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Abstract: Evolutionary algorithms (EAs) have been used in high
utility itemset mining (HUIM) to address the problem of discover-
ing high utility itemsets (HUIs) in the exponential search space.
EAs have good running and mining performance, but they still
require huge computational resource and may miss many HUIs.
Due to the good combination of EA and graphics processing unit
(GPU), we propose a parallel genetic algorithm (GA) based on
the platform of GPU for mining HUIM (PHUI-GA). The evolution
steps with improvements are performed in central processing
unit (CPU) and the CPU intensive steps are sent to GPU to eva-
luate with multi-threaded processors. Experiments show that the
mining performance of PHUI-GA outperforms the existing EAs.
When mining 90% HUIs, the PHUI-GA is up to 188 times better
than the existing EAs and up to 36 times better than the CPU
parallel approach.

Keywords: high utility itemset mining (HUIM), graphics process-
ing unit (GPU) parallel, genetic algorithm (GA), mining perfor-
mance.
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1. Introduction

High utility itemset mining (HUIM) [1-3] is proposed to
find the profitable products by considering both the profit
and quantity factors instead of association-rule mining
(ARM) [4] or frequent itemset mining (FIM) [5] which
only considers the support mesure (frequency of the pro-
ducts). Large number of itemsets can be eliminated by the
anti-monotonic in FIM, that is, an itemset cannot have a
superset with a higher support value. The HUIM prob-
lem is widely recognized as more difficult than FIM
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because HUIM is not anti-monotonic [6]. The HUIM
problem is intended to find the high-utility itemsets
(HUIs) that the utility is higher than a given threshold [7].
HUIM has been widely used in real world, such as re-
commend system [8], stock marketing [9], and customer
segmentation [10]. Some new topics on discovering HUIs
have also been discussed in recent years, such as discov-
ering the top-k HUIs [11], high average-utility itemsets
[12], and high utility sequential patterns [13].

Various exact algorithms [14—17] have been proposed
to solve the HUIM problems that can mine all the HUISs.
However, the performance of these exact algorithms
degrades sharply as the number of transactions and dis-
tinct items increases due to the enumerate of large non-
existent itemsets [18]. Some spark based CPU parallel
algorithms [19—-21] are proposed to improve the mining
performance, but the algorithms still face the problem of
huge calculation in a progressive structure when the num-
ber of items becomes larger. Evolutionary algorithms
(EAs) are applied in HUIM to solve the performance bot-
tleneck of exact algorithms, including genetic algorithm
(GA) [22], particle swarm optimization (PSO) [23,24],
bat algorithm (BA) [25,26], and ant colony optimization
(ACO) [27]. In addition, fish swarm algorithm and simu-
lated annealing [18,28] are also used in HUIM. However,
the distribution of HUISs is not even, only the best value is
recorded in these traditional EAs leading to deficiency of
solutions. Therefore, several strategies such as roulette
wheel selection and promising encoding vector (PEV)
check are applied in [29,30] to accelerate the conver-
gence speed. However, the existing strategy has diffi-
culty in mining the HUIs in the first few iterations, which
wastes iteration performance. What’s more, the fitness
evaluation step and PEV strategies are time consuming in
CPU. Although the EAs are faster than the traditional
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exact algorithms, they are still slower than the CPU paral-
lel exact approaches. The GA is suitable for GPU paral-
lel. However, some existing strategies run serial in CPU
such as PEV check, which may not perform well on GPU
directly. Besides, roulette wheel selection is a serial pro-
cess and is difficult to run more quickly on GPU than on
CPU. Therefore, design strategies running on CPU and
on GPU to consider both running speed and the mining
quality is challenging.

In this paper, we propose a GPU parallel GA for min-
ing HUIM (PHUI-GA) in a shorter time and keep good
mining quality. To the best of our knowledge, PHUI-GA
is the only work which introduces EA for HUIM on
GPU. Three strategies are proposed on origin GA, which
speeds up the algorithm through mining performance.
The CPU-time intensive steps of the algorithm are per-
formed on GPU to reduce the computational time in par-
allel. The main contributions are summarized as follows:

(i) We design an improved GA on a CPU/GPU archi-
tecture following a master/worker model. CPU is the
master that decomposes the task after improved GA steps
and distributes them to different threads on GPU, the
threads are the workers. The iterative strategies to
improve the convergence speed is run on CPU and the
CPU intensive tasks are performed on GPU until the fit-
ness value is calculated. Different parallel designs are
adopted on the GPU according to the characteristic of the
strategies.

(i) Under the proposed GPU framework, three strate-
gies are proposed to improve the convergence speed,
which are the improved population initialization strategy
with the use of support measure, a flexible promising
encoding vector checking (FPEVC) to convert non-exis-
tent itemsets into reasonable itemsets, and a re-explo-
ration strategy to make better use of the HUIs that have
been mined.

(iii) The experiments show that, PHUI-GA outper-
forms existing EAs on convergence speed and mining
quality in same iterations. The parallel on GPU is valid
that some strategies are accelerated up to 250 times
(250x%) than strategies before parallel. When mining 90%
HUIs, the running speed compared with EAs and the
CPU parallel exact algorithm is remarkable.

The rest of this paper is as follows. Related work of
HUIM is introduced in Section 2. The HUIM problem is
described in Section 3. The proposed PHUI-GA frame-
work is presented in Section 4. Experimental results on
four public datasets are presented and analyzed in Sec-
tion 5. Finally, conclusions and future work are drawn in
Section 6.

2. Related works

Current HUIM algorithms can be categorized into two
types, which are exact HUIM algorithms and EAs. As
exact HUIM algorithms are considered, such as Up-
Growth [31] and HUI-Miner [15], the candidate itemsets
are generated in the first phase and the verification is
done in the second phase. Up-Growth [31] builds FP-tree
to reduce the overestimated utilities. The utility-lists and
a level-wise algorithm are proposed in HUI-Miner [15]
for efficiently mining HUIs. However, the exact HUIM
algorithms face the problem of high time complexity
when enumerating all the items. For the purpose of
improving the running performance of exact HUIM
(HUIM BPSO) algorithm with CPU parallel, Chen et al.
introduced methods based on the map-reduce model
[19-21]. For example, PHUI-Miner [19] and parallel
faster high utility itemset mining (PFHM) [20] are pro-
posed to directly parallelize HUI-Miner and faster high
utility itemset mining (FHM). However, the level-wise
strategy in these algorithms increases the amount of com-
putation exponentially, and maintaining a large number
of utility-lists in memory for a long time is costly.

A set of EAs are proposed for HUIM to solve the
performance bottleneck of the exact algorithms, includ-
ing GA, PSO and BA. High utility pattern extrac-
tion using GA with ranked mutation using minimum util-
ity threshold (HUPEUMU-GARM) and high utility pat-
tern extraction using GA with ranked mutation without
using minimum utility threshold (HUPEWUMU-GARM)
[22] use GA to solve the HUIM problem, the difference
between the two algorithms is that HUPEWUMU-GARM
does not require the minimum threshold. PSO algorithms
are used in HUIM, which are HUIM based on binary
PSO (HUIM-BPSO) algorithm [23] and HUIM-BPSO-
Tree [24]. HUIM-BPSO outperforms the above EAs with
the use of an OR/NOR-tree structure. High utility itemset
mining framework (HUIF) is proposed [29] to improve
the diversity of solutions in limited iterations. Several
techniques such as Repair are used in improved GA for
HUIM (HUIM-IGA) [30] to further accelerate the
convergence speed. Recently, a hill climbing method
based on simulated annealing (SA) [18] is proposed for
mining more HUIs in low threshold. A set-based PSO
(SPSO) [32] is proposed with a cut-set structure to main-
tain positions with a higher running speed than tradi-
tional PSO. The artificial fish swarm algorithm (AFSA)
[28] is also applied for HUIM to avoid results distribu-
ted around a few extreme points. Although EAs have
gained good computational effects, the fitness evalua-
tion step and PEV based strategies are still time consum-
ing.

Some GPU-based parallel EAs are proposed in
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[33—-35], however, they are only designed for FIM but not
in HUIM. Single evaluation in GPU (SE-GPU) [35] pa-
rallelizes the fitness evaluation step to improve running
speed. All bees swarm optimization (BSO) steps in GPU-
based BSO miner (GBSO-Miner) [34] are performed on
GPU to further accelerate the FIM problem. GA that runs
on clusters of GPUs in cluster GPU GA (CGPUGA) [33]
is to discover diversified FIM. However, mining FIM is
easier than HUIM so that the same strategies and the
acceleration on FIM cannot be used in HUIM to find
HUIs. As EAs are considered, GPU parallelism has not
been studied enough to improve the computational per-
formance in HUIM.

3. Preliminary

Let D = {T,, T, ---, T,} be a transaction dataset with n
transactions. 7, (1 < n< N) represents a transaction in the
dataset. Let /= {i}, i, -**, i} be a finite set of items. In D,
each T, contains multiple unique items in /.

The utility of item i, in transaction T, is denoted as u(i,,
T,) = p(i,, T,) q(i,), in which p(i,, T,) represents the quan-
tity of item 7, in T, g(i,) represents the utility of item. Let
an itemset be X. The utility of itemset X in transaction 7,

is defined as u(X,T,) = Z u(i,,T,) and the uti-
i,eX AXCT,

lity of itemset X in dataset is defined as u(X)=

Z u(X,T,). The transaction utility of transaction
XCT, \T,eD

T, is defined as TU(T,) :Zu(ip,T,,). The minimum

i€T,

utility threshold is defined as minUtility = 6-2

T,€eD

TU(T,)where 9§ is a user defined percentage of the total

TU value of the dataset. The transaction-weighted utiliza-

tion (TWU) of an itemset X is defined as TWU(X) =

Z TU(T,).

XCT, \T,eD

There is a pruning strategy. We can define the itemset
X as a high transaction-weighted utilization itemset
(HTWUI) if TWU(X) > minUtility; otherwise, X is a low
transaction-weighted utilization itemset (LTWUI). An
HTWUILTWUI with i items is called -HTWUI/
i-LTWUL If TWU(X) < minUtility, then its superset
must be i-LTWUI and can be pruned because the set of
all HUIs is a subset of the set of HTWUIs and no LTWUI
is an HUI [18].

A running example is considered in Table 1 and the
utility of each item is shown in Table 2. Let an itemset X
be {b, e}, then the utility of X'is u(X) = u(X, T5) + u(X, T5) =
u(b, Ts) +u(b, Ts) +u(e, Ts) tu(e, Ts) =1x2+1x2+1x
2 + 1 x 2 =8. If the given minimum threshold minUtility =
9, then {b, e} is not an HUL

Table1 HUI

D Transaction TU
T, (a,1) (b, 1) 5

T, (c,2)

T, (b, D, (e, D, (1) 9

T, d, 3), (e, 1) 14
Ts (a, 1), (b, 1), (c, 1), (d, 1), (e, 1), (f; 1) 17
Ts (a,4), (c, 1) 13

Table 2 Utility values of items

Item Utility
a 3
b 2
c 1
d 4
e 2
S 5

For the pruning strategy of 1-HTWUI/I-LTWUI,
TWU({b}) = TU(T))+ TU(T3)+ TU(Ts) = u(b, T) + u(b,
) +ub, Ts) =5+ 9 + 17 = 31. If minUtility = 30, then
TWU(b) is a 1-HTWUI and the superset of {b} can be
further evaluated, but TWU(f) =9 + 17 = 26 < 30 and its
superset can be pruned.

4. The proposed algorithm
4.1 Framework of PHUI-GA

Fig. 1 shows the overall structure of PHUI-GA frame-
work. The master is run on CPU and the slave is
offloaded to run on GPU. The evolution steps are run on
CPU and the GPU receives tasks from the master to run
time consuming steps until fitness of each individual is
obtained.

CPU GPU
Dataset pruned by
1I-HTWUI
v
Improved
initialization
Terminated? "
> Select
v
Crossover el
FPEVC GPU
< Fitness evaluation GPU
Mutation
v
Re-exploration
y
Fitness evaluation GPU
v
Elite select

Fig.1 Framework of PHUI-GA
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First, the dataset is scanned twice to prune the items by
1-HTWUI mentioned in Section 3. Then initialize the
population with the improved initialization strategy. In
the iteration steps, the GA steps (the roulette select, uni-
form crossover, mutation, and elite selection) are per-
formed on CPU. Re-exploration is executed after muta-
tion but before elite selection. After crossover and re-
exploration, FPEVC and fitness evaluation step are exe-
cuted on GPU platform to get fitness of each individual in
the population. After the fitness is obtained, the itemsets
are stored as HUISs if the fitness value of the individual is
higher than the minimum threshold.

FPEVC has a serial structure, therefore the time con-
suming steps runs on GPU and CPU is used for synchro-
nization. Fitness evaluation step of each individual is per-
formed the same time on GPU. The combination of the
CPU/GPU process is repeated until enough HUIs are
mined or the maximum iteration is reached.

4.2 Algorithm improvements

4.2.1 Improved initialization strategy with support values

Binary encoding is usually used in EAs, where 1 means
there exists an item and 0 means the item does not exist.
For example, {110010} represents itemset X is {a, b, e}.
The existing initial strategies are difficult to generate
HUISs in the early iterations.

Therefore, first we only use half items sorted by TWU
to initialize k items by roulette selection. Then, another
top-m high support items are set to 1 according to a ran-
dom number a(0 <a< 1) if @> 0.5, which means several
high frequency items are used. We find that the item with
the highest frequency is always the high probability items
in HUIM problems. As shown in Fig. 2, for example, if k =
2 and m = 1. Half items sorted by TWU is f, d, a. Let the
itemset X of an individual after k£ item roulette selection
be {001010}, representing itemset {c, e} and u({c, e}) =
3. If the highest frequency item is b and ¢ = 0.75, then b
is also initialed, then X is {a, b, d} and u({b, c, e}) = 5.
u({b, c, e}) is higher than u({c, e}).

Half items sorted by TWU Item value sorted by support
e: 40, ¢: 32, b: 31 [ {h3, c:3,e3,a:2,d: 2, f: 2]

Roulette select initialization

m=1

Improved with support

ﬁndividual: 00000% {Individual: E)QIOI()} -ﬁndividual: 11010(%

u({001010})= 3 u({011010})= 5

Fig.2 Improved initialization

4.2.2 FPEVC strategy

Each solution of an individual is a potential HUI, and is
represented as an encoding vector (EV) [18]. Let Bit(i,)
represent the bitmap cover of item i, and Bit(X) represent
the bitmap cover of itemset X. If Bit(X) only contains 0 s
then EV is an unpromising encoding vector (UPEV), oth-
erwise EV is a PEV. However, existing PEV based strat-
egy only prunes from the single direction, which results
in that a large number of repeated PEVs are generated in
each iteration step.

To provide more processing direction, an FPEVC strat-
egy is proposed. For FPEVC, the sort order of TWU is
the processing direction and then two random positions in
the processing direction are selected and swapped, which
result in a flexible processing direction. Thus first initial-
ize the bitmap cover of the first item according to the
flexible processing direction, then a bitwise-AND opera-
tion with the bitmap cover of the next item is done. If the
result is UPEV, then trace back to the step before bitwise-
AND operation. If the result is PEV, then the next bitwise-
AND operation is done. The strategy executed until all
the bitmap covers of items are traversed.

As shown in Fig. 3, if current individual is {001111},
with u(c) = 4, u(d) = 16, u(e) = 6, u(f) = 5, the origin pro-
cessing direction is d, e, f, c¢. Next Bit(d) N Bit(e) =
{000110} N{001110} = {000110}. Bit({d, e}) is a PEV,
then Bit({d, e}) N Bit(f) = {000110} N{001000} =
{000000} is the UPEV, f'is removed. Then Bit({d, e}) N
Bit(c)= {000110} N {010011} = {000010}. With this
operator, the itemset after processed is {c, d, e} in T
which is a PEV. If a same individual {001111} is
searched in another FPEVC, the pruning order of d and f
may be swapped. Then the individual {e, f} is got, which
is different from {c, d, e}. Due to the different pruning
directions, the same individual can be processed by the
FPEVC strategy to obtain the different promising item-
sets during the iteration, which provide more possibilities
in iteration steps.

d—>e—>fi>c
d e Individual: 001111
[ 000110 N 001110=000110 |
de 7 | Individual: 0011 10

[ 000110 N'001000=000000 |

de c l

| 000110 N 010011=000010 |

!

Get individual: 001110
(a) Origin PEV case

Individual: 001110
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Swap(d, /)
f.>e->d->c
S e Individual: 001111
[ 000100 N 001110=000100 |
fe d Individual: 001011
[ 000100 N 000110=000000 |
fe c Individual: 000011

[ 000100 N 010011 = 000000 |

Get individual: 000011
(b) FPEVC case

Fig. 3 Two different pruning directions with FPEVC in a same
individual

4.2.3 Re-exploration strategy

Some itemsets of individuals in the iteration may have
existed in the discovered HUIs, which wastes the compu-
tational resource since fitness values are evaluated repeat-
edly. Therefore, the re-exploration strategy is proposed to
make better use of these repeated itemsets.

First, the discovered HUISs are stored in a hash table. If
the itemset X exists in the hash table, the re-exploration
strategy is executed. In the re-exploration strategy, two
random positions of the searched individual are flipped to
increase the opportunity for individuals to explore new
search areas, which make the discovered repeated indi-
viduals be fully used. For example, as shown in Fig. 4, if
Xis {101000} and already exists in the hash table, the re-
exploration strategy is performed to generate two ran-
dom positions 7= 3 and r, = 5. Then the 3rd position of
the individual is flipped from 1 to 0 and the 5th position
of the individual is flipped from 0 to 1, and the new indi-
vidual {100010} is obtained. If X does not exist in the
hash table, FPEVC and fitness evaluation steps are per-
formed subsequently.

[ Individual: 101000 ]

If hash[101000]
exists

Yes
Random r=3, r,=5 ] { FPEVC ]
l Flip position 7, r, l

[ 101000->100010 [ Fitness evaluation J

Fig. 4 Re-exploration strategy

4.3 Parallel design on GPU
43.1 FPEVC on GPU

As can be seen from Subsection 4.2.2, the FPEVC is a

serial structure. However, the data transfer from trace
back operation and the bitwise-AND operation when cal-
culating PEV in each step is time consuming, which costs
time when evaluated for many times. Therefore, GPU
parallelism is used to reduce the time complexity when
all the bitmap covers of items are traversed, CPU is used
for synchronization. As shown in Algorithm 1, the pro-
cessing direction is first calculated (Step 1—Step 2), then
the result is initialized by the bitmap of the first item in
the processing direction, Bit(i,) is copied to a temporary
bitmap on GPU (Step 3). Then each individual, which is
recorded as an encoding vector EV, executes the main
loop of FPEVC (Step 4—Step12). Step 5 performs the bit-
wise-AND operation in parallel. Then sum reduction is
performed in Step 6 to calculate the sum 1-item in Step 5.
If the sum number is 0, then change the position in EV to
0. The data transmission in middle steps are also exe-
cuted on GPU (Step 8, Step 11).

Algorithm 1 FPEV-checking

Input: EV

Output: PEV

1: Let VN items be the number of 1-item in EV and
denoted as iy, i, " ", iyn

2: Denote the FVN items be the VN items sorted with
TWU and swap two item positions

3: tmp«Bit(i;) on GPU

4: for k=2 to FVN do

5:  mide—tmpNBit(i,) on GPU

6: sum«—Sum_reduction GPU(mid)
7: if sum is O then

8: mid«—tmp on GPU

9: change kth position in EV to 0
10: else

11: tmp<«—mid on GPU

12: end if

13:  synchronization();

14: end for

4.3.2 Fitness evaluated step on GPU

Fitness evaluation is the most time-consuming step of
EAs due to the huge computation on transactions in each
iteration. We evaluate all the individual fitness simultane-
ously. In Algorithm 2, every block of threads matches
with one transaction 7, in candidate list to get the utility
of a transaction TU(7,) and saved (Step 3—Step 4). Then,
after the evaluation of each transaction of all the individu-
als (Step 5), a sum reduction operation (Step 6) [36] is
used to get the final fitness.
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Algorithm 2 Parallel calculate fitness
Input: N, dataset

Output: fitness

1: bide—blockldx.y

2: d«—treadldx.x+blockDim.xxblockIdx.x;

3: tmp_fitness«—calculate TU(7))) of the transaction
4: fitness [bidxN+d]=tmp _fitness

5: synchronization();

6: Sum reduction(fitness)

4.3.3 Time complexity analysis of GPU based steps

In FPEVC, the time complexity of the sum reduction
operation is reduced from O(N) to O(log,N). The time
complexity of each bitwise-AND operation is reduced
from O(N) to O(1). The time complexity of bitmap
assignment of the Bitmap is reduced from O(N) to O(1).
The time complexity of FPEVC is O(log,N+1). Although
many CPU synchronizations degrade parallel perfor-
mance, the parallel is effective.

Let the maximum length of transaction be maxy, and
the population size be pop_size. The time complexity of
the sum reduction operation is O(log,N). Therefore, the
time complexity is reduced from O(N X pop_sizexmaxy)
to O(maxy+log,N).

5. Experiments
5.1 Experimental settings

All the experiments are performed on a computer with a
16-Core 16 GB memory CPU and running on Windows
10. The GPU we use is RTX 3060. We evaluate the per-
formance of PHUI-GA and compare it with five EAs,
which are HUIM-IGA [30], HUIF-GA [30], HUIF-PSO
[30], HUIF-BA [30], and HUIM-SA [18], and a CPU pa-
rallel algorithm PHUI-Miner [19]. Four datasets are used
which are Chess, Mushroom, Connect and Accident. The
characteristics of the datasets can be seen in Table 3.
Accident is large so that we take 10% named
Accident 10% [23]. Both compared algorithms and
datasets are from an open-source data mining library. As
for the parameters in the algorithms, both crossover and
mutation rates in PHUI-GA are set to 0.5. The parame-
ters k, m in the initialization strategy are set to 10, 5,
respectively. The parameters of the comparison algo-
rithms are consistent with those in the literature
[10,11,13,16,22].

Table 3 Characteristics of the datasets

Dataset Item Transaction Density/%
Chess 76 3196 49.33
Mushroom 119 8124 19.33
Connect 469 34018 7.22
Accidents_10% 130 67557 33.33

5.2 Comparison on convergence speed

The convergence speed of six different EAs algori-
thms on four datasets are compared here. The maxi-
mum number of iterations is 200 and the population
size in each EA is 100. The minimum threshold of
each dataset is shown at the top of the chart. For
example, Chess 59 W means the minimum threshold
in Chess dataset is 590000. As shown in Fig. 5,
HUIF-SA, HUIF-PSO, and HUIF-BA have
convergence speed. Among the above three algori-

linear

thms, HUIF-PSO obtains the best convergence speed.
The mining performance of HUIM-SA is unstable due
to the strong randomness. HUIF-GA is faster at first,
but decreases after a few iterative steps. The conver-
gence speed of HUIM-IGA is better than HUIF-GA
with the number of iterations. With the use of impro-
ved initialization strategy, PHUI-GA can mine more
HUIs at first, and with another two improvements, the
mining performance of each iteration is better than all the
EAs. With the improvements, the convergence perfor-
mance of PHUI-GA is better than all the contrast algo-

rithms.

1 000

800 +

600

HUI

400

200 -

0

100 125 150 175 200
Tteration
(a) Chess 59 W

0 25 50 75

1000

800 -

600

400 |

Discovered HUI

200

0

100 125 150 175 200
Iteration
(b) Mushroom 45 W

0 25 50 75
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(d) Connect 1 600 W
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- : HUIF-GA; —-- :HUIF-SA; - : HUIF-PSO.

Fig. 5 Mining performance comparison on convergence speed

5.3 Performance comparison on mining quality

The mining quality of six algorithms are compared in this
section. Five different minimum thresholds are used in
each dataset. For example, the minimum thresholds used
in Chess are 56 W, 57 W, 58 W, 59 W, and 60 W. As
shown in Fig. 6. The mining performance of HUIF-PSO
is better than HUIF-GA and HUIF-BA because HUIF-
GA falls into local optimal and HUIF-BA lacks popula-
tion diversity strategy. HUIM-SA has poor mining qua-
lity in Chess and Mushroom, but in Accident 10% and
Connect, HUIM-SA can mine more HUIs than HUIF-
BA. The mining quality of HUIM-IGA is better than
HUIF-PSO, HUIF-GA, HUIF-BA, and HUIF-SA. On the
threshold of 1560 W on Connect, the mining quality of
HUIM-IGA can be twice better than HUIF-GA. The min-
ing quality of PHUI-GA is higher than HUIM-IGA on all
the datasets, and the improvement of mining quality com-
pared with PHUI-GA is 5%—20% higher than that of
HUIM-IGA on average, the improvement of mining qual-
ity becomes more obvious as the minimum threshold
decreases. Compared with other four algorithms, the min-
ing quality in same iterations can reach about 50%
improvement.
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5.4 Parallel performance investigation

In this section, the parallel performance of the iterative
step, fitness evaluation step and FPEVC are shown in
Fig. 7. The blue and red bars represent the running time
before and after GPU parallel, respectively.
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Fig.7 Comparison on running speed

The results show that fitness evaluation is the most
CPU time-intensive operation in each iteration, and the
parallel effect on fitness evaluation is obvious. For exam-
ple, in Mushroom, the running time of fitness evaluation
decreases from 14 ms to 0.2 ms, which is 70x accelera-
tion. And in Connect, the accelerate ratio is up to 250x
where the running time decreases from 505 ms to 2 ms.
The acceleration is benefited from the massive parallel
power of GPU by launching a large number of threads
per transaction. The FPEVC strategy has serial structure,
which raises frequent CPU/GPU synchronization. For exa-
mple, the acceleration of FPEVC in Chess is only 2%, and
the acceleration in Connect is 2.8x. The acceleration of
FPEVC on GPU can reduce half the computational time.

Therefore, as shown by the blue and red bars of itera-
tion, the acceleration ratios before and after parallel of the
algorithm on four datasets are 9.4x, 5x, 98x, and 28.6x,
respectively. The GA steps in CPU have linear time com-
plexity, and no excessive time is added to ensure the min-
ing quality. The experiment shows the effectiveness of
GPU acceleration.

5.5 Performance comparison on running speed

In this experiment, the running times of PHUI-GA is
compared with HUIM-IGA, HUIF-PSO and PHUI-
Miner. The EAs are mining 90% HUIs because they are
the approximate algorithms. PHUI-Miner is a CPU paral-
lel exact algorithm and can mine all the HUIs. As shown
in Table 4, HUIM-IGA runs faster than HUIF-PSO, that
is, the convergence speed of HUIF-PSO is slower and
may iterate for more times. Compared with PHUI-GA to
HUIM-IGA and HUIF-PSO, the acceleration ratio in
datasets with fewer transactions and few items (such as
Chess) is 5.59% to 41.2x, and 12x to 102x, respectively.
On a dataset with more transactions and more items (such
as Connect), the acceleration ratios range from 64x to
76x and 95x to 188 %, respectively. Meanwhile, the mini-
mum threshold also affects the acceleration ratio. By
varying the minimum threshold from 250 W to 210 W in
Accident 10%, the acceleration ratio of PHUI-GA to
HUIM-IGA increases in linear speed from 20x to 29x.
The acceleration ratio compared to HUIF-PSO is expo-
nential from 21x to 95x. PHUI-Miner runs faster than
HUIF-PSO but slower than HUIM-IGA in Chess and
Mushroom. With the dataset becomes larger in
Accident_10% and Connect, EAs consume a lot of time
in fitness calculation and the improved strategies so that
the running speed is slower than PHUI-Miner. However,
the time cost of PHUI-Miner is long because PHUI-
Miner enumerates large itemsets. In all the four datasets,
PHUI-GA is up to 30x faster than PHUI-Miner, which
shows the advantage of the framework of PHUI-GA with
both EAs and GPU parallel.
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Table 4 Performance comparison on running speed

Dataset  Minimum utility PHUI-GA/s HUIM-IGA/s Accelerate ratio/% HUIF-PSO/s Accelerate ratio/% PHUI-Miner/s Accelerate ratio/%

60 W 0.32 5.59 17.46 12.10 37.81 8.70 27.19
59 W 0.38 10.40 27.36 18.90 49.73 9.68 25.47
59 W 0.56 17.80 31.78 28.80 51.42 9.82 17.54
Chess 57TW 0.79 27.56 34.88 57 72.15 10.50 13.29
56 W 1.07 41.20 38.50 102 95.32 11.10 10.37

46W 0.52 3.98 7.65 8.20 15.76 6.80 13.08
45W 0.70 42 6 10.70 15.28 7.10 10.14

4w 1.03 48 4.66 16.44 15.96 7.20 6.99

Mushroom 43 W 1.53 7.7 5.03 21 13.72 7.35 4.80
2w 2.58 13.6 5.27 28 10.85 7.50 291

250 W 1.47 30 20.41 31 21.08 20.95 14.25

240 W 2.17 46 21.19 62 28.57 21.74 10.02

230 W 3.10 72 2322 214 69.03 23.50 7.58

Accident_10% 550w 3.75 90 24 300 80 26.60 7.09
210 W 5.0 149 29.8 477 95.4 27.50 5.50

1600 W 3.36 216 64.28 518 154.16 123.00 36.61

1590 W 4.10 246 60 572 139.51 135.00 32.93
1580 W 5.00 410 82 965 193 152.00 30.40

Connect 1570 W 6.40 480 75 1148 179.37 162.00 25.31
1560 W 8.31 632 76.05 1564 188.20 198.00 26.40

6. Conclusions

In this paper, a compute unified device architecture
(CUDA) parallel GA is proposed to speed up the EAs on
GPU while ensure the mining performance. The
improved initialization strategy takes advantage of the
item frequency provided by support measure. FPEVC
provides more pruning directions to avoid generating
many duplicate itemsets. Re-exploration strategy is used
to make better use of the discovered HUIs. The GPU pa-
rallel on FPEVC and fitness evaluation shows the advan-
tage of GPU acceleration. The experiment shows PHUI-
GA reaches the best convergence speed among existing
EAs. Through GPU parallel, the accelerate ratio of fit-
ness evaluation step is up to 80x. When mining 90%
HUISs, the acceleration of PHUI-GA against the EAs and
the CPU parallel implement is up to 188%, which shows
both the advantage on improving the mining perfor-
mance and running speed. Future work may include the
study on designing a fully GPU parallel structure to speed
up the algorithm with no CPU/GPU interaction.
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