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Abstract: To solve the problem that the existing situation
awareness research focuses on multi-sensor data fusion, but the
expert knowledge is not fully utilized, a heterogeneous informa-
tion fusion recognition method based on belief rule structure is
proposed. By defining the continuous probabilistic hesitation
fuzzy linguistic term sets (CPHFLTS) and establishing CPHFLTS
distance measure, the belief rule base of the relationship
between feature space and category space is constructed
through information integration, and the evidence reasoning of
the input samples is carried out. The experimental results show
that the proposed method can make full use of sensor data and
expert knowledge for recognition. Compared with the other
methods, the proposed method has a higher correct recognition
rate under different noise levels.
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1. Introduction

Information fusion system contains multilevel functional
models, and target intention recognition is an important
content of situation estimation [1]. According to the situa-
tion feature vector generated by situation awareness and
combined with the military knowledge of field experts,
battlefield deployment and action attempt can be judged
[2]. In addition to the measured data obtained by various
sensors, experts’ knowledge of some target characteris-
tics and attributes can also be obtained, and the two types
of information are complementary [3]. Therefore, the
fusion of sensor data and expert knowledge is of great
practical significance.

The types of information sources can be divided into
data-driven and knowledge-driven [4,5]. Data-driven
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mainly relies on learning and training data to acquire fea-
tures. Training data are usually obtained by sensor mea-
surement of targets, and these samples are used as train-
ing sets to train the model, so that it can classify unknown
samples after training, including K-nearest neighbor
(KNN), decision tree, and support vector machine. Know-
ledge-driven type is mainly based on the knowledge col-
lected and sorted out from experts, sorting out a number
of criteria to describe the relationship between features
and categories, establishing a certain inference system,
and then making inference decisions about the category
of unknown samples [6]. Zhou et al. proposed that the
initial rule base should be established on the basis of
acquired expert knowledge, and then rules should be opti-
mized through training data [7]. Tang et al. developed a
knowledge-based Bayesian classifier to estimate condi-
tional probability using training data [8]. Tang et al.
establishd a fuzzy rule system based on expert know-
ledge, and then used training data to optimize the fuzzy
membership function [9]. All the above methods first use
expert knowledge to build the basic model, then use train-
ing data to optimize the model, and divide expert know-
ledge and training data into two different data sets. In the
practical application of many information fusion systems,
training data and expert knowledge exist at the same time
but are not independent from each other. For example, for
the problem of target intention identification, the charac-
teristics of target individuals include the target distance,
speed, heading and other attribute data measured by sen-
sors. It also includes expert knowledge such as entity col-
laboration relationship and complexity of electromag-
netic environment [10—12]. Obviously, the above method
cannot be used to complete fusion processing under such
conditions, and a new fusion recognition method needs to
be found.

In order to integrate sensor data and expert knowledge
organically to realize target intention recognition, a
model that can effectively utilize these two kinds of infor-
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mation is needed. Rule is a common way to express
knowledge and can be based on expert knowledge to
build a rule-based system. Therefore, the rule-based mo-
deling (RBM) approach has attracted more and more
attention. The IF-THEN rule is a typical rule-based
model, which can make full use of sensor data and expert
knowledge information. Many fuzzy rule systems that use
training data or expert knowledge to deal with classifica-
tion problems have been proposed [13]. Belief function
theory, also known as Dempster-Shafer theory [14,15], is
a very powerful uncertainty modeling and reasoning
framework first proposed by Dempster and later pro-
moted by Shafer [16,17]. Yang et al. extended fuzzy rules
under the framework of belief function theory and pro-
posed belief rules [18], proposed a new knowledge
expression, which has been applied in risk assessment,
fault diagnosis and other fields. “Rule” in the structure of
belief rules refers to production rules, which can be
described as “IF-THEN” form. Belief rule structure can
better explain and describe system mechanism. In this
paper, sensor data and expert knowledge are fused
through the structure based on belief rule to realize the
effective recognition of target intention. Compared with
the black box model such as deep neural networks
(DNN), it has many advantages. First, it can effectively
integrate quantitative information and qualitative knowl-
edge. Second, reliable and understandable models can be
established based on the structure of belief rules to
enhance people’s cognition of the actual system [19].

The rest of the paper is organized as follows. In Sec-
tion 2, the knowledge representation method is studied
and the continuous probabilistic hesitation fuzzy seman-
tic label is proposed to achieve accurate description of
expert knowledge. In Section 3, the distance measure of
continuous probabilistic hesitation fuzzy linguistic term
sets (CPHFLTS) is studied from the perspective of the
digital characteristics of random variables, the definition
of tag efficiency value, expectation and variance is given,
and the reliability calculation method of continuous inter-
val semantic random variables is proposed. A fusion
recognition method of heterogeneous information based
on belief rule structure is proposed in Section 4. In Sec-
tion 5, the proposed method is verified by combining the
reliability value and the heterogeneous information fusion
recognition experiment. Section 6 concludes this paper.

2. Knowledge representation and
semantic labels

Semantic labels are an important knowledge representa-
tion method. Semantic representation is the core of
semantic recognition and the basis of semantic computa-
tion and semantic output. In this section, the representa-

tion method of knowledge is given, and then the existing
semantic representation methods are introduced. Finally,
in order to overcome the problems existing in the exist-
ing semantic representation methods, the continuous
probabilistic hesitation fuzzy linguistic term set is given,
which can accurately describe more generalized semantic
information.

2.1 Knowledge representation methods

In knowledge representation, knowledge is a concept,
practice and process expressed in a structured way.
Knowledge has relative correctness, indeterminacy and
exploitability. Knowledge representation is to associate
the knowledge factor in the knowledge carrier with
knowledge so as to facilitate people to recognize and
understand knowledge. Knowledge representation is a
data structure that can be accepted by computers to
describe knowledge. In order to make full use of expert
knowledge to realize fusion recognition, the first prob-
lem is how to express expert knowledge correctly and
reasonably. A series of rules of knowledge representation
are stipulated in the knowledge representation method. In
the field of artificial intelligence, the typical knowledge
representation methods are symbolic method and vector
method, which are essentially a kind of data structure and
related information association. The symbolic method
mainly includes first-order predicate logic representation,
production rule representation, semantic network repre-
sentation, and knowledge graph representation. The vec-
tor method is typically represented by distributed repre-
sentation.

Production rule representation has become one of the
most widely used knowledge representation methods in
artificial intelligence. The production rule generally con-
sists of instructions composed of conditions and actions,
namely the so-called condition-activity rule (C-A rule),
which can be written as C—A, i.e., “IF Condition THEN
Action”. C is the available prerequisite, and A is the con-
clusion that should be obtained if C is true. As an impor-
tant knowledge representation method, production rules
can usually use semantic information to represent prere-
quisite knowledge.

2.2 Existing semantic representation methods

Language is the carrier of human thinking, and semantic
information is the direct embodiment of the meaning con-
tained in language. Semantic information is an important
part of multi-source and heterogeneous uncertain infor-
mation in decision-making level. As a kind of qualitative
information, semantic information can better describe
randomness and fuzziness in complex environment than
numerical quantitative information. In 1975, Professor
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Zadeh [20], the founder of fuzzy sets, proposed the con-
cept of semantic computation and gave the mathematical
description of semantic variables by machine com-
putation. The semantic variable is a quintuple
(X,S(X),U,G,M), where X is the semantic variable
name, U is the domain of semantic description value,
S (X) (denoted as §') represents the mapping from seman-
tic to semantic description value s, G represents the rule
that generates the semantic description value s, M is the
semantic rule that reflects the meaning of the semantic
description value s, and M(s) is a fuzzy set in U. For the
domain U, S can be regarded as the fuzzy division of U,
which is a granularity representation of uncertainty. The
ordered semantic label set can be used to describe the
semantics of uncertainty, and the semantic label with
granularity g + 1 can be written as

S={so,s1,---,sg So < 8 <,~~~,<sg} (1)

where g+ 1 is the number of labels, g is usually an even
number, and s; is the ith ordered language label.

At present, semantic computing has been extended to
many application fields and achieved many theoretical
achievements [21]. Two pioneering achievements are the
binary semantic representation model proposed by Spa-
nish scholars Herrera and Martinez, and the concept of
hesitant fuzzy linguistic term sets (HFLTS) proposed by
Rodriguez et al. However, these two models also have
limitations in practical application. They can only repre-
sent basic semantic information, but cannot do anything
about more complex semantic information. In order to
integrate expert knowledge more effectively in target
intention recognition, more complex semantic informa-
tion is often needed to represent expert knowledge. In this
case, traditional semantic information representation
methods cannot meet the requirements, so new semantic
information representation methods need to be proposed.

2.3 CPHFLTS

Semantic recognition includes machine language repre-
sentation, semantic computation and semantic output, and
semantic representation and semantic computation are the
key points. By analyzing the existing semantic represen-
tation methods, binary semantics has the limitation of sin-
gle label semantic information description. Uncertain lin-
guistic term sets (ULTS), HFLTS and probabilistic lin-
guistic term sets (PLTS) cannot represent continuous
semantics. Continuous interval-valued linguistic term sets
(CIVLTS) lack consistency in describing the importance
of semantic labels. This paper adopts a new semantic rep-
resentation model which is named CPHFLTS. This
semantic label can describe semantic information in a
broader sense, and the use of continuous hesitation fuzzy

semantics is helpful to adopt the opinions of multiple
experts, because different experts may reach different
conclusions for the determination of the same feature.
Based on the definition of CPHFLTS, a distance measure
suitable for CPHFLTS semantic computation is proposed.
Combined with belief rule base (BRB) structure, a CPH-
FLTS-BRB model is formed for target intention recogni-
tion, which is successfully applied to the multi-attribute
fusion intention recognition problem at the decision level.

Definition 1 S indicates the semantic label, S =
{syl = -71,---,—-1,0,1,--- ,7}, then CPHFLTS is defined
as

H.(p) = {Eﬁk)lp“)lfz(f) €S, pP>0k=12,--,

||
WA @
k=1

where (k) represents the semantic label subscript,
h®|p®  represents continuous semantic label 2% with
probability p®, |Flt(p)| is the number of continuous prob-
ability hesitation fuzzy semantic labels in H.(p), 1% is a
continuous interval semantic element.

il(fk) = [S(k)L, S(k)u], (k)L,(k)U € [-T1,7]; (K)L<()U (3)

Compared with binary semantic models, hesitant fuzzy
semantic label sets, and probabilistic semantic label sets,
etc., CPHFLTS can solve the problem that existing
semantic representation methods cannot describe com-
plex semantic styles such as continuous and probabilistic
semantics. CPHFLTS can describe the semantic informa-
tion of “the probability of being 30% larger than s, and
smaller than s; is 0.4, the probability of being 20% larger
than s, and 50% smaller than s5 is 0.3”, it can be
expressed as {[s;3,53]1(0.4),[s552,545]1(0.3) }. It can be
seen that when the distribution probability p® is 1, CPH-
FLTS degenerates into a continuous semantic label set.
When the continuous interval semantic element 2% is a
single semantic label, CPHFLTS degenerates into a prob-
abilistic semantic label set. That is, CPHFLTS is a more
generalized semantic label.

The schematic diagram of continuous probability hesi-
tation fuzzy semantic label is shown in Fig. 1.

Sic1 Sis1

Fig. 1
schematic

Continuous probability hesitation fuzzy semantic label
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3. CPHFLTS distance measure

Achieving target intent identification requires categoriza-
tion of patterns. This requires the similarity measure of
the pattern to be recognized to describe the degree of si-
milarity between the patterns. The distance measure is the
basis of pattern recognition, so it is necessary to study the
distance measure of CPHFLTS for target intention recog-
nition based on continuous probabilistic hesitation fuzzy
semantic label.

It can be seen that CPHFLTS, as an extension of hesi-
tant fuzzy set, also has the problem of inconsistent num-
ber of semantic labels, but the traditional hesitant fuzzy
set has no probability, so the new distance measure needs
to solve the problem of probability superposition calcula-
tion.

This problem can be described as how to compute the
distance measure between interval hesitant fuzzy sets for
which there is a probability distribution. Through analy-
sis, it is found that this problem is similar to the calcula-
tion of random variables under probability distribution, so
this section defines the distance measure of CPHFLTS
from the perspective of the numerical characteristics of
random variables. First, the definitions of label efficacy
value, expectation and variance of CPHFLTS are given.
Then, the label efficacy value distance is given for two
probabilistic label values of the same semantics, and the
efficacy distance between semantic labels is defined on
this basis. Finally, in order to integrate CPHFLTS with
sensor data, the credibility definition of CPHFLTS is
given.

Definition 2 A, is a continuum semantic random
variable, and its possible value is a continuous interval
ilik) =[S, Swu], the corresponding probability distribu-
tion is P(H, = h®) = p® . The tag efficiency value, expec-
tation and variance are defined as

Q( (k)|(p(k>)) <k> p(’

|A.p)|

- Z o(rfIp™) @

|A.)| R
(@)

D(A)= ) [A-E
k=1

When using continuous probability hesitant fuzzy
semantic tags for information representation, the sum of
interval probability values corresponding to a certain
semantic tag is not equal to 1. If semantic calculations are
performed directly, errors will occur due to incomplete
probability distributions. Referring to the basic belief
assignment (BBA) idea in evidence theory, reliability can
be assigned to single, common and the whole identifica-

tion framework in evidence theory. Here, the residual
probability is assigned to the whole label interval
h, =[s_.,s,], which is called the normalization of label
probability. Then the expectation and variance after CPH-
FLTS normalization can be expressed as

|A(p)| |A(p)|

B(A)= Y RO po k1= po
k=1 k=1
|| s
D(A,)= Z [Wo-E(A.)] - p¥+ N

) o, |A(p)|
()] 1= >

k=1

Definition 3  Assuming that the probability tag va-
lues of two CPHFLTS are 2?|(p®) and AY|(p") respec-
tively, the tag efficiency value distance is defined as

do (RO1(p™). B2 1(p")) =
do[Q(R1(p™) = (1P M))| =
dy [B‘,” - 7. pm] —
dQ {[SLi, suil 'P(i) - [sLjasUj] 'P('i)} =
Li . Lj U . Uj ]
o _ =S 0 =" ,,0_ =S 0 6
[ZT 27 P TP ©)

Definition 4 Based on the probability tag effective-
ness value distance, the tag effectiveness distance
between CPHFLTS H.i and H. is defined as

1
dQ cls c2 T~ | 1~ 1
)= ]
. 1]
Z ZdQ (h(l)l(p l)) h(/)|(p(j))> —
=1 j=1

|a | ||

1 Lcl
|Ha| - |Ao| 4L 27
Lo ) Ua (i) Ue (j)]
=2y 022 ) 7
2T 2T P 2t P )

Equation (7) is the interval distance. For the calcula-
tion of the interval distance, the Minkowski norm dis-
tance can be used, and (7) can be further expressed as

dQ (ﬁcl’ﬁrz)z

o o K
R e )}

(i)

i=1 j=1

1

||
1

.| -
02 G 8
|H||HC2 Z(z T”) ®)

i=
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where g > 1, if ¢ =1, it is Manhattan distance, if ¢ =2,
it is Euclidean distance. In this paper, g = 2.

Definition 5 For the continuous interval semantic
random variable H., its possible value is interval
h® =[5, Sww], and the corresponding probability distri-
bution is P(H, =h®) = p®, then the reliability of the
continuous interval semantic random variable H. is

1

|| i

Z (Swo=swr) p*
k=1

Rel (Iflc) =|= |FI

)

4. Fusion recognition method

After the continuous probabilistic hesitation fuzzy seman-
tic label representation and the measurement distance are
given, the fusion recognition method of sensor data and
expert knowledge can be designed under the framework
of belief rules.

This section first presents the belief rule structure
based on the IF-THEN rule, which is an expression that
can provide closer to the actual knowledge. Secondly, for
the rule consequent part, the method of generating the
belief of the conclusion by information integration is
given. By calculating the correlation between the input
sample and the rules in the BRB, and performing the
Shafer evidence discount operation, the principle of max-
imum belief is used to make identification decisions.
Finally, the whole process of algorithm implementation is
given.

Fig. 2 shows the structure diagram of the heteroge-
neous information fusion recognition method based on
belief rule structure.

Sensor Data
data preprocessing >
Information
integration
Expert CPHFLTS
P —> representation
knowledge .
and calculation
R iti s
CCOBMNON g | Belief inference
result
T BRB
Input sample

Fig. 2
recognition method based on belief rule structure

Structure diagram of heterogeneous information fusion

4.1 Belief rule structure

When constructing RBM, rules are generally obtained

from experts or domain knowledge to form a knowledge
base, and then effective inference engine is designed to
realize inference of observation information, and finally a
conclusion is reached [22]. In practical engineering appli-
cation, the information shows as fuzzy uncertainty,
incompleteness, probability uncertainty, etc. This leads to
a greater need for the ability to process uncertain infor-
mation, and the traditional production rules are gradually
expanded into fuzzy rules and belief rules [23].

Belief rule structure [24-28] is an extension of the tra-
ditional rule-based system and can represent more com-
plex causal relationship. When establishing belief rules, it
is necessary to transform qualitative and quantitative
knowledge into linguistic variables and fuzzy sets. Lin-
guistic variables are composed of semantic terms. In the
actual system, there are many kinds of uncertain informa-
tion, such as “the possibility that John is very young is
0.8”, the word “young” is a fuzzy expression of age with
fuzzy uncertainty, while “0.8” is the certainty of informa-
tion with probability uncertainty. Therefore, traditional
fuzzy rules can describe and deal with fuzzy uncertain-
ties, but they are difficult to deal with probabilistic uncer-
tainties. As a modeling and reasoning method to describe
uncertain information, belief rules can provide a more
reliable description of knowledge in the application of
target intention recognition. An example can be used to
illustrate the difference between traditional IF-THEN
rules and belief rules. Belief rules can reflect uncertain
and incomplete expert judgment in rule conclusions.

IF-THEN rule:

IF Age=30 AND Smoker=Yes THEN Risk=High.

A belief rule:

IF Age=30 AND Smoker=Yes THEN Risk={(High:
50%), (low:30%)}.

For the model based on the IF-THEN rule, its rule k
can be expressed as

R‘: IF x;is A Axis AJA -+ Axp, is A}, ,THEN wy.

A BRB usually consists of a series of belief rules, the k
belief rule R* can be expressed as

RE:TF x, is AX A x, is A5 A -+~ A xy, is A5, THEN

)-8 b)) <1

with a rule weight (k= 1,2,---,L) and
attribute weights 6,(i = 1,2,--- ,T}).

x(i=1,2,--,T}) is the precondition attribute, A*(i =1,
2,---,T;) is the reference value of the ith precondition
attribute x; in the kth rule, T} is the number of precondi-
tion attribute in the kth rule, 8¢ describes the credibility
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of the rule R*, called the rule weight, §;i=1,2,---,T})
describes the difference in importance of different pre-
condition attributes in determining the classification
result, which is called attribute weight, 0<pBf<1
(n=1,2,---,N) is the belief assigned to the nth class w,
in the kth rule [29]. The integrity of the conclusion part
of a belief rule depends on whether there is ignorance in

N
the belief distribution of its consequent. Zﬁﬁ <1 means

n=1
that the kth rule is incomplete. The residual belief

N
1- Z B, represents the global uncertainty of the kth rule.

n=1
The belief rule structure describes the mapping relation-
ship from input to output classification result. Compared
with the traditional IF-THEN rules, it provides a more
realistic way of expressing knowledge.

4.2 Information integration

To classify target intention, a BRB that can describe the
relationship between input and output should be con-
structed based on training data and semantic information
[30]. Belief rule structure includes rule antecedents, rule
consequents, rule weights and feature weights. Rule
antecedents, rule weights and feature weights are not the
focus of this paper. This paper mainly focuses on the
fusion recognition of data from sensors and semantic
information from experts. Therefore, we focus on the
method of using information integration to generate
the belief of the conclusion in the consequent part of the
rule.

Calculate the matching degree u(x;) between input Xx;
and different fuzzy partitions

T 7
Har(x;) = [nﬂAﬁ(xij)] (10)
j=1

where f1,:(+) is the membership function corresponding to
the fuzzy set A’;. In order to generate a consequent part
with a belief distribution, the training samples x; assigned
to the premise fuzzy region A* of the rule need to be
fused. For the consequent part, the evidence theory is
used for information integration. Considering the cate-
gory set Q= {w;,w,, - ,wy} as an identification frame-
work, the sample x; belonging to the category w, can be
regarded as an evidence supporting w, as the consequent
part of the corresponding rule. In addition to the sample
attributes based on data, there are also sample attributes
based on continuous interval semantic information in the
input, so the two should be integrated to obtain the degree
of support for the conclusion.

Due to the uncertainty of the training sample data, this

evidence is not completely reliable, and the residual
belief can be allocated to the whole identification frame-
work Q. It can be represented by the mass function m.

m! ({w,)) = pae (x7) - Rel (A, )
m(Q) = 1 -4 (x;)-Rel (H) 1n
m(A) =0, YA € 2°\{Q,{w,}}

In order to obtain the conclusion corresponding to the
antecedent part A*, the mass function can be integrated
based on Dempster rule. The belief of each category in
the conclusion part of rule R¥ is

B =m'({w,}), n=1,2,---,N .

{ﬂé =m"(Q) 12
where 3%, represents the belief that it is not assigned to
any individual class w,. The belief level corresponding to
the conclusion part of the rule not only integrates the con-
tribution values of different sensor data samples accord-
ing to the matching degree, but also integrates the belief
level of the continuous interval semantic random vari-
able H,. The Dempster combination rule is used to real-
ize the information fusion integration of sensor data and
expert semantic samples in the consequent part of belief
rule structure, so that the training sample information can
be used more comprehensively.

4.3 Belief inference

Definition 5 The input sample to be recognized is
y(i,y2,+»yr), Ha(y) represents the matching degree
between the input sample and each rule in the BRB, ¢,
represents the weight of the pth feature, ¢ is the rule
weight, S’ represents the set of rules activated by the
input sample y, S’ ={R'|us(y)#0,k=1,2,---,K}.
Then the correlation between the input sample y and the
activated rule S’ is defined as

o =pp(y)-0[1-dy (Ao )|, VR €S” (13)

where g4 () is represented as

T
Ty

TOE []_[ |1 0)] ] : (14)

p=1

The degree of association represents the validity of the
conclusion part of the activated rule for the input sample
y. In order to reflect the effect of correlation degree on
the classification results in the process of evidence rea-
soning, the Shafer evidence discount operation is used.
Shafer evidence discounting is a reliability evidence dis-
counting method proposed for incompletely reliable
information [31-33].

Definition 6 [34] Suppose m is the mass function
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based on the identification framework Q, and « € [0, 1] is
the reliability of the evidence, then the new mass func-
tion “m obtained after the Shafer discount operation is

am(A), A+ Q

. (15)
am(Q)+(1—-a), A=Q

“m(A) = {

Under the belief rule structure, the correlation degree a

can be regarded as the reliability of the evidence, Shafer

discount operation is performed on the consequent part of
each activation rule

{"mk (w)=a-pB,

Mm@ =(-a)+a-B (16

The mass function is fused using the Dempster combi-
nation rule, let m‘ and m represent *m*({w,}) and
*m* (Q) respectively. The analytical expression for K’
combination rules can be written in the following form:

s [l [lot).
k=1 k=1
o
m(Q) = Jﬂmg, (18)
k=1

N (K K -1
J= [Z(l—[(mk +m;)] ~N=D[ ms| . 9
n=1 \ k=1 k=1
The identification decision is made by using the princi-
ple of the maximum belief, and the identification result is
expressed as

w = arg max{m(w,),m(Q)}. (20)

4.4 Algorithm implementation process

For target intent recognition, some attributes are sensor
data and some attributes are expert knowledge, but these
two kinds of information are independent and comple-
mentary. This requires an efficient algorithm that can
integrate these two different types of information. Based
on the belief rule structure, the algorithm in this paper can
fuse heterogeneous information and integrate their
respective advantages to obtain better classification
results. The algorithm steps are as follows.

Step 1 Expert knowledge is represented by continu-
ous hesitant fuzzy semantic labels. Integrate the semantic
label data with the sensor data set to form the attribute
description of the target. Then the integrated dataset is
divided into training set and test set.

Step 2 The feature space is partitioned fuzzy and the
BRB is constructed. In the absence of prior knowledge of
the feature space, the fuzzy grids method [35] is used to
divide the feature space. This division method is only

related to the value range of the feature and the number of
divisions.

Step 3 Build a BRB based on the training data set
integrated in Step 1. The BRB can reflect the input-out-
put relationship between the training data feature space
and the category space. The antecedent part of the belief
rule is constructed by the method of fuzzy rules.

Step 4 Calculate the matching degree u(x;) between
the input x; and different fuzzy partitions.

Step 5 Calculate the reliability Rel (FIC) of a continu-
ous interval semantic random variable H..

Step 6 The conclusion part of the belief rule is imple-
mented by using the method described in Subsection 4.2
for information integration. The mass function uses the
Dempster combination rule to fuse to obtain the belief 8¢
and global belief 3, of a certain category w,.

Step 7 Compute the degree of association between
the input sample and the activated rule, and treat it as evi-
dence. Evidence reasoning is carried out on the conclu-
sion part of all activation rules under the framework of
belief rules, and then the category of input samples is
judged.

5. Simulation experiment analysis

In this section, two groups of simulation experiments are
designed. The first group is the CPHFLTS credibility
numerical experiment, which is used to verify the dis-
tance measure of continuous hesitation fuzzy semantic
label effectiveness and credibility. The second group is
the heterogeneous information fusion recognition experi-
ment, which mainly uses the CPHFLTS-BRB method
proposed in Subsection 4.4 to solve the problem of target
intention recognition, so as to verify its effectiveness.

5.1 CPHFLTS reliability numerical experiment

In the process of establishing BRB, in addition to the
attributes of sensor data samples, continuous interval
semantic information needs to be integrated, so as to
reflect all the attributes of input samples. Due to the influ-
ence of various factors, the system input information
presents uncertainty. Under the condition of seven
semantic labels S ={s;|i=-3,-2,-1,0,1,2,3}, the con-
tinuous probability hesitant fuzzy label is used to describe
semantic information.

In the case that the sum of CPHFLTS probabilities is
not 1, probability normalization is firstly carried out to
obtain normalized semantic label values. Finally, the
credibility of CPHFLTS is obtained by calculation.
According to the numerical experiment in Table 1, the
reliability of corresponding CPHFLTS values can be cor-
rectly obtained through the reliability numerical experi-
ment.
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Table 1 CPHFLTS values and reliability

CPHFLTS original value Value of CPHFLTS after normalization CPHFLTS credibility

1[50555111(0.2) },{[512,515]1(0.2)}, Us055111(0:2)}, {[51.2:51511(0.2) 3, 0.5749
{[52.1:52]1(0.5)} {[52.1,52511(0.5)},{[s-5,5:]1(0.1)} ’

As-185-111(0.2) 1, {[5-0.8,500]1(0-7) }» s-185-111(0-2) }, {[5-0.8,50.0]1(0-7) } 0.7738
{s1.1515]1(0.1)} {s1.515]1(0.1)} ’

ALs 14512100 1) ), {[50.4551.411(0.3) Us-1.455-121(0- 1)}, {[50.4,51.411(0.3)},, 0.5815
{[505551711(0.4)} [s0.8:51711(0.4) 3, {[5-5,55]1(0.2)} ’

{s265-15]1(0.3)},4[50.5,507]1(0-5) }, s265-15]10.3)},4[50.5,507]1(0.5) }, 0.5313

1[524:52,6]1(0- 1)}

{[52.4,52611(0- D}, {[5-3,5511(0. D}

5.2 Heterogeneous information fusion recognition
experiment

The characteristic attribute data (x;;, x5, -+, x;y) of each
sample x;=(x;;,Xp, -+ ,X;) 1S obtained by the sensor. In
order to better represent the uncertainty of expert know-
ledge, the characteristic attribute (X, 1y, Xivs2)s* - » Xing) 18
represented by the continuous probabilistic hesitation
fuzzy semantic label proposed in this paper. The task of a
fusion center is to classify and recognize the target inten-
tion after receiving the data of target detection by sensors
and the judgment made by experts. According to the pro-
posed method of heterogeneous information fusion recog-
nition based on belief rule structure, the two kinds of
information are used for intention recognition.

Step 1 The amplitude range is obtained by process-
ing the characteristic attribute value (x;;,x;,---,xy) of
the data obtained by the sensor, the data of training set
and test set are normalized.

Step 2 Determine the attribute fuzzy region of sen-
sor data, and set the number of fuzzy region division as
C. The membership value of the training sample is calcu-
lated according to the membership function () corre-
sponding to fuzzy set A%. By comparing the membership
degree values, we can determine which fuzzy region the

characteristic attribute values of a training sample fall
into and give corresponding marks.

Step 3  Expert knowledge is described by CPHFLTS
random variable H.. On the basis of normalizing the
probability of A, label, the reliability Rel(H.) is obtained
by calculating the label efficiency value.

Step 4 Fusion processing is performed on the train-
ing samples x; assigned to the premise fuzzy area A* of
the rule R*, and the conclusion part with the belief distri-
bution is obtained. Integrate the membership degree
Hax (x;) of the sensor data attribute and the credibility
Rel (FI¢> of the CPHFLTS information attribute, and get
the belief B¢ for the support degree of category w,. Loop
Step 2—Step 4 to establish a BRB.

Step 5 Calculate the degree of association between
the input sample y and the activated rule S’, Shafer dis-
count operation is performed on the consequent part of
each activation rule, the Dempster combination rule is
used to fuse the mass function to obtain the belief of each
category, the identification decision is made by using the
principle of the maximum belief.

Table 2 gives the belief values and recognition results
of different categories corresponding to different sample
inputs.

Table 2 Belief and recognition results corresponding to different input samples

Input sample Class w, belief

Class w, belief

Class w; belief Recognition result

» 0.5449 0
¥, 03284
Yo 0 0
Vs 0.2299

0.1691

02938

0.0864 1
0.4267 3
0.2961 3

0 2

In order to verify the classification and recognition
ability of the algorithm under different conditions, diffe-
rent noise levels are set for the training data set, it is used
to simulate the unreliability of data in the actual environ-
ment, that is, the category annotation of some samples is
wrong. The identification errors of support vector
machine (SVM), C4.5 [36,37], fuzzy rule-based classifi-

cation system (FRBCS) [38], data-driven BRB classifica-
tion system (DBRBCS) and the CPHFLTS-BRB method
proposed in this paper are compared and tested. Fig. 3
shows the classification and recognition errors of the cor-
responding methods under different noise levels in the
training data set. As can be seen from the figure, classifi-
cation errors of SVM, C4.5 and other methods increase
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with the increase of noise level, SVM and C4.5 have
large classification errors, the DBRBCS method main-
tains good robustness, and the FRBCS method always
has moderate identification errors. Compared with other
methods, the CPHFLTS-BRB method proposed in this
paper maintains low classification errors under different
noise levels, although it is also affected by noise levels.
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Fig.3 Classification errors at different noise levels

6. Conclusions

To solve the problem of target intention recognition in
multi-source information fusion, this paper proposes a
heterogeneous information fusion recognition method
based on belief rule structure. This method can effec-
tively use sensor data and expert knowledge information
for fusion recognition. It provides an effective solution to
the problem of the identification of uncertain sensor data
and expert knowledge in practical applications. The CPH-
FLTS reliability numerical experiment is designed to ve-
rify the validity of the continuous hesitation fuzzy seman-
tic label distance measure method. The CPHFLTS-BRB
method is demonstrated through an application of multi-
source target intent recognition. It can be seen from the
experimental results that the CPHFLTS-BRB method
proposed in this paper can effectively utilize sensor data
and expert knowledge, which are two independent and
complementary information, and improve the level of tar-
get intention recognition. In the actual environment, the
measured data and the corresponding expert knowledge
for a specific target may be incomplete, so how to pro-
cess the incomplete information to obtain the target inten-
tion is the next research direction.
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