

Definition 13 Equivalent relationship
u≈ of state aggre-

gation S. s
u≈ t and meets (19).

(observer(u, s) = observer(u, t))∧
(alter(u, s) = alter(u, t))∧

(∀n ∈ observer(u, s) : contents(s, m) =

contents(t, n)) ∧ (∀v(∀n ∈ observer(u, s)∧
n ∈ alter(v, s)) ⇒ (n ∈ alter(v, t))) (19)

In state s, if acts of the system match the explanation of
functions observer(u, s) and alter(u, s), the correspond-
ing query control regulation can be executed and is re-
garded as safe. It needs to meet the following three as-
sumptions.

Definition 14 Dynamic reference monitor assumptions.
Assumption 1 In order to make the output of act a only

rely on the value observed by domain dom(a), (20) needs
to be valid.

s
dom(a)∼ t ⇒ output(s, a) = output(t, a) (20)

Assumption 2 If act a transforms the system from one
state to another, all new values that change the object must

only rely on the value that can be observed and inquired by
dom(a), namely it should meet (21).

(s
dom(a)≈ t)∧

(contents(step(s, a), m) = contents(s, m)∨
contents(step(t, a), m) = contents(t, m))∧
(contents(step(s, a), m) = contents(s, m)∨
contents(step(t, a), m) = contents(t, m))∧
(contents(step(s, a), m) = contents(s, m)∨
contents(step(t, a), m) = contents(t, m))

⇒ contents(step(s, a), m) = contents(step(t, a), m)
(21)

Assumption 3 In state s, if act a changes the value of
object m, then dom(a) should be able to alter and access
m.

contents(step(s, a), m) =
contents(s, m) ⇒

n ∈ alter(dom(a), s) (22)

In the above DRMA, the difference between DRMA and
RMA is that Assumption 1 and Assumption 3 introduce the
state restriction. This improvement directly reflects the in-
formation flow interference relationship between the sys-
tem state change and the software entity, which means the
trustworthiness restriction.

The following is the dynamic trustworthiness judgment
theorem based on the DINI system.

Theorem 2 System dynamic trustworthiness judgment
theorem. If a system meets the requirement of DRMA and
(23), then the system is trustworthy.

n ∈ alter(u, s)∧
n ∈ observer(v, s) ⇒ u

s∼\ > v (23)

Proof the system should meet four requirements of the
dynamic regulation expansion theorem (Theorem 1).

(i) Requirement 1: output consistency.
Make the view-partitioned relationship

u∼ of the dy-
namic intransitive expansion theorem equivalent to the cor-

responding relationship
u≈ of the DRMA. Assumption 1 of

DRMA will directly get the output consistency.
(ii) Requirement 2: weak single step consistency.
In order to prove the weak single step consistency, it’s

necessary to prove

s
u∼ t ∧ s

dom(a)∼ t ⇒
step(s, a) u∼ step(t, a).



Xiangying Kong et al.: Analysis of system trustworthiness based on information flow noninterference theory 375

The above formula can be rewritten as

s
u∼ t ∧ s

dom(a)∼ t ⇒

contents(step(s, a), m) =

contents(step(t, a), m)

n ∈ observer(u, s).

It can be divided into the following three cases:
Case 1

contents(step(s, a), m) = contents(s, m)

Assumption 2 of DRMA can directly get the conclusion

based on s
dom(a)∼ t.

Case 2

contents(step(t, a), m) = contents(t, m)

Case 3

contents(step(s, a), m) = contents(s, m)∧

contents(step(t, a), m) = contents(t, m)

Since s
u∼ t, contents(s, m) = contents(t, m), then

the conclusion is valid.
(iii) Requirement 3: dynamic partial interference.
Prove

dom(a) s∼\ > u ⇒ s
u∼ step(s, a).

Through the proof by contradiction, the definition of
u∼

can be extended, namely

(∃n ∈ observer(u, s) : contents(s, m) =

contents(step(s, a), m)) ⇒ dom(a) s∼ > u

If contents(step(s, a), m) = contents(s, m), through
Assumption 3 of DRMA, it can be seen that m ∈
alter(dom(a), s) and then

m ∈ alter(dom(a), s) ∧ m ∈ observer(u, s).

dom(a) s∼ > u can be extrapolated through the conditions
given by the theorem.

(iv) Requirement 4: regulation interference, namely to
attest

s
u∼ t ⇒ ((v s∼ > u) ⇔ (v t∼ > u)).

In consideration of the orderliness of s and t, it is neces-
sary to prove only

s
u∼ t ⇒ ((v s∼ > u) ⇒ (v t∼ > u)).

where v
s∼ > u, namely,

∃n ∈ alter(v, s) ∧ m ∈ observer(u, s).

From the definition of
u∼ in Assumption 1 of DRMA

(m ∈ alter(v, s) ∧ m ∈ observer(u, s)) ⇒
(m ∈ alter(v, t) ∧ m ∈ observer(u, t)),

it is known that v
t∼ > u.

And then, the theorem is proved. �

5. Example analysis and realization of
prototype system

5.1 Example analysis

For case 1 mentioned above, the system is modeled as fol-
lows:

State aggregation: S = Bool × Bool

User aggregate: U = {Hu, Li}
Command aggregate: C = {flip, slip}
Act aggregate: A = U × C

Output aggregate: O = Bool × Bool ∪ Bool

System state: s ∈ {(h, l), (h, l), (h, l), (h, l)}
Safe domain: D = {H, L}
Function: dom = {((Hu, c), H), ((Li, c), L)}
Security policies:

∼>= {(L, H, (h, l)), (L, H, (h, l)),
(L, H, (h, l)), (H, L, (h, l))},
∼\ >= {(H, L, (h, l)), (H, L, (h, l)),
(H, L, (h, l)), (L, H, (h, l))}.

Namely, in state (h, l), the system allows information to
flow from Hu to Li.

step and output functions:

step((h, l), (Li, f lip)) = (h, l)

step((h, l), (Li, slip)) = (h, l)

step((h, l), (Hu, flip)) = (h, l)

step((h, l), (Hu, slip)) = (h, l)

output((h, l), (Hu, c)) = [h, l]

output((h, l), (Hu, c)) = [h, l]

output((h, l), (Hu, c)) = [h, l]

output((h, l), (Hu, c)) = [h, l]

output((h, l), (Li, c)) = [l]

output((h, l), (Li, c)) = [l]

output((h, l), (Li, c)) = [l]

output((h, l), (Li, c)) = [h, l].



376 Journal of Systems Engineering and Electronics Vol. 26, No. 2, April 2015

For system act series

α = (Hu, flip)(Li, f lip).

The initial state of the system is s0 = (h, l). Pay at-
tention that the initial state can be any trustworthy state of
the system. According to Definition 8, check whether the
transmission of the system trustworthiness chain is trust-
worthy or not.

(i) From initial state s0 = (h, l), the system executes α

sequentially. System states are

step((h, l), (Hu, flip)) = (h, l)

step((h, l), α) = (h, l).

(ii) For two safe domains, calculate dipurge(α, L, (h, l)),
and dipurge(α, H, (h, l)).

For safe domain L

dsource(Λ, L, (h, l)) = {L}

dsource((Li, f lip), L, (h, l)) = {L}.

Because dom((Hu, flip)) = H, and H
(h,l)∼\ > L,

dsource(α, L, (h, l)) =

dsource((Li, f lip), L, (h, l)) = {L}.
Because dom(Li, f lip) = L, and dsource((Li, f lip),

L, (h, l)) = {L},

dipurge((Li, f lip), L, (h, l)) =

(Li, f lip)dipurge(Λ, L, (h, l)) = (Li, f lip).

Because dom(Hu, flip) = H , and dsources(α, L,

(h, l)) = {L} and H /∈ {L},

dipurge(α, L, (h, l)) =

dipurge((Li, f lip), L, (h, l)) = (Li, f lip).

Namely,

dipurge(α, L, (h, l)) = (Li, f lip).

For safe domain H ,

dsource(Λ, H, (h, l)) = {H}.

Because dom((Li, f lip)) = L, and L
(h,l)∼> H,

dsource((Li, f lip), H, (h, l)) =

{L} ∪ dsource(Λ, H, (h, l)) =

{L} ∪ {H} = {L, H},
dsource(α, H, (h, l)) = {L, H}.

Because dom((Li, f lip)) = L ∈ dsources((Li, f lip),
H, (h, l)) = {L, H},

dipurge((Li, f lip), H, (h, l)) =

(Li, f lip)dipurge(Λ, H, (h, l)) = (Li, f lip).

Because dom((Hu, flip)) = H ∈ dsources(α, H,

(h, l)) = {L, H},
dipurge(α, H, (h, l)) =

(Hu, flip)dipurge((Li, f lip), H, (h, l)) =

(Hu, flip)(Li, f lip).

Namely, dipurge(α, H, (h, l)) = α.
(iii)

do(α) = run((h, l), α) = (h, l),

while

do(dipurge(α, L, (h, l)) =

step((Li, f lip), (h, l)) = (h, l).

(iv)

test(α, (Li, slip)) =

output((h, l), (Li, slip)) = [l],

test(dipurge(α, L, (h, l)), (Li, slip)) =

output((h, l), (Li, slip)) = [(h, l],

test(α, (Li, slip)) =
test(dipurge(α, L, (h, l)), (Li, slip)).

Therefore, according to Definition 8, for the given safe
rule, the transmission of this trustworthiness chain is un-
trustworthy, because the act (Hu, flip) in the safe domain
H interferes with the safe domain L.

For Case 2, the model is:
State aggregate:

S = {φ, (sA, sC), (sA, sC), (sA, sC), (sA, sC)}, s ∈ S.

φ means empty, sA and sC mean A and C have not
been updated respectively, and sA, sC mean A and C have
been updated respectively. For simplifying the process, the
updating here is regarded as an atom act which is com-
pleted instantly. Communication between A and C will not
change the state.

Act aggregate: A = {aA, aC}, which means both vir-
tual machines A and C are updated. To make it simple,
communication between A and C is not considered.



Xiangying Kong et al.: Analysis of system trustworthiness based on information flow noninterference theory 377

Safe domain: D = {uH , uA, uC}.
To make it simple, the domain in which the trustworthy

channel is located is not considered.
Output aggregate: O = {φ, {oA}, {oC}, {oA, oC}}

means the information left in HyperVisor by the updating
act.

Function: dom = {(aA, uA), (aC , uC)}.
Security policies:

∼>= {(uH , uA, (sA, sB)),

(uH , uA, (sA, sB)),

(uH , uA, (sA, sB)),

(uH , uA, (sA, sB)),

(uH , uB, (sA, sB)),

(uH , uB, (sA, sB))}.
∼\ >= {(uH , uB, (sA, sB)),

(uH , uB, (sA, sB))}.
This means that when the virtual machine A is updated,

the system does not allow the information to flow from uH

to uC .
Functions step and output:

step((sA, sC), aA) = (sA, sC)

step((sA, sC), aA) = (sA, sC)

step((sA, sC), aA) = (sA, sC)

step((sA, sC), aA) = (sA, sC)

step((sA, sC), aC) = (sA, sC)

step((sA, sC), aC) = (sA, sC)

step((sA, sC), aB) = (sA, sC)

step((sA, sC), aC) = (sA, sC)

output((sA, sC), aA) = {oA}
output((sA, sC), aA) = {oA, oC}

output((sA, sC), aA) = {oA}
output((sA, sC), aA) = {oA, oC}

output((sA, sC), aC) = {oC}
output((sA, sC), aC) = {oC}

output((sA, sC), aA) = {oA, oC}
output((sA, sC), aC) = {oA, oC}.

For system act series α = aAaC , the initial state of the
system is s0 = φ. Note that the initial state can be any

trustworthy state in the system. Through analysis, it can
be found that the process is similar to circumstance 1. Ac-
cording to Definition 8, it can be judged that the system
has information leakage. Therefore, the transmission of the
trustworthiness chain corresponding to the act is untrust-
worthy.

5.2 Realization of the prototype system

This paper has provided an analysis method for process-
ing dynamic trustworthiness. According to this method, a
prototype system that supports the certification of system
dynamic trustworthiness is designed and realized.

The prototype system adopts bi-kernel trustworthy ar-
chitecture (bi-kernel TRA). It is composed of the super ker-
nel and the user kernel. The super kernel is an unchange-
able part. It can access all data in the user-kernel which is
regarded as a process operation. In order to support the cer-
tification of system dynamic trustworthiness, the bi-kernel
TRA is improved and the improved prototype is called the
dynamic trustworthiness system based on bi-kernel (DT-
biK). The structure is shown in Fig. 5.

Fig. 5 Dynamic trustworthiness system based on bi-kernel

The lowest level of the DT-biK is the hardware level
including TPM. The upper one of it is the super-kernel
level, and the topmost level is the application system level
user-kernel. There is a TruMonitor module embedded in
the user-kernel. It can monitor and intercept the operations
of all the application programs. The super-kernel level
includes a security policies database of application sys-
tems and other data structures that need to be maintained.
The user-kernel can access virtual TPM (vTPM) provided
by the super-kernel level through the virtual TPM driver
(vTPM Drv) and the vTPM of the super-kernel level can
access the real TPM through vTPM Drv.

To make it simple, in the prototype system, the focus
is only on acts that are related to the process and docu-
ment access, concentrating on Case 1. The system needs to



378 Journal of Systems Engineering and Electronics Vol. 26, No. 2, April 2015

maintain the following three data structures.

SPDB: A security policy database used to describe the
dynamic interference relationship among processes;

SSD: A system state descriptor used to record the current
state of the system;

SAS: A system act sequence used to record executed act
series of the system.

According to Definition 1, the trustworthiness certifi-
cation algorithm of Trusted(RA) of the software entity
RA can be divided into two phases. The first phase is to
test Load Trusted(MA) and the second phase is to test
Run Trusted(PA).

During the loading process of software entity,
Load Trusted(MA) measures and tests the complete-
ness of MA by adopting the method given by reference
[11], so as to ensure static trustworthiness of RA.

Run Trusted(PA)’s test opportunity happens when the
current document executes the files. The TruMonitor inter-
cepts the system’s scheduling and tests the trustworthiness
of the wait-to-be scheduling process curProc. The test al-
gorithm is as follows.

Step 1 Record the act of curProc as Act. P is the
current system process line and p is the head of P . Make
the current process in a trustworthy state.

Step 2 Calculate O1 := test(SAS, Act).

Step 3 If p is empty, leap to Step 8.

Step 4 Calculate dipurge(SAS, P, SSD).

Step 5 Calculate O2 := test(dipurge(SAS, P, SSD),
Act).

Step 6 If O1 <> O2, make the process in an untrust-
worthy state and leap to Step 8.

Step 7 p := p->next, leap to Step 3.

Step 8 If the process is in a trustworthy state, then
SAS := SAS ◦ Act, modify SSD := step(SSD, Act).

Step 9 Return to the state of the process.

With the realization thought of RTLinux [24,25], the
DT-biK on Loongson 2F is designed and realized. As
Fig. 6 shows, the super-kernel is modified by adopting
GDB-STUB. It is a super kernel. The user-kernel is mod-
ified on Linux core 2.6.18. Since the super-kernel is mod-
ified by GDB-STUB, it can be independent of the user-
kernel code that is modified based on the standard Linux
core. They can be independently stored physically and
trustworthiness of the module increases.

Fig. 6 Realization structure of DT-biK based on Loongson 2F plat-
form

For the interruption management, the super-kernel uses
the hardware interruption of Loongson IP2-IP7 and iso-
lates the user-kernel from the interruption controller
through soft interruption. This is realized by replacing the
interruption switch function (cli and sti), interruption re-
turn function (ret from irq), interruption processing func-
tion and interruption vector table of Linux. Interruption
processing of the user-kernel is replaced by soft interrup-
tion, which means using a group of variables to record the
interruption switch and happening conditions. However, all
hardware interruptions are intercepted by the super-kernel
and whether it is necessary to conduct interruption groups
to the user-kernel is decided by the interruption type and
mark.

On task scheduling, the super-kernel redefines the
scheduling function. The user-kernel is regarded as the low
priority of the super-kernel, while the normal user process
can still operate on the user-kernel and use all kinds of ser-
vices provided by the user-kernel.

As the “real process” running in the super-kernel, the
communication between the measurement module and the
user-kernel still adopts the Mbuff communication mecha-
nism of RTLinux.

In the prototype system of DT-biK, a simulation test for
Case 1 is conducted. The simulation result shows that Al-
gorithm 1 can identify dynamic trustworthiness of the cur-
rent process operation.

6. Conclusions

Focusing on the analysis of software trustworthiness dur-
ing the transmission of the trustworthiness chain, the paper
analyzes the impact of the system state on process trust-
worthiness. It adopts access control to establish the soft-
ware operation state mutual interference act model. The



Xiangying Kong et al.: Analysis of system trustworthiness based on information flow noninterference theory 379

access control matrix of the mutual interference act of the
trustworthy entity caused by the memory, file/equipment
handle can be directly transformed to codes so as to pro-
vide software analysis tools for system dynamic trustwor-
thiness. It can be further used for collection/analysis of
software operation state acts. Based on the DINI theory,
the paper puts forward a system dynamic trustworthy form
judgment theorem, which provides theoretic support for
trustworthiness calculation. In addition, sufficient condi-
tions of the judgment theorem in this paper are too strict
for the entity trustworthiness judgment, and [26] gives
a sufficient requisite condition which is used to check
whether a system meets the INI model and provides the
corresponding algorithm. The algorithm is divided into two
phases. First of all, introduce an iP-observability attribute
into the INI system and prove that the system will meet
the INI only when it is regarded as iP-observability. And
then, through the automaton transformation, a relationship
between iP-observability and P-observability is tested. IP-
observability is transformed to P-observability in the au-
tomaton so as to check whether the corresponding system
meets INI [26] through the judgement of P-observability
in the automaton. This provides a thought and basis about
how to check whether a system meets DINI. The following
plan of the research is to study the transformation method
between DINI and the automaton and provide the requisite
condition and the corresponding algorithm with which the
system will meet the dynamic trustworthiness judgment
theorem.

References
[1] TCG Group. TCG specification architecture overview. TCG

Specification Revision. http://www.trustedcomputinggroup.org.
[2] H. G. Zhang, J. Luo, G. Jing, et al. Trusted computing re-

search. Wuhan University: Natural Science Edition, 2006,
52(5): 513 – 518. (in Chinese)

[3] C. S. Dong. A sociological study of credibility and its typ-
ology. Journal of Hebei Normal University (Philosophy and
Social Science), 2004, 27(1): 40 – 43. (in Chinese)

[4] D. E. Zand. Trust and managerial problem solving. Adminis-
trative Science Quarterly, 1972, 17(2): 229 – 239.

[5] H. H. Brower, F. D. Schoorman, H. Tan. A model of rela-
tional leadership: the integration of trust and leader–member
exchange. Leadership Quarterly, 2000, (11): 227 – 250.

[6] R. C. Mayer, F. D. Schoorman, J. H. Davis. An integrative
model of organizational trust. Academy of Management Re-
view, 1995, 20(3): 709 – 734.

[7] T. Beth, M. Borcherding, B. Klein. Valuation of thust in open
network. Proc. of the European Symposium on Research in
Computer Security, 1994: 3 – 18.

[8] J. Patel, T. W. T. Luke, N. R. Jennings, et al. A probabilistic
trust model for handling inaccurate reputation sources. Proc.
of the Third International Conference on Trust Management,
2005: 193 – 209.

[9] W. Tang, Z. Chen. Research of subjective trust management
model based on the fuzzy set theory. Journal of Software,
2003, 14(9): 1401 – 1408. (in Chinese)

[10] W. Tang, J. B. Hu, Z. Chen. Research on a fuzzy logic-based
subjective trust management model. Journal of Computer Re-
search and Development, 2005, 42(10): 1654 – 1659. (in Chi-
nese)

[11] J. Q. Mo, Z. W. Hu, X. L. Ye. Research of trust assessment
method in trust computing based on fuzzy theory. Journal of
Computer Application, 2013, 33(1): 142 – 145. (in Chinese)

[12] X. X. Wang, X. Y. Kong, X. B. Chen. A dynamic non-
interference trust chain model based on security process al-
gebra. TELKOMNIKA Indonesian Journal of Electrical Engi-
neering, 2014, 12(1): 747 – 752.

[13] L. L. Yuan, G. S. Zeng, W. Wang. Trust evaluation model
based on dempster-shafer evidence theory. Journal of Wuhan
University (Natural Science Edition), 2006, 52(5): 627 – 630.
(in Chinese)

[14] Y. W. Qu. Software Behavior. Beijing: Electronic Industry
Press, 2004. (in Chinese)

[15] R. Sailer, X. Zhang, T. Jaeger, et al. Design and implemen-
tation of a TCG-based integrigty measurement architecture.
Proc. of the 13th USENIX Security Symposium, 2004: 223 –
238.

[16] T. Jaeger, R. Sailer, U. Shankar. PRIMA: Policy reduced in-
tegrity measurement architecture. Proc. of the 11th ACM Sym-
posium on Access Control Models and Technologies (SAC-
MAT2006), 2006: 134 – 143.

[17] J. Zhao, C. X. Shen, J. Q. Liu, et al. A noninterference-based
trusted chain model. Journal of Computer Research and De-
velopment, 2008, 45(6): 974 – 980. (in Chinese)

[18] X. Zhang, Y. L. Chen, C. X. Shen. Non-interference trusted
model based on processes. Journal on Communications, 2009,
30(3): 6 – 11. (in Chinese)

[19] X. Zhang, Q. Huang, C. X. Shen. A formal method based on
noninterference for analyzing trust chain of trusted computing
platform. Chinese Journal of Computers, 2010, 33(1): 74 – 81.
(in Chinese)

[20] F. Zhang, M. Jiang, H. G. Wu, et al. Approach for trust ana-
lysis of software dynamic behavior based on noninterference.
Computer Science, 2012, 39(1): 101 – 103. (in Chinese)

[21] J. Goguen and J. Meseguer. Security policies and security
models. Proc. of IEEE Symposium on Security and Privacy,
1982: 11 – 20.

[22] J. Rushby. Noninterference, transitivity, and channel – control
security policies. Menlo Park Stanford Research Institute,
1992.

[23] L. Rebekah. Dynamic intransitive noninterference. Proc. of the
IEEE International Symposium on Secure Software Engineer-
ing, 2006, 65 – 74.

[24] X. Y. Kong, X. B. Chen, Y. Zhuang. A dynamic trustworthiness
attestation method based on dual kernel architecture. Interna-
tional Journal of Hybrid Information Technology, 2013, 16(5):
237 – 248.

[25] C. E. All. A real-time Linux system for autonomous naviga-
tion and flight at titude control of an uninhabit edaerial vehi-
cle. Proc. of the 20th Conference on Digital Avionics Systems,
2001: 1A11 – 1A19.

[26] N. Ben Hadj Alouane, S. Lafrance, F. Lin, et al. Characteriz-
ing intransitive noninterference for 3-domain security policies
with observability. IEEE Trans. on Automatic Control, 2005,
50(6): 920 – 925.



380 Journal of Systems Engineering and Electronics Vol. 26, No. 2, April 2015

Biographies

Xiangying Kong was born in 1972. He received
his B.S. degree in Xi’an Jiaotong University in
1995. He is currently a Ph.D. candiadate of Nan-
jing University of Aeronautics and Astronautics
and a professor of Jiangsu Automation Research
Institute. He presided over the development of
multi-type electronic equipment and national de-
fense pre-research project. His research interests

include software engineering, information security and real-time oper-
ating system.
E-mail: kongxy716@aliyun.com

Yanhui Chen was born in 1973. She received her
B.S. degree from Department of Computer Science,
Southeast University. She is currently a senior engi-
neer of Jiangsu Automation Research Institute. She
presided over the development of multi-type auto-
matic control system and C3I system. Her research
interests include software engineering, information
security and system engineering.

E-mail: chenyh@jari.cn

Yi Zhuang graduated from Department of Com-
puter Science, Nanjing University of Aeronautics
and Astronautics in 1981. She is now a Ph.D. su-
pervisor in Nanjing University of Aeronautics and
Astronautics. She has published over 50 papers in
core journals or academic conferences at home and
abroad. Besides, she has presided more than thirty
state or provincial projects, or scientific and techno-

logical cooperation projects. Her research interests include network and
distributed computing, and information security.
E-mail: zhuangyi@nuaa.edu.cn


