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Abstract: A relative position and attitude coupled sliding mode
controller is proposed by combining the standard super twisting
(ST) control and basic linear algorithm for autonomous rendezvous
and docking. It is schemed for on-orbit servicing to a tumbling non-
cooperative target spacecraft subjected to external disturbances.
A coupled dynamic model is established including both kinemati-
cal and dynamic coupled effect of relative rotation on relative
translation, which illustrates the relative movement between the
docking port located in target spacecraft and another in service
spacecraft. The modified super twisting (MST) control algorithm
containing linear compensation items is schemed to manipulate
the relative position and attitude synchronously. The correction
provides more robustness and convergence velocity for dealing
with linearly growing perturbations than the ST control algorithm.
Moreover, the stability characteristic of closed-loop system is ana-
lyzed by Lyapunov method. Numerical simulations are adopted
to verify the analysis with the comparison between MST and ST
control algorithms. Simulation results demonstrate that the pro-
posed MST controller is characterized by high precision, strong
robustness and fast convergence velocity to attenuate the linearly
increasing perturbations.
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1. Introduction

The ability to perform routine autonomous rendezvous and
docking (ARD) is needed in future space missions in-
cluding assembly of international space station (ISS), au-
tonomous deployment, manipulation and repair [1]. The
collision probability increases with the decreasing distance
between two spacecraft, especially docking with a tum-
bling non-cooperative target spacecraft [2,3]. Therefore, it
is important to establish the full dynamics for ARD and
controllers are designed to guarantee the reliability and
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success rate. Numbers of control strategies have been
adopted for either orbital maneuvering or attitude track-
ing, such as adaptive control [4,5], optimal control [6,7]
and sliding model control [8,9].

In prophase researches, models for relative translation
and relative rotation are established separately, which re-
strict developments of its applications. Pan and Kapila [10]
addressed a nonlinear tracking control problem with adap-
tive feedback control to deal with unknown mass and in-
ertia matrix of spacecraft. They took into account the dy-
namic coupled effect caused by the gravity gradient torque
on relative translation and the global asymptotical stability
of tracking errors is proved by the Lyapunov framework.
However, the relative translation model is on the basis of
point-mass model and the controller is proposed for the
open-loop system. Shay and Pini solved the errors resulted
from the point-mass model in distributed spacecraft forma-
tion flying [11], and developed a kinematical coupled rela-
tive translation model between any arbitrary feature points
on spacecraft. They consider the kinematical coupled ef-
fect of relative rotation on relative translation derived from
relative angular velocity, but they neglect the kinematic
coupled effect caused by absolute angular velocity of the
leader spacecraft and another effect introduced by dis-
turbances. Environmental disturbance torque is inevitable
existence, and therefore we consider both kinematical and
dynamical coupled effects of relative rotation on relative
translation.

As is known to all, sliding mode control (SMC) is used
widely because of the finite time convergence property and
robustness for system uncertainties. Its capability to sup-
press disturbances is independent of dynamic model in-
stead of modeling with uncertain states as the system func-
tion in robust control [12,13]. However, the standard SMC
is based on 1-sliding mode [14] and it induces control chat-
tering phenomenon caused by high frequency switching of
control. Therefore, high order sliding mode (HOSM) tech-
nique is invented to eliminate the chattering phenomenon
[15] by acting on the higher order time derivatives of the
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system deviation from the constraint. Consequently, there
are increasing information demands in implementation of
HOSM and the arbitrary order sliding mode control law is
mostly still theoretically studied. However, 2-sliding mode
(SOSM) algorithms, such as twisting and super twisting,
have already been used successfully in real problems [16].
Super twisting sliding mode (ST) is one of widely used
SOSM control algorithms [17,18], which can suppress
bounded disturbances and does not need to use the deriva-
tive of the switching function. In contrast to the linear algo-
rithm, the main disadvantage of SOSM algorithm is that it
cannot endure the linearly growing perturbation. However,
the linear algorithm is not able to support strong distur-
bance near the equilibrium point, which is one of advan-
tages of the SOSM algorithm [19].

Inspired by the aforementioned issues, a modified su-
per twisting sliding mode (MST) control algorithm is pro-
posed by adding linear correction terms to the basic ST to
obtain both excellent properties of them. It is applied in
this study to design a relative position and attitude coupled
SOSM controller. We take account of the bounded linearly
increasing perturbations, the limited disturbance torques,
model uncertainties and the actuator output saturation. The
paper is organized as follows. In Section 2, a coupled dy-
namic model is established between the docking port lo-
cated in target spacecraft with respect to another in service
spacecraft including both kinematical and dynamic cou-
pled effects of relative rotation on relative translation [20].
In Section 3, ST and MST are schemed to generate control
operation of service spacecraft for making ARD with target
spacecraft and the second method of Lyapunov is used to
analyze the stability characteristic of the closed-loop sys-
tem. In Section 4, numerical simulations are performed to
verify the performance of MST by comparing with basic
ST method for ARD without collision. Finally, the conclu-
sions are represented in Section 5.

2. Coupled dynamic relative model

A coupled relative motion model is derived from the tra-
ditional point-mass model for relative motion between
center-of-masses (CMs) of the target spacecraft and the
service spacecraft. We take into consideration the kine-
matical coupled effect caused by relative attitude angular
velocity, relative attitude quaternion and absolute attitude
angular velocity of the service spacecraft and the dynamic
coupled effect derived from external disturbance torques.

2.1 Coordinate systems

We define some coordinate systems to illustrate the relative
motion between the two docking ports, so that the origins
of coupled effects are distinct. The useful coordinate sys-

tems are shown in Fig. 1.

Fig. 1 Coordinate systems

The earth-centered inertial coordinate system (Fi):
OXiYiZi is fixed in an inertial space. It is a right-handed
system with the origin at the earth center O. Xi axis points
the vernal equinox direction, Zi axis is along the North
Pole and Yi axis completes the setup to yield a Cartesian
right hand system.

Euler-Hill reference frame (Fo): OsXoYoZo is fixed to
the CM of the service spacecraft with the origin Os. Xo

axis is directing from the radially outward, Zo axis is nor-
mal to the orbital plane, Yo axis is pointing to the veloc-
ity direction of the service spacecraft in the orbital plane
and perpendicular with OsXo. This frame is used to de-
scribe the attitude of the service spacecraft and the relative
motion of the target spacecraft with respect to the service
spacecraft.

Orbit coordinate system of the target spacecraft (Ft):
OtXtYtZt is fixed to the CM of the target spacecraft with
the origin Ot. Zt axis is pointing to the earth center O, Yt

axis is along the opposite direction of orbit angular rate
and Xt is along the velocity direction of the target space-
craft completing a right hand system. This frame is used to
describe the attitude of the target spacecraft.

Body coordinate system (Fb): It is a Cartesian right-
hand reference frame fixed on the spacecraft and originates
at the spacecraft’s CM. The body coordinate systems of the
service spacecraft and the target spacecraft are denotedFbs

and Fbt respectively. It is assumed that Fbs and Fbt coin-
cide with Fo and Ft separately at the initial time.

Therefore, euler angles and attitude angular velocities
of the service spacecraft and the target spacecraft are de-
fined respectively by relative rotational motion of Fb with
respect to Fo and Ft. Then definition of absolute attitude
angular velocities, severally noted by ωbs and ωbt, are ro-
tational velocity of Fbs and Fbt relative to Fi. Similarly,
relative angular velocity ωr is rotational velocity of Fbt

with respect to Fbs. Therefor, ωr can be expressed as

ωr = ωbt − ωbs. (1)
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Then, the attitude can be parameterized by quaternion:

q = [qT
v q4]T (2)

where qT
v = [q1, q2, q3] is the vector part and q4 is the

scalar part. It is subjected to the constraint that q2
1 + q2

2 +
q2
3 + q2

4 = 1. qs and qt are denotations for attitude of the
service spacecraft and the target spacecraft. qr denotes re-
lative quaternion of Fbt with respect to Fbs. Then, the ro-
tation matrix can be expressed as

A(q) = (q2
4 − qT

v qv)I3×3 + 2qvq
T
v − 2q4q

×
v (3)

where [·×] denotes the cross product matrix.

2.2 Relative rotation

Let a be an arbitrary vector measured with respect to the
origin ofFi and ȧ|F denotes time derivative of a measured
in the reference frame F and (a)F is the expression in F .
According to (1), ωbt can be rewritten in Fbt as follows:

(ωbt)Fbt
= (ωr)Fbt

+ A(qr)(ωbs)Fbs
. (4)

Due to the angular momentum theorem, the time deriva-
tive of (4) can be rewritten as

ω̇r

∣∣
Fbt

= J−1
t {Tt − [ωr + A(qr)ωbs] × Jt·

[ωr + A(qr)ωbs]} − A(qr)J−1
s (Ts − ωbs×

Jsωbs) − [ωr + A(qr)ωbs] × (ωr)Fbt
(5)

where J is the inertia matrix and T consists of con-
trol torque Tc, gravity gradient torque Tg and disturbance
torque Td as follows:⎧⎪⎪⎨

⎪⎪⎩
Td = 1.5 × 10−5

⎡
⎣ 3 cos(ω◦t) + 1

1.5 sin(ω◦t) + 3 cos(ω◦t)
3 sin(ω◦t) + 1

⎤
⎦

Tg = 3μ/r3 · Z0 × JZ0

where ω◦ is the magnitude of the orbit angular velocity,
μ is the earth gravitational constant, r is the magnitude of
the radius vector from the CM of spacecraft to the earth’s
center and Z0 is the unit radius vector of r. Then, time
derivative of the quaternion kinematical equation can be
expressed as

q̈r = −0.25ωT
r ωrqr + 0.5[QT

v ,−qrv]Tω̇r (6)

where
Qv = qr4I3×3 + q×

rv. (7)

Then the relative rotational model can be obtained by
substituting (5) into (6). Express the vector part and it pro-
vides us with the following expression:

q̈rv = g(∗) − 0.5QvA(qr)J−1
s Tsc + ϑ2 (8)

where

g(∗) = −0.25ωT
r ωrqrv − 0.5QvJ

−1
t [ωr + A(qr)ωbs]×

Jt[ωr + A(qr)ωbs] + 0.5QvA(qr)J−1
s (ωbs × Jsωbs) −

0.5Qv[(ωr)Fbt
+ A(qr)(ωbs)Fbs

] × (ωr)Fbt

ϑ2 =
1
2
Qv[J−1

t (Ttg + Ttd) − A(qr)J−1
s (Tsg + Tsd)]

and components of ϑ2 can be limited by

|ϑ2i|max = 0.5λmax(QvJ−1
t )max(Ttg + Ttd) +

0.5λmax[QvA(qr)J−1
s ] max(Tsg + Tsd) (9)

where i = 1, 2, 3; λmax(·) is the maximum eigenvalue of
a matrix and max(·) represents the maximum element of a
vector.

2.3 Relative translation

Consider two docking ports located in the target space-
craft and the service spacecraft separately, as illustrated in
Fig. 2. P i

t denotes a vector directed from the origin of Fbt

to the docking port P i
t and P j

s is directed from the origin
ofFbs to the docking port P j

s . By observing, we can obtain
the relative position vector ρij as

ρij = rt − rs + P i
t − P j

s (10)

where rt, rs are CM position vectors of the target space-
craft and the service spacecraft respectively. Then the
second-order derivative of ρij with respect to time in Fo

can be calculated as

ρ̈ij

∣∣
Fo

= μ/r3
srs−μ/r3

t rt−2ω◦
s×ρ̇ij

∣∣
Fo

−ω̇◦
s

∣∣
Fo

×ρij −

ω◦
s × (ω◦

s × ρij) + ω̇bt

∣∣
Fbt

× P i
t + ωbt × (ωbt × P i

t ) −
ω̇bs

∣∣
Fbs

×P j
s −ωbs×(ωbs×P j

s )−asc +atd−asd (11)

where ω◦ is the orbital angular velocity, asc is the control
acceleration of the service spacecraft, asd = (1+kdt)asd0,
atd = (1 + kdt)atd0 where kd is the increasing rate.

Fig. 2 Relative translation of docking ports

Moreover, the relative translational model can be ex-
pressed as

ρ̈ij

∣∣
Fo

= f(∗) − GTsc − AT(qs)asc + ϑ1 (12)
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where

f(∗) = μ/r3
srs − μ/r3

t rt − 2ω◦
s × ρ̇ij

∣∣
Fo

− ω̇◦
s

∣∣
Fo

×

ρij − ω◦
s × (ω◦

s × ρij) − AT(qs)AT(qr){{J−1
t ·

[ωr + A(qr)ωbs] × Jt[ωr + A(qr)ωbs]} × P i
t } +

AT(qs){[AT(qr)ωr + ωbs] × {[AT(qr)ωr +

ωbs] × [AT(qr)P i
t ]}} + AT(qs){[J−1

s (ωbs×
Jsωbs)] × P j

s } − AT(qs)[ωbs × (ωbs × P j
s )]

ϑ1 = AT(qs)AT(qr){[J−1
t (Ttg + Ttd)] × P i

t }−
AT(qs){[J−1

s (Tsg + Tsd)] × P j
s } − AT(qs)asd+

AT(qs)AT(qr)atd

and G is determined by Js, P j
s and qs. Then components

of ϑ1 can be limited as follows:

|ϑ1i|max = max{[J−1
t (Ttg + Ttd)] × P i

t } +

max{[J−1
s (Tsg + Tsd)] × P j

s } +

max(atd0)(1 + kdt) + max(asd0)(1 + kdt). (13)

3. Control law design

Consider the state variable x = [ρT
ij , q

T
rv]

T, then the for-
mer relative position and attitude coupled dynamic model
can be expressed as below by combining (8) and (12):

ẍ = sys(∗) −
[

AT(qs) G

03×3 0.5QvA(qr)J−1
s

]
u + ϑ

(14)
where ϑ = [ϑT

1 , ϑT
2 ]T, sys(∗) = [fT(∗), gT(∗)]T, u =

[aT
sc, T

T
sc]

T and actuators outputs have saturation charac-
teristic, which can be expressed as⎧⎪⎪⎨

⎪⎪⎩
if asci < amax, (asci)real = asci

else(asci)real = asci · amax/|asci|
if Tsci < Tmax, (Tsci)real = Tsci

else(Tsci)real = Tsci · Tmax/|Tsci|
(15)

where i = x, y, z.
Let us define the desired control objective xd =

[ρT
ijd, qT

rvd]
T, the state error e = x− xd and ė = ẋ− ẋd.

The control goal is to enforce the sliding mode on the man-
ifold s = ė + λe.

3.1 Standard ST design

According to the inequalities (9) and (13), we can sup-
pose that the ith component of δ is bounded by positive
constants expressing as |δi| � εi|z1i|1/2, where εi =
|ϑ1i|max (i = 1, 2, 3) and εj = |ϑ2i|max (i = 1, 2, 3; j =
i + 3). Thus, the ST controller is designed as follows:⎧⎨

⎩
u = [AT(qs), G;03×3, 0.5QvA(qr)J−1

s ]−1·
[sys(∗) + λė − ẍd + M1sign(s)1/2 − z2]

ż2 = −M2sign(s)
(16)

where Mj (j = 1, 2) is the main diagonal matrix with dia-
gonal elements Mji > 0. The function sign(s)1/2 is de-
fined as follows:

sign(s)1/2 = [|s1|1/2sign(s1), . . . , |s6|1/2sign(s6)]T

(17)
and sign(s) is expressed as

sign(s) = [sign(s1), . . . , sign(s6)]T.

Let z = [sT, zT
2 ]T, the closed-loop system dynamics

can be expressed as

ż =
[−M1i|si|1/2sign(si) + z2i + δi

−M2isign(si)

]
.

Therefore, the system can converge to zero in finite time
when the inequalities are satisfied.

M1i > 2εi, M2i >
(ε2

i + 8εiM1i)M1i

8(M1i − 2εi)
(18)

3.2 MST controller design

In this section, MST is designed based on standard ST al-
gorithm and basic linear algorithm. These modification al-
lows the control system to have both exponential and finite
time convergence properties. According to the components
of ϑ, it can be divided into two parts as follows:

ϑi = ζ1i +
∫ t

0

ζ2i(τ)dτ, i = 1, 2, . . . , 6

where

|ζ1|max = [J−1
t (|Ttg|max + |Td|max)] × P i

t + max(atd0) + [J−1
s (|Tsg|max + |Td|max)] × P j

s + max(asd0)·
0.5λmax(QvJ−1

t )(|Ttg|max + |Td|max) + 0.5λmax[QvA(qr)J−1
s ](|Tsg|max + |Td|max)

|ζ2|max =
[

kd[max(atd0) + max(asd0)]
03×1

]
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|Td|max = 1.5 × 10−5

⎡
⎣ 4√

11.25
4

⎤
⎦

|Tg|max =
3μ

r3
max(Z0 × JZ0)
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and they are assumed to be bounded by some positive con-
stants δji (j = 1, 2, . . ., 4) as follows:

{ |ζ1i| � δ1i|x1i|1/2 + δ3i|x1i|
|ζ2i| � δ2i + δ4i|x1i| (19)

where δ1i = |ζ1i|max, δ2i = |ζ2i|max, δ3i > 0, δ4i > 0;
x1i is the ith component of switching function x1 defined
in the following section. The proposed MST controller is
designed as follows:

u = [AT(qs), G;03×3, 0.5QvA(qr)J−1
s ]−1·

[sys(∗) + λė − ẍd + K1sign(s)1/2 + K2s − Z] (20)

where

Ż = −K3sign(s) − K4s

and Kj (j = 1, . . . , 4) is the main diagonal matrix with
kji > 0 as the diagonal elements.

Let us define vector x = [x1, x2] where x1 = s,

x2 = Z +
∫ t

0

ζ2(τ)dτ . Thus the dynamic functions of the

closed-loop system can be expressed as

{
ẋ1i = −k1i|x1i|1/2sign(x1i) − k2ix1i + x2i + ζ1i

ẋ2i = −k3isign(x1i) − k4ix1i + ζ2i
.

(21)
In what follows, the proof of finite time convergence

to equilibrium point in MST law is given by the second
method of Lyapunov.

3.3 MST stability analysis

The Lyapunov function for system (21) is defined with per-
turbations as follows:

Vi = 2k3i|x1i| + k4ix
2
1i + 0.5x2

2i +

0.5(k1i|x1i|1/2sign(x1i) + k2ix1i − x2i)2 = ξTPξ > 0
(22)

where⎧⎪⎪⎨
⎪⎪⎩

ξT = [|x1i|1/2sign(x1i), x1i, x2i]

P =
1
2

⎡
⎣ 4k3i + k2

1i k1ik2i −k1i

k1ik2i 2k4i + k2
2i −k2i

−k1i −k2i 2

⎤
⎦ .

Note that Vi is continuous but it is not differentiable at
x1i = 0 and it is positive definite and radially unbounded
if kji > 0.{

λmin(P )‖ξ‖2 � Vi � λmax(P )‖ξ‖2

‖ξ‖2 = |x1i| + x2
1i + x2

2i
(23)

where λmin(P ) and λmax(P ) denote the minimum and
maximum eigenvalues of the matrix P . Then the deriva-
tive of Vi with respect to time can be expressed as

V̇i = −|x1i|−1/2ξTΩ1iξ − ξTΩ2iξ +

ωT
1iξ + |x1i|−1/2ωT

2iξ (24)

ωT
1i = [k1i(1.5k2iζ1i − ζ2i), (2k4i + k2

2i)ζ1i −
k2iζ2i,−k2iζ1i + 2ζ2i]

ωT
2i = ζ1i[2k3i + 0.5k2

1i, 0,−0.5k1i]

Ω1i = k1i/2

⎡
⎣ 2k3i + k2

1i 0 −k1i

0 2k4i + 5k2
2i −3k2i

−k1i −3k2i 1

⎤
⎦

Ω2i = k2i

⎡
⎣ k3i + 2k2

1i 0 0
0 k4i + k2

2i −k2i

0 −k2i 1

⎤
⎦ .

ωT
1iξ+ |x1i|−1/2ωT

2iξ � [3/2k1ik2i|x1i|1/2+(2k4i+k2
2i)·

|x1i|+ (2k3i + k2
1i/2)+ (k2i + k1i/2|x1i|−1/2)sign(x1i)·

x2i](δ1i|x1i|1/2 + δ3i|x1i|) + [k1i|x1i|1/2 + k2i|x1i| +
2sign(x1i)x2i](δ2i + δ4i|x1i|) =

|x1i|−1/2ξTΔ1iξ + ξTΔ2iξ

can be established if x1ix2i > 0, where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ1i =

⎡
⎢⎢⎢⎢⎣

δ2ik1i + 2δ1ik3i +
1
2
δ1ik

2
1i 0 δ2i +

1
4
δ1ik1i

0 0 0

δ2i +
1
4
δ1ik1i 0 0

⎤
⎥⎥⎥⎥⎦

Δ2i =

⎡
⎢⎢⎢⎢⎢⎣

1
2
δ3ik

2
1i +

3
2
δ1ik1ik2i + δ2ik2i + 2δ3ik3i

1
2
δ4ik1i+δ1ik4i+

3
4
δ3ik1ik2i +

1
2
δ1ik

2
2i

1
4
δ3ik1i +

1
2
δ1ik2i

1
2
δ4ik1i + δ1ik4i +

3
4
δ3ik1ik2i +

1
2
δ1ik

2
2i δ3ik

2
2i + δ4ik2i + 2δ3ik4i δ4i +

1
2
δ3ik2i

1
4
δ3ik1i +

1
2
δ1ik2i δ4i +

1
2
δ3ik2i 0

⎤
⎥⎥⎥⎥⎥⎦

.
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Thus, (24) can be rewritten as V̇i �−|x1i|−1/2ξTQ1iξ−
ξTQ2iξ(Q1i = Ω1i − Δ1i, Q2i = Ω2i − Δ2i). If
x1ix2i < 0,

ωT
1iξ + |x1i|−1/2ωT

2iξ �

[
3
2
k1ik2i|x1i|1/2 + (2k4i + k2

2i)|x1i| +
(

2k3i +
k2
1i

2

)
−

(
k2i +

k1i

2
|x1i|−1/2

)
sign(x1i)x2i

]
×

(δ1i|x1i|1/2 + δ3i|x1i|) + [k1i|x1i|1/2 + k2i|x1i|−
2sign(x1i)x2i](δ2i + δ4i|x1i|) =

|x1i|−1/2ξTΔ3iξ + ξTΔ4iξ

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ3i =

⎡
⎢⎢⎣

δ2ik1i + 2δ1ik3i +
1
2
δ1ik

2
1i 0 −δ2i − 1

4
δ1ik1i

0 0 0

−δ2i − 1
4
δ1ik1i 0 0

⎤
⎥⎥⎦

Δ4i =

⎡
⎢⎢⎢⎢⎣

1
2
δ3ik

2
1i +

3
2
δ1ik1ik2i + δ2ik2i + 2δ3ik3i

1
2
δ4ik1i+δ1ik4i+

3
4
δ3ik1ik2i+

1
2
δ1ik

2
2i −1

4
δ3ik1i−1

2
δ1ik2i

1
2
δ4ik1i + δ1ik4i +

3
4
δ3ik1ik2i +

1
2
δ1ik

2
2i δ3ik

2
2i + δ4ik2i + 2δ3ik4i −δ4i − 1

2
δ3ik2i

−1
4
δ3ik1i − 1

2
δ1ik2i −δ4i − 1

2
δ3ik2i 0

⎤
⎥⎥⎥⎥⎦

.

Then (24) can be rewritten as

V̇i � −|x1i|−1/2ξTQ3iξ − ξTQ4iξ

(Q3i = Ω3i −Δ3i, Q4i = Ω4i −Δ4i).

Thus, we can derive V̇ < 0 if kji are appropriately cho-
sen to make the matrices Qji be positive definite. Under
this condition, system (22) is the global asymptotic stabi-
lity and has finite time convergence property. When Q1i

is positive definite, the every sequential principal minor of
Q1i has a positive determinant. It can be represented by
the formula as follows:⎧⎪⎪⎨
⎪⎪⎩

k1ik3i + 0.5k3
1i − δ2ik1i − 2δ1ik3i − 0.5δ1ik

2
1i > 0

(k1ik3i + 0.5k3
1i − δ2ik1i − 2δ1ik3i − 0.5δ1ik

2
1i)·

(k1ik4i + 2.5k1ik
2
2i) > 0

|Q1i| > 0
(25)

Thus we can get the following solutions

⎧⎪⎪⎨
⎪⎪⎩

k1i > 2 max(δ1i,
√

δ2i)
k3i > [36k4

1ik
2
2i + 4δ1ik

3
1ik

2
2i + 16δ1ik

3
1ik4i + (5δ2

1i + 48δ2i)k2
1ik

2
2i + (2δ2

1i + 48δ2i)k2
1ik4i+

40δ2i(δ1ik1i + 2δ2i)k2
2i + 16δ2i(δ1ik1i + 2δ2i)k4i]/16k1i(k1i − 2δ1i)(k4i − 2k2

2i)
k4i > 2k2

2i

. (26)

It is noted that the first and second order principal minor
determinants of Q3i are the same as Q1i’s. Thus we only
need to guarantee the determinant of Q3i is positive. It is
noticeable that |Q3i| > 0 can be consequentially satisfied
as long as |Q1i| > 0.

Next, we calculate the conditions to make sure that Q2i

is positive definite. By using the same method mentioned
above, we get the following conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

k2ik3i + 2k2
1ik2i − 0.5δ3ik

2
1i−

1.5δ1ik1ik2i − δ2ik2i − 2δ3ik3i > 0
(k2ik3i + 2k2

1ik2i − 0.5δ3ik
2
1i − 1.5δ1ik1ik2i−

δ2ik2i − 2δ3ik3i)(k2ik4i + k3
2i − δ3ik

2
2i−

δ4ik2i − 2δ3ik4i) > (0.5δ4ik1i + δ1ik4i+
0.75δ3ik1ik2i + 0.5δ1ik

2
2i)

2

|Q2i| > 0

(27)

Therefore, the solutions can be expressed as

k1i �
δ1i(15δ2

3i + 2δ4i) +

√
δ2
1i(15δ2

3i + 2δ4i)2+
δ2i(10δ2

3i + δ4i)D

D/4

(28)

where
D = (50 + 4

√
69)δ4i − 31δ2

3i > 0

Mi = 4k2
2ik3i/k2

1i + 61/4k2
2i + 1.5δ4i + 4δ1iδ4i/k1i

Ni = 7k4
2i + (10δ1iδ3i/k1i + 24δ2iδ3i/k2

1i)k
3
2i +

k2
2ik3i(47δ2

3i − 12δ4i)/k2
1i + [(22δ2

3i − 109δ4i)/4 +

(14δ1iδ4i + 2.5δ1iδ
2
3i)/k1i + (12δ2iδ4i + δ2iδ

2
3i)/k2

1i]·
k2
2i+2(10δ3iδ4i+δ3

3i)k2ik3i/k2
1i+(δ3

3i+2δ1iδ3iδ4i/k1i +
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4δ2iδ3iδ4i/k2
1i)k2i + {[8δ2

3iδ4i − 4(k4
2i + δ2

4i)]/k2
1i +

8δ3iδ
2
4i/k2

1ik2i}k3i + δ2
3iδ4i/4 − 9δ2

4i + 4δ1iδ
2
4i/k1i +

δ3iδ
2
4i/k2i + 4δ2iδ

2
4i/k2

1i > 0

Pi =
(
31 + 120δ1i/k1i + 160δ2i/k2

1i

)
δ2
3i +

16
(
δ1i/k1i + δ2i/k2

1i

)
δ4i

Qi = 32k2
4i + 25δ4ik4i + 4δ2

4i

Ri = 2
(
31 + 120δ1i/k1i + 160δ2i/k2

1i

)
δ2
3i −[

100 − 32
(
δ1i/k1i + δ2i/k2

1i

)]
δ4i

Finally, we note that the first and second order principal
minor determinants of Q4i are the same as Q2i. Then we
need only to guarantee |Q4i| > 0 is satisfied. By the same
method above, we get

2k2
2i < k4i <

(
−Ai +

√
A2

i + 4Bi

)
/2, Bi > 0 (29)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ai = 8k2
2ik3i/k2

1i + 53k2
2i/4 + 1.5δ4i

Bi = 61k4
2i/4 + (14δ1iδ3i/k1i + 16δ2iδ3i/k2

1i)k
3
2i+

(32δ2
3i − 2δ4i)k2

2ik3i/k2
1i + [(7.5 + 2.5δ1i/k1i+

δ2i/k2
1i)δ

2
3i − 25δ4i/4]k2

2i + 2δ3
3ik2ik3i/k2

1i+
(δ3

3i + 2δ1iδ3iδ4i/k1i + 4δ2iδ3iδ4i/k2
1i)k2i+

[(8δ2
3iδ4i + 7.75k4

2i − 4δ2
4i)/k2

1i+
8δ3iδ

2
4i/k2

1ik2i]k3i + δ2
3iδ4i/4 − 9δ2

4i+
4δ1iδ

2
4i/k1i + δ3iδ

2
4i/k2i + 4δ2iδ

2
4i/k2

1i

As mentioned above, the matrices Qji (j =
1, . . . , 4; i = 1, . . . , 6) are positive definite when (26), (28)
and (29) are satisfied. Thus the origin x = 012×1 is an
equilibrium point that is strongly globally asymptotically
stable.

According to (23), we can obtain

‖ξ‖max = V
1/2
i /λ

1/2
min(P ) � ‖ξ‖ �

V
1/2
i /λ1/2

max(P ) = ‖ξ‖min

‖ξ‖ � |x1i|1/2, ‖ξ‖ � ‖ξ‖2
min/‖ξ‖max

and {
‖ξ‖2 � |x1i|1/2λ

1/2
min(P )/λmax(P ) · V 1/2

i

‖ξ‖2 � 1/λmax(P ) · Vi
,

so
ξTQjiξ � λmin(Qji)‖ξ‖2 (30)

where λmin(Qji) is represented as the minimum eigen-
value of Qji. Consequently, derivative of Vi with respect
to time can be rewritten as

V̇i � −γ1iV
1/2
i − γ2iVi (31)

where{
γ1i = min[λmin(Q1i), λmin(Q3i)]λ

1/2

min(P )/λmax(P )
γ2i = min[λmin(Q2i), λmin(Q4i)]/λmax(P )

.

Since the solution of differential equation

V̇i = −γ1iV
1/2
i − γ2iVi, Vi(0) = Vi0, V (Tfi) = 0 (32)

is given as follows:{
Vi(t) = e−γ2i·t[Vi(t0)1/2 + γ1i/γ2i · (1 − eγ2i·t/2)]
Tfi = 2/γ2i · ln(1 + γ2i/γ1i · V 1/2

i0 )
(33)

Thus we can obtain that Vi converges to zero in finite
time and reaches zero at most after max(Tfi) units of time.

4. Simulation results

4.1 Parameters initialization

The classical orbit elements of the target spacecraft and
the service spacecraft are listed in Table 1. ωtb (ωsb) de-
notes the angular velocity of Fbt (Fbs) with respect to
Ft (Fo). The initialization values of them are separately
ωsb0 = 03×1 (◦)/s and ωtb0 = [−3.0 2.0 3.0] (◦)/s. The
mass characteristics are in Table 2. The numerical simu-
lations are performed with linearly increasing disturbance
accelerations of atd = (1 + kdt)[2.5 4.0 3.8]T × 10−5

m/s2 and asd = (1 + kdt)[2.0 4.2 3.8]T × 10−5 m/s2.

Table 1 Classical orbit elements

Parameter Value

Semi-major/km at= 7 170.0 as= 7 170.0
Eccentricity et= 0.050 0 es= 0.050 0

Inclination/(◦ ) it=15.000 2 is=15.000 0
Ascending node/(◦) Ωt=30.000 1 Ωs=30.000 0

Argument of perigee/(◦ ) ωt=10.000 0 ωs=10.000 0
True anomaly/(◦ ) θt=20.000 2 θs=20.000 0

Table 2 Mass characteristics of the service spacecraft and the target
spacecraft

Property Values

Js/(kgm2) diag([45.6, 47.3, 46.9])

Jt/(kgm2) diag([67.6, 57.6, 57.6])

ms/kg 240
mt/kg 320

The docking port vectors on the service spacecraft and
the target spacecraft are expressed in respective body coor-
dinate systems as follows:{

(P 0
s )Fbs

= [0.5, 0.0, 0.0]Tm
(P 0

t )Fbt
= [−0.75, 0.0, 0.0]Tm .

The control parameters of standard ST and MST algo-
rithms are designed separately⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ = diag([0.5, 0.5, 0.5, 0.5, 0.5, 0.5])
M1 = diag([0.465, 0.45, 0.45, 0.054, 0.054, 0.054])
M2 = diag([80.0, 100.0, 100.0, 0.75, 0.6, 0.6])× 10−5

K1 = diag([0.45, 0.45, 0.45, 0.053, 0.042, 0.042])
K2 = diag([1.0, 1.0, 1.0, 0.1, 2.0, 2.0])× 10−5

K3 = diag([8.0, 10.0, 10.0, 0.4, 0.2, 0.2])× 10−4

K4 = diag([1.0, 1.0, 1.0, 0.1, 2.0, 2.0])× 10−9

.
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Bipropellant orbit and attitude control engines are cho-
sen to operate relative position and attitude maneuvers syn-
chronously. Output limitations of orbit and attitude control
engines are amax = 0.2 m/s2 and Tmax = 0.8 N·m. The
control object is xd = ẋd = 06×1. In simulations, mea-
surements of relative position, relative velocity and relative
attitude angular velocity are assumed to be given by state
estimator and so measure errors are ignored.

4.2 Results

When kd = 0, the relative translation of docking port P 0
t

with respect to P 0
s is shown in Fig. 3. Through comparing

the two sliding mode control methods, illustrations show

that the convergence time is approximate 30 s in MST
while the standard ST needs more than 35 s to converge.
The relative translational control accuracy of the two con-
trollers are both calculated with data from 65 s to 100 s.
The control accuracies are expressed as errors in 3σ (σ is
the standard deviation). The relative position errors and rel-
ative velocity errors are listed in Table 3. As a result, the
relative position errors are less than 2.4×10−6 m (3σ) and
relative velocity errors are less than 5.4×10−4 m/s (3σ)
in MST technique. By contrast, we can easily conclude
that the MST algorithm has almost the same control ef-
fects without disturbances but MST has faster convergence
time than ST method.

Fig. 3 Relative translation of docking ports in Fbs

Table 3 Relative translation errors in 3σ

Control errors
Parameter

MST ST

ΔX/m 1.240 × 10−6 0.744 × 10−6

ΔY /m 2.388 × 10−6 2.080 × 10−6

ΔZ/m 1.538 × 10−6 2.639 × 10−6

ΔVx/(m/s) 3.940 × 10−4 4.073 × 10−4

ΔVy/(m/s) 5.340 × 10−4 5.410 × 10−4

ΔVz /(m/s) 1.190 × 10−4 1.313 × 10−4

Meanwhile, the relative rotation of the target spacecraft
with respect to the service spacecraft are shown in Fig. 4.
The control errors of relative attitude angles and relative
angular velocity are listed in Table 4 by the same method
as previously. Thus the relative attitude angle errors are less
than 4.6×10−6 (◦) (3σ) and relative angular velocity errors
are less than 5.1×10−4 (◦)/s (3σ) in MST algorithm. It is
shown clearly again that the control accuracies of MST are
higher than ST.

The relative distance between CMs of the service space-
craft and the target spacecraft and that of the two dock-

ing ports are illustrated in Fig. 5 by designed MST and
ST algorithms respectively. The symbol |ρij | indicates rel-
ative distance of docking port P 0

t relative to P 0
s and dis-

tance between permanent CMs of the target spacecraft and
the service spacecraft is denoted by |ρ00|. The control er-
rors of relative distance between the two docking ports are
2.038×10−6 m (3σ) by MST method and 2.098×10−6 m
(3σ) in ST controller. It shows visibly that the MST con-
troller has distinct advantages in terms of less convergence
time and higher control precision than the basic ST algo-
rithm.

Table 4 Relative rotation errors in 3σ

Magnitude
Parameter

MST ST

Δφr/(◦) −0.603 × 10−6 6.447 × 10−6

Δθr /(◦) 4.451 × 10−6 5.902 × 10−6

Δψr/(◦) −1.569 × 10−6 −1.065 × 10−6

Δωx/((◦)/s) 6.162 × 10−4 6.442 × 10−4

Δωy/((◦)/s) 3.861 × 10−4 6.409 × 10−4

Δωz/((◦)/s) 3.907 × 10−4 6.422 × 10−4
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Fig. 4 Relative rotation of T with respect to the service spacecraft

Fig. 5 Relative distance of docking ports

Furthermore, the control forces and torques outputted
by the orbit and attitude control engines with saturation li-
mits in MST and ST are illustrated in Fig. 6. Meanwhile,
the sliding surfaces are described in Fig. 7, where Sx, Sy

and Sz are relative position sliding surface components;
Sq1, Sq2 and Sq3 are vector components of the relative
quaternion. They present obviously again that the conver-
gence time with MST algorithm is less than that used in ST
method.

In order to verify the robustness of MST for linearly in-
creasing disturbances, we increase kd several times and
the control accuracies of relative translation are listed in
Table 5 by comparison with ST controller in the same other
simulation conditions and the same precision calculation
method. Simulation results indicate obviously that the pro-
posed MST algorithm has stronger robustness for linearly
increasing perturbations than ST method and the previous
analytic analysis can be proofed accordingly.

Then we increase the inertia matrix by ±15% to verify
the robustness of MST for modeling uncertainty and iner-
tial matrix parameters uncertainties. Emulation programs
are performed again with kd = 1.0 and the same other pa-
rameters as before and the control accuracies are shown
in Table 6. The results show that the proximity operation
can be performed with almost the same magnitude of pre-
cision as the previous simulation. The analysis of control
accuracy can be obtained as follows. The precision of re-
lative position is 3.983×10−6 m (3σ), relative velocity ac-
curacy is 5.354×10−4 m/s (3σ) and control error of rela-
tive distance between two docking ports is 4.088×10−6 m
(3σ). Moreover, the accuracy of relative attitude angle is
9.790×10−6 (◦) (3σ) and the relative angular velocity er-
ror is less than 8.6×10−4 (◦)/s (3σ). As a consequence, the
strong robustness and high reliability of MST are demon-
strated, which can guaranty the ARD process is collisions-
free.
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Fig. 6 Actuators outputs in Fbs

Fig. 7 Sliding surfaces

Table 5 Control precisions in 3σ of relative translation under linearly increasing disturbances

kd = 1.0 kd = 3.0
Parameter

MST ST MST ST

ΔX/m 3.380 × 10−6 3.567 × 10−6 4.090 × 10−6 4.701 × 10−6

ΔY /m 3.832 × 10−6 4.183 × 10−6 4.120 × 10−6 4.413 × 10−6

ΔZ/m 2.430 × 10−6 3.249 × 10−6 0.946 × 10−6 1.809 × 10−6

ΔVx/(m/s) 3.940 × 10−4 4.073 × 10−4 3.937 × 10−4 4.073 × 10−4

ΔVy /(m/s) 5.341 × 10−4 5.411 × 10−4 5.346 × 10−4 5.412 × 10−4

ΔVz /(m/s) 1.188 × 10−4 1.310 × 10−4 1.188 × 10−4 1.310 × 10−4

Δ|ρij |/m 3.770 × 10−6 4.268 × 10−6 4.189 × 10−6 4.418 × 10−6

kd = 4.0 kd = 5.0
Parameter

MST ST MST ST

ΔX/m 4.288 × 10−6 4.710 × 10−6 4.827 × 10−6 5.140 × 10−6

ΔY /m 4.660 × 10−6 4.832 × 10−6 4.635 × 10−6 4.851 × 10−6

ΔZ/m 1.176 × 10−6 1.907 × 10−6 1.414 × 10−6 1.355 × 10−6

ΔVx/(m/s) 3.942 × 10−4 4.070 × 10−4 3.938 × 10−4 4.070 × 10−4

ΔVy /(m/s) 5.342 × 10−4 5.417 × 10−4 5.348 × 10−4 5.418 × 10−4

ΔVz /(m/s) 1.187 × 10−4 1.311 × 10−4 1.188 × 10−4 1.311 × 10−4

Δ|ρij |/m 4.673 × 10−6 4.883 × 10−6 4.930 × 10−6 5.037 × 10−6
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Table 6 Control accuracy with model uncertainties in 3σ

Increasement magnitudes of S and T
Parameters

+15%,−15% +15%,+15% −15%,+15% −15%,−15%

ΔX/m 3.376 × 10−6 3.365 × 10−6 3.524 × 10−6 3.502 × 10−6

ΔY /m 3.931 × 10−6 3.908 × 10−6 3.983 × 10−6 3.970 × 10−6

ΔZ/m 2.797 × 10−6 2.795 × 10−6 1.927 × 10−6 1.952 × 10−6

ΔVx/(m/s) 3.934 × 10−4 3.937 × 10−4 3.941 × 10−4 3.938 × 10−4

ΔVy/(m/s) 5.354 × 10−4 5.353 × 10−4 5.326 × 10−4 5.327 × 10−4

ΔVz /(m/s) 1.183 × 10−4 1.181 × 10−4 1.200 × 10−4 1.202 × 10−4

Δφr/(◦) 5.363 × 10−6 4.961 × 10−6 8.223 × 10−6 9.790 × 10−6

Δθr/(◦) −0.037 × 10−6 −0.098 × 10−6 0.928 × 10−6 0.878 × 10−6

Δψr /(◦) 3.494 × 10−6 3.294 × 10−6 2.535 × 10−6 3.212 × 10−6

Δωx/((◦)/s) 4.647 × 10−4 4.655 × 10−4 8.595 × 10−4 8.595 × 10−4

Δωy/((◦)/s) 2.919 × 10−4 2.919 × 10−4 5.390 × 10−4 5.391 × 10−4

Δωz/((◦)/s) 2.943 × 10−4 2.943 × 10−4 5.389 × 10−4 5.389 × 10−4

Δ|ρij |/m 4.088 × 10−6 4.070 × 10−6 3.958 × 10−6 3.983 × 10−6

5. Conclusions

In this paper, a coupled relative motion model was es-
tablished for the docking port located in target spacecraft
and another in service spacecraft with the coupled effects
of relative rotation on relative translation. The considered
coupling effects belong to both kinematical and dynamic
coupled effects. On the basis of this dynamic model, a
modified super twisting sliding mode controller with lin-
ear correction terms was proposed to operate the relative
position and attitude synchronously for on-orbit servicing
to a tumbling non-cooperative target spacecraft subjected
to some disturbances. Furthermore, by using the second
method of Lyapunov, the finite time convergence property
of the closed-loop system was proved. Numerical simula-
tions were presented to validate the previous analysis by
contrast with the standard super twisting algorithm. Si-
mulation results illustrated that the revised super twisting
controller has higher control precision, stronger robustness
and faster convergence velocity for linearly increasing per-
turbations and mode uncertainties than the basic one.
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