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Abstract: Autonomous umanned aerial vehicle (UAV) manipula-
tion is necessary for the defense department to execute tactical
missions given by commanders in the future unmanned battle-
field. A large amount of research has been devoted to improving
the autonomous decision-making ability of UAV in an interactive
environment, where finding the optimal maneuvering decision-
making policy became one of the key issues for enabling the
intelligence of UAV. In this paper, we propose a maneuvering
decision-making algorithm for autonomous air-delivery based on
deep reinforcement learning under the guidance of expert expe-
rience. Specifically, we refine the guidance towards area and
guidance towards specific point tasks for the air-delivery pro-
cess based on the traditional air-to-surface fire control methods.
Moreover, we construct the UAV maneuvering decision-making
model based on Markov decision processes (MDPs). Specifi-
cally, we present a reward shaping method for the guidance
towards area and guidance towards specific point tasks using
potential-based function and expert-guided advice. The pro-
posed algorithm could accelerate the convergence of the
maneuvering decision-making policy and increase the stability of
the policy in terms of the output during the later stage of training
process. The effectiveness of the proposed maneuvering deci-
sion-making policy is illustrated by the curves of training para-
meters and extensive experimental results for testing the trained
policy.
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1. Introduction

With rapid development, unmanned aerial vehicles
(UAVs) have become important roles in various engi-
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neering fields in recent years. UAVs have been used to
assist or replace human to execute dirty, boring, and diffi-
cult missions due to its low cost, high mobility, and
unmanned feature [1]. Therefore, UAVs are widely used
in surveillance, searching, tracking, and other missions
[2]. Thus, how to improve the autonomy of UAVs while
performing some tasks to avoid risking human lives has
become the research focus in various fields. For instance,
some people used UAVs to carry out delivery of relief
supplies, extinguishing, and so on [3—5]. Consequently, it
has become one of the key issues for engineering applica-
tions to improve the autonomous flight capability of
UAV [6-9].

Nowadays, UAVs are mainly used to execute tasks
which could be conducted automatically instead of manu-
ally, such as target tracking, long-distance delivery, patrol
and so on. One of the important technical issues from
these tasks is finding an optimal path from start to end
point and designing a controller to manipulate it follow-
ing the path. The optimal path could be found by path
planning algorithms [10], such as visibility graph [11],
randomly sampling search algorithms including rapidly-
exploring random tree [12], probabilistic roadmap [13],
heuristic algorithms including A-Star [14], Sparse A-Star
[15], and D-Star [16], and genetic algorithms [17]. Then,
a controller could be designed to operate UAV following
the planned path using various trajectory tracking algo-
rithms [18]. However, there are some disadvantages in
the solution mentioned above. For example, finding the
optimal path relies on prior knowledge about the environ-
ment, but the data of terrain and obstacles is so difficult
to obtain that the capability of environment modelling is
limited [19,20]. Moreover, for dynamic environment with
moving obstacles [21], the scheme designed above is not
flexible enough to alter their control strategies immedia-
tely. A replan of paths has to be scheduled to adapt to the
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changes in the environment. Furthermore, because con-
ventional algorithms need much more time to calculate
the optimal path, it is difficult to apply them to sol-
ving real-time problems. Therefore, it is necessary to
design an end-to-end algorithm which could be used to
operate autonomous UAV flight in a dynamic environ-
ment without path planning and trajectory tracking.

A research highlight is inspired by AlphaGo deve-
loped by Google based on deep reinforcement learning
(DRL) [22], which could play Atari games using an end-
to-end decision-making algorithm called deep Q network
(DQN) [23]. The performance of this algorithm reached
human level after an extensive training, and it has
attracted lots of researchers from various fields to study
the applications of DRL in all kinds of engineering prob-
lems [8,9]. Meanwhile, the deep deterministic policy gra-
dient (DDPG) [24] was proposed to solve the dimension
explosion caused by the continuity of action space and
state space. And the experience replay method that sam-
ples from experience buffer was constructed in these
algorithms to allow agents to remember and learn from
historical data. The uniform experience replay (UER) was
used to form training set by taking samples from experi-
ence buffer. However, the UER does not fully exploit the
diversity of historical data and affects the convergence
rate of policy, even causes divergence after lots of train-
ing. Therefore, the prioritized experience replay (PER)
[25] was proposed to improve the efficiency of learning
from experiences. It uses the potential value of historical
data to increase the convergence rate of policy network,
because a priority model of each sample is designed to
evaluate the profit of samples for training of policy net-
work at current step.

In addition, it is important for training policy to design
a reward function of target problem. Traditional formula-
tion of reward function comes from original model of the
problem [23,24], such as CartPole, Pendulum and other
Atari games. Thus, how to construct an appropriate
reward function is not the focus of most popular works,
as they mainly focus on the improvements of algorithms
instead of modelling. However, it is also essential for
solving problems from specific research fields to define
modified model when we attempt to apply DRL for a new
problem. Traditionally, some researchers considered that
the reward function involved in problem model is
designed by human experience [26,27] so that the trained
policy extremely relied on the capability of designer.
Although some recently published work found effective
policy, we could find that different formulations of
reward function brought different training processes and

trained policies.

In the present work, we aim to tackle the challenges
mentioned above and focus on the UAV maneuvering
decision-making algorithm for autonomous air-delivery
including guidance towards area and guidance towards
specific point tasks. The main works presented in this
paper are summarized as follows:

(1) The UAV maneuvering decision-making model for
air-delivery is built based on Markov decision processes
(MDPs) [28,29]. Particularly, we refine the guidance
towards area and guidance towards specific point tasks
involved in the air-delivery problem. Meanwhile, we
design the flight state space, the flight action space, and
the reward functions of each task. Among the compo-
nents of the model, we devote the traditional air-to-
ground fire control theory to designing and constructing
the UAV maneuvering decision-making model for air-
delivery.

(i) We propose the UAV maneuvering decision-Mak-
ing algorithm for autonomous air-delivery based on
DDPG with PER sampling (PER-DDPG) to optimize the
maneuvering policy. Specially, we design the policy
function by deep neural network and generate the train-
ing samples based on PER. Moreover, we present a con-
struction method of reward function based on expert
experience and domain knowledge.

(iii) It is proved that the proposed algorithm could
improve the autonomy of UAV during the air-delivery
process and the presented construction method of reward
function is beneficial to the convergence of maneuvering
policy, even improving the quality of policy’s output.

This paper is organized as follows: Section 2 describes
the background knowledge of all the methods used to
design UAV maneuvering decision-making model and
algorithm for air-delivery. Section 3 presents the details
of experiments we design, comparison of training param-
eters under different sampling methods and reward func-
tions. Section 4 shows the conclusion of our work and
looks forward to the future of our research.

2. Methodology

With the rapid development of UAV technology, it has
been used to execute various dangerous and repetitive
missions, such as electric power inspection, crop protec-
tion, wildlife surveillance, traffic monitoring, and rescue
operations. Demands for more advanced and simple UAV
autonomous flight solution have emerged. As mentioned
above, traditional solution of UAV guidance is that the
algorithm first plans an optimal path and then UAV fo-
llows the path by the trajectory tracking method.

In this paper, we describe the process of UAV
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autonomous air-delivery in detail and define the guid-
ance towards area and guidance towards specific point
tasks involved in the air-delivery problem. Then, we con-
struct the UAV maneuvering decision-making model for
air-delivery based on MDPs. Meanwhile, we present a
construction method of reward function, and the expert
experience and domain knowledge are given due consi-
deration. On the other hand, we propose the UAV maneu-
vering decision-making algorithm based on DRL.

As shown in Fig. 1, we first construct the UAV maneu-
vering decision-making model for air-delivery consisting
of the guidance towards area and guidance towards spe-
cific point tasks based on MDPs. Among this model, we
design action space, state space and basic reward of each
task which are used to demonstrate the characteristics of
UAV autonomous flight during air-delivery. Moreover,
we design and realize the UAV maneuvering decision-
making algorithm including the UAV maneuvering deci-
sion-making policy based on neural network, and the po-
licy network is optimized according to data sampled from
historical experiences by PER. Meanwhile, we construct
the shaping reward of each task to increase the conver-
gence rate of policy network and to improve the quality
of policy’s output.

;
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[ UAV maneuvering decision-making model for air-delivery J
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Action actuator

State representation Basic reward

IPrioritized experience replay]
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Algorithm :
Fig. 1 Structure of UAV maneuvering decision-making for air-

delivery based on DRL

2.1 UAV maneuvering decision-making model for
air-delivery based on MDPs

At present, the most cyclical decision-making problems,
called multi-stage decision-making, could be modeled by
MDPs. Meanwhile, most of the researchers focusing on
autonomous control and decision-making always describe
problems and construct the problem model based on
MDPs, including the UAV maneuvering decision-mak-
ing model for air-delivery. As shown in Fig. 2, we use
MDPs to design and construct the UAV maneuvering

decision-making model for the guidance towards area and
guidance towards specific point tasks included in air-
delivery. We design and implement the simulator core
consisting of UAV kinematic model, bomb model and
target point. Particularly, we present the state space,
action space and reward function of UAV maneuvering
decision-making model for air-delivery in the light of
MDPs.

UAV maneuvering decision-making model for air-delivery

State space .

N :

Reward function]| !

- R(s, a) :

:

Simulator core

[UAV kinematic model]

Bomb model

Action space

A(s)

Fig. 2 Construction diagram of UAV maneuvering decision-mak-
ing model for air-delivery based on MDPs

2.1.1 MDPs

During the process of performing air-delivery mission,
UAYV maneuvering decision-making could be regarded as
a sequential decision processes. Moreover, the operator of
UAYV usually considers current information from environ-
ment while selecting optimal action. Therefore, we can
consider this decision process Markovian and use MDPs
to model the UAV maneuvering decision-making model
for air-delivery.
The MDPs can be described by a tuple

{T,S,A(s),P(|s,a),R(s,a)}

where T represents the decision episode, S represents the
state space, A (s) represents the action space, and the tran-
sition probability P(:|s,a) represents the probability dis-
tribution of the environment’s state at the next moment
when the action a € A(s) is executed in the environment
in the state s € §. The reward function R(s,a) represents
the benefit that agent gets when a € A(s) is taken in the
state s € S. Then, we can make a complete mathematical
description of the sequence decision problem based on
MDPs.

As shown in Fig. 3, MDPs could be described as fol-
lows: when the state of environment is initialized by so,
the agent chooses the action ay = 7 (s,), where () repre-
sents the policy of agent, and the state of environment
will be updated to s, according to P(s;|so,ap). Mean-
while, the environment also returns the reward signal
ro = R(s¢,ay) to agent. This process mentioned above will
end until the state of environment becomes termination
state.
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Fig. 3 Structure of finite MDPs and traditional scheme of solving
MDPs

During the process of interactions between environ-
ment and agent, a sequence of rewards (#y,7;,--+) is pro-
duced. Among this process, agent is stimulated by exter-
nal rewards, and the policy of agent will converge when
the expectation of future rewards about policy is the max-
imum. Therefore, the utility function (in the state s€ S,
the expected rewards obtained by adopting the policy
7(s)) is v(s,m). When the current policy is the optimal, it
should be satisfied as follows:

v(s)=supv(s,m), s€S. (1)

Based on the characteristics of the UAV maneuvering
decision-making problem for air-delivery, we use the
infinite stage discount model as the utility function

v(s,7m) = Zy'Ei [R(s;,a)], s€S. 2)
t=0

In the above formula, y € (0,1) is the future reward
discount factor, and E[-] represents mathematical expec-
tation. Then, the optimal policy under the discount model
can be obtained by solving (2).

In the following, we will first demonstrate the problem
definition among air-delivery missions. Then, state space
S, action space A(s), transition probability model
P(:|s,a) and reward function R(s,a) of each task will be
designed.

2.1.2  Definition of guidance towards area and guidance
towards specific point tasks involved in air-deli-
very mission

Before we start running a reinforcement learning based
algorithm, we should construct a simulation model of
problems to be solved. Thus, we refine two tasks
involved in air-delivery, which are the guidance towards
area task and guidance towards specific point task. As
shown in Fig. 2, we should first construct UAV kine-
matic model and bomb model. In this paper, we adopt a

dynamic model describing air-delivery mission based on
3-degree of freedom (3-DoF) kinematic model of UAV
[6]. On the other hand, we also design a 3-DoF kine-
matic model of bomb [30,31] to calculate the external
ballistics parameters of uncontrolled bomb. When the
position and attitude of UAV are confirmed at ¢, we can
obtain the state of UAV at t+1 by solving the model
we designed. Therefore, we consider the transition pro-
bability of UAV maneuvering decision-making model
to be p(ls,a)=1, which belongs to the deterministic
model.

Based on the 3-DoF kinematic model of UAV, the
flight state is defined as (x,z,v,Y¥yav), Where (x,z) is the
horizontal coordinate of the UAV in the geographical
coordinate system, and Yyay is the azimuth angle of the
UAV flight path. On the other hand, the steering over-
load of UAV is defined as N, € [—Nf““,NZ‘"a‘], and N™*
represents the max normal acceleration of UAV in the
body coordinate system. During the simulation process,
the algorithm outputs the current optimal maneuvering
control N, and the next state (x,z,v,Yyay) of UAV is cal-
culated with the current state (x,z,v,¥uyav) according to
the flight simulation model of UAV. Meanwhile, we
could obtain the impact point of the bomb released from
current position of UAV based on the external ballistics
parameters of uncontrolled bomb.

In this paper, the guidance towards area task and guid-
ance towards specific point task are defined and
described, considering the task load type and launching
mode.

(1) Guidance towards area task

When the UAV flies with controlled bomb, or other
steerable loads, the guidance target of UAV is usually a
broad area. Thus, we consider the target of UAV to be an
area including mission point, while using the controlled
bomb.

Fig. 4 is a vector diagram of guidance towards area
task.

A
North guidance
D 2 Xegr /
Yuav R N S
Viav u Target aera
Yios
XUAV
»
»
o East
Fig. 4 Diagram of guidance towards area task involved in air-

delivery mission
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Xuav and Vyuy represent the current position of UAV
and the current velocity of UAV respectively. Xrgr repre-
sents the target point. ¥ s indicates the azimuth of line
of sight (LOS) and D, ¢s represents the distance vector
between UAV and target point, which could be defined
by

D, os = Xror — Xyav. (3)

Thereby, we could define the successful termination
condition of guidance towards area task

”DLOSHZ < Rguidance- (4)

In the formula above, ||-||, represents the 2-norm of
vector. Finally, when UAV enters the target area, it could
launch the controlled bomb.

(i1) Guidance towards specific point task

When the mission load of UAV is uncontrolled bomb,
the target of the task is a specific point instead of an area.
As shown in Fig. 5, if UAV flies with uncontrolled bomb,
it will perform guidance towards specific point task and
adjust Dyos and 6,,,, when satisfying the release condi-
tion of bomb.

North A
Xpomb Target point
-0
B XI GT
DLOS
XL/\V (SWLos
>
o East

Fig. 5 Diagram of guidance towards specific point task involved in
air-delivery mission

In Fig. 5, 6y, represents the relative azimuth between
LOS and the nose direction of UAV, which could be cal-
culated by

6'//LOS = Yuav —¥Los- )

Agomy represents the range vector of bomb. Thereby,
we could obtain the impact point of bomb Xgp.m, by

Xiomb = Xuav + Apom- (6)

Moreover, we could define the successful termination
condition of guidance towards specific point task

|6¢/Los < 6‘/’
”XTGT - XBOmb”Z < 6A

where J, and J, indicate the minimum of azimuth devia-
tion and distance error respectively.

(N

2.1.3 State space, action space, and basic reward of
each task

As mentioned above, we present the UAV maneuvering

decision-making model for air-delivery based on
MDPs. Therefore, we should design state space, action
space and reward function of each task refined in air-
delivery based on the problems’ definition described
above.

(1) State space of guidance towards area task

Considering that the purpose of guidance towards area
task, we define the state space of guidance towards area
task as

S guidance = {DLOS s 61//,_05 > VUAV,» HUAV } (8)

where  Dios € [Dli, Di'&]  represents the distance
between the UAV and the target point, vysy and Hyav
represents the speed and height of the UAV.
(ii) State space of guidance towards specific point task
For the guidance towards specific point task, we can
define its state space as

S aim = {DLos,éwws,VUAV,HUAV,ABomb} (9)

where Apomp represents the horizontal range of bomb
under current situation of environment.

(iii) Action space of each task

Based on the flight simulation model of UAV we con-
struct, we can establish the action space as

A(s)={N;}. (10)

In the guidance towards specific point task, the action
space is defined as (11) similarly.

(iv) Reward function of each task

Moreover, considering the successful termination con-
dition of each task, we define the reward function as

1.0, Successful termination

Ris.)= {0.0, Failed - @b

The formula above shows that if UAV’s situation sa-
tisfies the successful termination condition of each task,
R(s,a) will return 1.0, otherwise 0.0. Thereby, this
reward will encourage agent to find policy that maxi-
mizes the expectation of future rewards.

2.2 UAV maneuvering decision-making algorithm for
air-delivery based on PER-DDPG

After constructing simulation environments, we could
design the corresponding algorithm to solve the problem.
In this paper, we propose the UAV maneuvering decision-
making algorithm for air-delivery mission based on PER-
DDPG [6] with expert experience and domain know-
ledge. It is composed of the PER to generate training
samples, the policy including actor network and critic
network, and shaping reward to improve the quality of
policy’s output and increase the convergence rate of po-
licy, as shown in Fig. 6. Particularly, we introduce expert
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experience and domain knowledge to design the shaping
reward to achieve the improved performance of the pro-
posed algorithm.

Environment

g I
H Base reward i

PER
Samples_) >—Save

State & reward

Policy

Shaping | .

v ' e '
Algorithm

Fig. 6 Running process of UAV maneuvering decision-making
algorithm for air-delivery

2.2.1 Framework of PER-DDPG

The PER-DDPG is a model-free, off-policy and DRL-
based algorithm designed by actor-critic architecture.

Problems belong to MDPs have continuous state space
and action space and could be solved effectively. Mean-
while, because DDPG does not consider the diversity of
data and does not fully utilize historical experience, po-
licy converged in DDPG exhibit low convergence rate
and poor stability. Therefore, the PER is used to generate
training data, which can improve the utilization of the
potential value of historical data, thereby increasing con-
vergence rate and enhancing the stability of trained po-
licy. PER-DDPG has been verified in autonomous airdrop
task, showing the high performance than original DDPG.

The framework of PER-DDPG is shown in Fig. 7,
which is composed of the evaluation networks, target net-
works, the PER and other methods. At each decision-
making step, the evaluation actor network outputs action
with noise for exploring according to state. Then, the cur-
rent state, action, reward, and next state are packaged and
stored in historical transitions buffer D. During the pro-
cess of storing transition, sample binds with probability
are used for PER sampling. When we are training net-
works’ parameters, the training data are sampled from D
by PER, and the temporal difference error (TD-error) of
each data are accumulated for updating the evaluation of
networks’ parameters with importance sampling (IS)
weights and used to update the priority of data after train-
ing. Finally, the parameters of target networks are also
updated smoothly.

Store transition (s, a, s', )|

Historical transitions
D={(s,a, s, r)},i=1,2,, N

— Update priority p;, by J;

Evaluation networks

...........................

Target networks |

; Optimize ,
: ! s
————————— Actor network y(s6,) ]5Training

~“data |

Deterministic

policy
gradient

Evaluation

D={(s,a, 5", 1)}, j=1,2, -, m

N
PER Trainingf [ Actor network #'(s]6,,)
i data_': ¢

{Critic network O(s, a|eg)]§
X :

Critic network Q'(s, a\HQ,)]

Pij) [

[ Importance sampling weights ]

T

w;

¥

Tteration
Optimize

B ‘){ Accumulate TD-errors

]«— Estimation

[

Fig. 7 Diagram of PER-DDPG’s framework

Specifically, at each moment, the policy gives action
by

a; =,L1(S,|9M) (12)

where s, € S is current state and a, is the output of actor

network u(s|6,). During the training process, the critic

network Q(s,alf,) evaluates current action given by
actor network and this value is used for the basis of

updating 1 (s16,).

2.2.2  UAV maneuvering decision-making policy based
on neural network

As mentioned above, DDPG is a kind of DRL algorithm
constructed by the actor-critic framework. During the
training process, the actor network w(sl6,) outputs action
a € A(s) according to the state s€S of environment.
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Meanwhile, TD-error is used to optimize the parameters
of critic network Q(s,alf,). Similarly, the parameters of
actor network u(sl6,) are optimized according to
mgaxQ(s,al@Q). Therefore, we must design the structure
of actor and critic networks respectively based on DL.

(1) Actor network

The actor network wu(sl6,) is mainly used to output
action in real-time decision according to state. The input
of network is the environment state s €S, and its output
is policy’s action a € A(s). The structure of the designed
actor network is shown in Fig. 8.

‘ Actor network y(s6,) |
\ \

State sE S

Input block Output block

gw—)
Middle block

Fig. 8 Structure of actor network

(i1) Critic network

The critic network Q(s,alfy) is used to evaluate the
advantage of current action a € A(s) output by u(sld,).
The input of Q(s,alfy) is the combination of state and
action [s,a], and the output of Q(s,alfy) is the state-
action value function Q(s,a). The structure of the
designed critic network is shown in Fig. 9.

| Critic network O(s, al6,) |
| |

State sES

...... = Value O(s. a)

Action a E A(s)

Output block

Input block . 5

—
Middle block

Fig. 9 Structure of critic network

In addition, before running the networks, the input
value should be normalized for eliminating the influence
of data’s physical meaning. Moreover, the structure of
target networks Q’(s,alfp) and p’'(s6,) is similar to
O(s,alfy) and u(sl6,), and only the method of parame-
ters updating is different.

2.2.3 Shaping reward function based on expert experi-
ence and domain knowledge

Although the algorithm we propose could learn an opti-
mal policy according to the reward function shown in
(12), there is a serious challenge that could influence the
convergence rate of policy, because the rewards environ-
ment returned are too sparse to learn useful experience
such as those transitions whose reward is not zero.

Therefore, some researchers proposed a technique
called reward shaping (RS) [32], which leverages the
expert knowledge to reconstruct the reward model of the
target domain to improve the agent’s policy learning.
More specifically, in addition to reward from environ-
ment, RS provides a shaping function F : S Xx§ XA - R
to render auxiliary rewards. Intuitively, RS will assign
higher rewards to more beneficial transitions, which
could guide the agent to find the optimal policy quickly.
As a result, the agent will learn its policy by the newly
shaped rewards R’ =R+ F, which means that RS has
altered the original reward with a different shaping
reward function

M={T,S,A,P,R} - M ={T,S,A,PR}. (13)

In the formula above, M is the original problem mo-
delled by MDPs, similar to (1), and M’ represents the
improved model with shaping reward function. Along the
line of RS, the potential-based RS (PBRS) [33] is one of
the most classical approaches. PBRS gives the algorithm
an external signal for learning the optimal policy more
quickly than before by adding a new reward shaping
function F (s, a, s’), formed by the difference between two
potential functions @ (-)

F(s,a,s") =yD(s")—D(s) (14)

where @(-) comes from the knowledge of expertise and
evaluates the quality of a given state. There is a cycle
dilemma existing in MDPs, which could be addressed by
the potential difference. In the cycle dilemma, an agent
can get positive rewards by following a sequence of states
which form a cycle {si, 52, , 5,, 51} with

F(sy,ai,8)+ F(sy,a5,8)+ -+ F(s,,a,,s1)>0.
Fortunately, PBRS could avoid this issue by making
any state cycle meaningless, with Z:F (85> @i, 8i41) <
—F(s,,a,,s1) <0. It has been proved that, without fur-
ther restrictions on the original MDPs or the shaping
function, PBRS is sufficient and necessary to preserve the

policy invariance. Moreover, the optimal Q(s,a) in the
original model and the improved model are related by

Ow (s,a) = Oy (s,a) — D(s). (15)
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Thereby, if we construct a function over both the state
and the action to form the potential function @(s,a),
PBRS will be extended to a novel approach, called the
potential based state-action advice (PBA) [34], which
could evaluate how beneficial an action is to take from
state

F(s,a,s',a')=y®(s',a")—-D(s,a). (16)

Similar to (15), the optimal Q(s,a) in both MDPs
model are connected by

QM’ (Sva): QM(S’a)_dj(S?a)' (17)

Similarly, PBA is also sufficient and necessary to pre-
serve the policy invariance. Therefore, once the optimal
policy in M’ is learned, the optimal policy in M can be
recovered by

Hu (s) = argmax [Qy, — D (s,a)]. (18)
acA(s)

Thus, we propose a construction approach to design the
shaping function of air-delivery mission based on PBRS
and PBA, introducing expert experience and domain
knowledge, as shown in Fig. 10.

Y

Base reward function
R(s, a)

Shaping reward function
F(s,a,s")

Action

a€A(s) ———

Self learning
agent

Fig. 10 Construction diagram of UAV maneuvering decision-mak-
ing model for air-delivery

(1) Shaping function of guidance towards area task

When the UAV is performing the guidance towards
area task, the distance between current position and tar-
get point and the relative azimuth between LOS and the
nose direction of UAV are the main influence factors.
Therefore, we can construct the shaping function as

Fguidance (S, a, S,) =
Y[Pu(s) + Dy (8)] =[Py (5) + Dy ()] (19

where @,(s) represents the distance potential function,
and @, (s) represents the angle potential function. Con-
sidering the normalization of different influence factors,
we can design @, (s) and @, (s) as

max
D LOS D LOS

Dy(8) = o (20)
DLOS _DLOS
Tc_(sl//ws
By (s) = —=. Q1)

According to the shaping function designed above, we
could get optimal policy more quickly than sparse reward
model. More specifically, we can introduce expert experi-
ence to navigate agent to reach optimal state faster

Fguidance (S, a, S,,[l,) = Fguidance (S7 a, S/) + RT (22)

where R' represents the advice reward coming from the
expert experience, which can be defined by

. {1.0, D(s') > D(s)

. (23)
0.0, otherwise

which shows that if agent moves from the state with
lower potential, the agent will receive a positive reward
signal.

(i) Shaping function of guidance towards specific
point task

Similar to the shaping function of guidance towards
area task, the shaping function of guidance towards spe-
cific point task can be modelled as

Faim (S, a, sl) = 7 [daa (S/) + ¢w (S’)] - [dja (S) + ng// (S)] (24)

where @,(s) represents the impact deviation potential
function different to guidance towards area task, and it
can be defined by

. 25
pmax _ pymin ( )

Impact Impact

Dm act _Dn:]inac
¢u(s) :exp[_u]

Impact® = Impact

where Dippac € [D"‘i" Dimax ] represents the impact devi-
ation, which can be calculated by

DImpact = ”XTGT - XBomb”Z' (26)

Furthermore, because of the accuracy of guidance
towards specific point task, the shaping function with
expert experience can be modelled by

Fﬂim (S9a’ S”a,) = Faim (Sva’ S/) +RT (Sva’ S/9a,) . (27)

In the formula defined above, R'(s,a,s’,a’) represents
the shaping reward introducing expert experience, which
can be calculated by
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NZ - |6Wl.os ' szax/n|
2N

R (s,a,5',d’) = exp|— (28)
which means that if the deviation between the nose direc-
tion of UAV and the azimuth of LOS is less than the last
decision-making step, UAV will get a positive reward
proportional to the difference between the action given by
agent and the advice from expert.

2.2.4 Training set sampling method based on PER

During the training process, the PER [25] is used to sam-
ple training data from D in order to fully utilize the diver-
sity of experiences. Usually, the training dataset D, is
constructed by selecting a batch of transitions from D
uniformly, that means the probability P (i) of each sam-
ple selected in D is equal. On the contrary, P (i) of PER
is not same, as defined in

@

Pi
>
k

where p; is the priority of the ith sample in D, and « is a
hyperparameter. When a« =0, it is pure UER. p; is
defined based on TD-error, as shown in

P(i) = (29)

pi=ol+e (30)

where ¢; is TD-error of the ith sample in D. In addition,
a minimum ¢ is introduced to prevent p; from being
ZEero.

PER improves the availability of experiences, but the
distribution bias of transitions sampled by PER occurs
compared with UER, and this issue also reduces the
diversity of training data. Therefore, IS weights are used
to correct the distribution bias of training data caused by
PER. The IS weight w; can be calculated by

(1 1Y .
o=(57) D
where N is the size of D. When S =1, the distribution
bias of training set is fully compensated. When we get ¢,
the updating target is w;-d;, which is used to replace the
target of DDPG.

In order to ensure stable convergence of Q(s;,a;l6,),
j
w; is normalized by max ), - Thereby, the real IS weight

w; can be defined as

min P (i) A
w_,.:{ | ] (32)

P())

At the same time, in the early stage of training, the dis-
tribution bias caused by PER is little. Therefore, we
define an initial 3, € (0, 1), which gradually increases to 1

with training going on.
2.2.5 Training procedure of UAV maneuvering decision-

making algorithm

According to MDPs, the key issue of optimizing UAV
maneuvering decision-making policy is to solve an opti-
mization problem defined as

Q(s,a) =E;[v(s,m)] (33)

where v(s,m) is defined in (2). In this paper, double Q-
learning is used to optimize Q(s,a), as defined by

Q(s,a) = Q(s,a)+
r+vyQ’ (s',argmaXQ(s/,a))— Q(s,a)] (34)

a

where s €S is the current state, a € A(s) is action, r is
reward, s’ € S is the next state, and o € [0, 1] is the learn-
ing rate. The loss function L(6,) of critic network could
be defined by

L(60) = Bioar, [67] (35)

where 0; is TD-error of the jth transition from D by PER.
TD-error is defined as

6;=y;—0(s;a,l00) (36)
where y; is the optimal objective of Q(s;,a,l6p),
(s,a,r,s"); represents the jth sample for training. Specifi-
cally, s; and a; are the current state and action in
(s,a,r,s5"); respectively. y; could be calculated by

r;, s; satifies termination condition
Vi = '

ri+yQ (s ;1 (s',16,)100), otherwise

where r; and ) are the current reward and next state in
(s,a,r,5");. Thus, we can obtain the gradient of loss func-
tion L(6,) as shown in

Vi, L(00) = Eqvars, [0,- V5, Qs1,a1100)] . (38)

Therefore, when we use PER to sample training data,
the updating goal A of Q(s;,a;|6,) could be calculated by

A= w;6;-V4,0(s;,a,16). (39)
J

Meanwhile, we define the loss function L(6,) of actor
network p(s10,) as

L(6.) =E[Q(s.u(s16,)160)]. (40)
Thereby, we can obtain the gradient of L(6,) accord-

ing to the deterministic policy gradient theorem, as shown
in

Vo, L(6,) =E;|Veu(s6,)V,Q(s,albp)

“:H(J'Wu)] - @D
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In addition, considering stability of target networks’
training, the parameters of ' (s6,) and Q' (s,alfy) are
updated by soft updating, like smooth updating, as shown
in

{HQ, =10+ (1-17)6y 2)

0,=10,+(1-1)6,

In the equation above, 7€ (0,1) is a hyperparameter
involved in the soft updating. Moreover, in order to
improve the explorationability of deterministic policy
involved in algorithm, random noise is added into the
action generated by (sl6,), as shown in

a,=u(sl6,)+N(©O,0). (43)

where N (0,0) represents the noise sampled by the nor-
mal distribution constructed by variance o.

Finally, the training procedure of the UAV maneuver-
ing decision-making algorithm for air-delivery is given in
Algorithm 1.

Algorithm 1 UAV maneuvering decision-making
algorithm for air-delivery
Input:

The hyperparameters of RL: policy’s learning period
K, historical buffer capacity N, soft updating parameter
75

The hyperparameters of DL: size of minibatch k, actor
networks’ learning rate 7,, critic networks’ learning rate
Tos

The hyperparameters of PER: availability exponent a,
initial IS exponent By;

The hyperparameters of environment: maximum train-
ing episodes M, maximum steps per episode 7’

Output:

The evaluation networks: actor network (sl6,) and
critic network Q(s,al6);

The target networks: actor network ' (s6,) and critic
network Q' (s,alfy)

Run:

Initialize Q(s,alfy) and u(sl6,), and their target net-
works Q' (s,al6y) and u (s16,,) using the parameters of
evaluation networks

Form=1to M do

Reset environment and receive the initial state s,
Calculate a, according to (43)
Fort=1toT do
Calculate a, by (43) according to current state s,
of environment, and receive the reward r, and next state
5,41 from environment after executing action
Save current transition (s,,a,,7,;,5,.;) into histori-

cal data buffer D

If t mod K =0 then
Clear the cumulative updating value 4 of
Q(s,alfy)
For j=0to k do
Sample data j ~ P(j) according to (29)
Calculate IS weight w; according to (32)
Calculate TD-error ¢, of sampled transition
according to formula and update its priority p; according
to formula
Accumulate A according to (39)
End for

Update the parameters of Q(s,alf,) according to
4 with 1o

Update the parameters of u(sl6,) based on (41)
with 7,

Update the parameters of target networks
Q' (s,alfy) and p’ (s16,) according to (42) with 7
End if
End for

End for

3. Results and analysis

Based on the model and algorithm we present above,
experiments are conducted to prove the rationality of the
model and verify the availability of the algorithm. In the
following, we will explain settings of the simulation,
details of the training process, results of Monte-Carlo
(MC) test experiments, as well as their analysis.

3.1 Settings of simulation experiments

For the designed experiments, the mission area is
restricted to 100 kmx 100 km airspace and the height of
UAV is bound to 500-5000m. For each simulation
experiment of guidance towards area and guidance
towards specific point tasks, the UAV’s initial state is
randomly generated, and the UAV might start from arbi-
trary position in mission area. In order to make simula-
tion data as close to real world as possible, we define
simulation step 7,=0.1s because operator of UAV
always manipulates it every 0.5—1s.

Moreover, because each element of state space in
guidance towards area task and guidance towards
specific point task has different physical units, all
the dimensions of each vector before inputting into
networks should be normalized. Details of para-
meters defined above are explained in Table 1. Thereby,
we can normalize these parameters according to their

range.
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Table 1 Details of parameters involved in environment

Parameter Range Meaning
Dios [Di"(i)"s, DL"(?_‘)’é Distance between UAV and target point
s 0.20) Relative azimuth between LOS and the nose
W1Los » <l direction of UAV
oy [viin v | UAV speed
Husy  |HE HE | UAV height

ABomb [Amin Amax bJ

Bomb’“ "Bom

N. [_ N;nax R N;nux]

z

Horizontal range of bomb

Steering overload of UAV

3.2 Simulation results & analysis of guidance
towards area task

3.2.1 Parameters setting of algorithms

According to the training procedure of algorithm, before
we start to train, some parameters should be assigned.
Parameters assignments of the algorithm are shown in
Table 2. Moreover, we design the structure of networks
QO(s,alfy) and u(sl6,) which are shown in Table 3 and
Table 4 respectively. In this paper, the networks are all
designed to be dense network.

Table 2  Parameters assignment of algorithm for the guidance
towards area task
Parameter Value Meaning

K 100 Policy’s learning period
N 100000 Historical buffer capacity
T 0.01 Soft updating parameter
k 128 Size of minibatch
um 0.001 Actor networks’ learning rate
U] 0.001 Critic networks’ learning rate
a 0.5 Auvailability exponent of PER
Bo 0.4 Initial IS exponent
M 1000 Maximum training episodes
T 5000 Maximum steps per episode

Table 3  Structure of critic network Q(s,aIOQ) for the guidance

towards area task

Layer structure

Layer name

Unit Activation function
Input layer of state 16 ReLU
Input layer of action 16 ReLU
Hidden layer 1 32 ReLU
Hidden layer 2 64 ReLU
Hidden layer 3 32 ReLU
Output layer 1 None
Table 4 Structure of actor network y(sIO,,) for the guidance

towards area task

Layer name - Layer stru@urg -
Unit Activation function
Input layer 16 Tanh
Hidden layer 1 32 Tanh
Hidden layer 2 64 Tanh
Hidden layer 3 32 Tanh

Output layer 1 Tanh

3.2.2  Analysis of simulation results

Using the parameters assigned above, we finish the train-
ing of networks successfully. Then, the loss diagrams of
critic networks and actor networks involved in
UER-DDPG without advice, PER-DDPG without advice,
UER-DDPG with advice, PER-DDPG with advice for the
guidance towards area task are shown in Fig. 11, Fig. 12,
Fig. 13, Fig. 14, respectively.

10

O L L L L
0 200 400 600 800

Training episode
(a) Loss curve of actor network over training steps

1000

5
4t
31
2
5]
2
0 200 400 600 800 1000
Training episode
(b) Loss curve of critic network over training steps
: Raw data;, ——— : Smoothed data.
Fig. 11  Loss curves of actor network and critic network over

training steps under the setting of UER-DDPG and RS without
advice in the guidance towards area task

Loss
(=)}
T

0 L L L L
0 200 400 600 800

Training episode

1000

(a) Loss curve of actor network over training steps
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(b) Loss curve of critic network over training steps

: Raw data;, ——— : Smoothed data.

Fig. 12 Loss curves of actor network and critic network over
training steps under the setting of PER-DDPG and RS without
advice in the guidance towards area task
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(a) Loss curve of actor network over training steps
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(b) Loss curve of critic network over training steps
: Raw data; ——— : Smoothed data.
Fig. 13  Loss curves of actor network and critic network over

training steps under the setting of UER-DDPG and RS with advice
in the guidance towards area task

Fig. 11 and Fig. 12 show the loss curves of actor net-
work and critic network involved in UER-DDPG and
PER-DDPG without advice, respectively. The curve of
actor network’s loss climbs gradually over time and is

stable after enough training. Meanwhile, the loss of
critic network decreases gradually over time, and finally
becomes stable to a small amount. In Fig. 13 and
Fig. 14 similar to those algorithms without advice, the
loss curves of actor network and critic network are also
stable in the end by using the algorithms with advice.
However, we can see that the loss of PER-DDPG con-
verges faster than UER-DDPG and it is more stable than
UER-DDPG after convergence, from not only the actor
loss but the critic loss.

Loss

0 200 400 600 800
Training episode
(a) Loss curve of actor network over training steps

1 000

0.4

0.1

L
0 0 200 400 600 800
Training episode
(b) Loss curve of critic network over training steps
: Smoothed data.

1000

: Raw data;

Fig. 14  Loss curves of actor network and critic network over
training steps under the setting of PER-DDPG and RS with advice
in the guidance towards area task

Moreover, Fig. 15, Fig. 16, Fig. 17 and Fig. 18 show
that the training parameters are generated from training
process over simulation episodes, including the episode
rewards and successful rate under the settings of UER-
DDPG without advice, PER-DDPG without advice,
UER-DDPG with advice, and PER-DDPG with advice.
The episode rewards refer to the accumulation of reward
agent received in each episode. The successful rate refers
to the ratio of successful results in the last 50 experi-
ments.
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(a) Curve of cumulative rewards over simulation episodes
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(b) Curve of successful rate over simulation episodes
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Fig. 15 Curves of evaluation parameters for training under the
setting of UER-DDPG and RS without advice in the guidance
towards areatask
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(b) Curve of successful rate over simulation episodes
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Fig. 16 Curves of evaluation parameters for training under the
setting of PER-DDPG and RS without advice in the guidance
towards areatask
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(a) Curve of cumulative rewards over simulation episodes
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(b) Curve of successful rate over simulation episodes
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Fig. 17 Curves of evaluation parameters for training under the
setting of UER-DDPG and RS with advice in the guidance towards
area task

Fig. 15(a), Fig. 16(a), Fig. 17(a) and Fig. 18(a) are the
curves of cumulative rewards over simulation episodes.
They show that cumulative rewards will be stable at a
deterministic value and the trend of all curves is similar.
Fig. 15(b), Fig. 16(b), Fig. 17(b) and Fig. 18(b) are the
curves of the successful rateover simulation episodes,
which demonstrate that the parameters increase until 1.0.
We can see that all the training experiments have optimi-
zed the optimal policy, but much more time is consumed
during the process of training when introducing expert
advice. This indicates that extra training time is needed

for the agent to learn the more valuable information.
30 000

20 000

10 000

Episode reward

0 25 50 75 100 125
Simulation episode
(a) Curve of cumulative rewards over simulation episodes
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Fig. 18 Curves of evaluation parameters for training under the
setting of PER-DDPG and RS with advice in the guidance towards
area task

After training, we perform a group of MC experiments
to evaluate the quality of trained results of the designed
algorithms described above. Statistical analysis results of
MC test experiments are shown in Table 5. We can see
that all the four groups of experiments’ results demon-
strate the trained results converged to the near optimal
point.

Table 5 Statistical results of MC test experiments in the guidance
towards area task
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Fig. 19  Visualization of test experiment for the trained policy of
UER-DDPG and RS without advice in the guidance towards area
task

Number of  Number of successful Successful
Method . .
experiments experiments rate
UER-DDPGand RS 998 0.998
without advice
PER-DDPGand RS 999 0.999
without advice
ER-DDP R
UER-DDPGandRS 999 0.999
with advice
PER-DDPG and RS 1000 999 0.999

Meanwhile, we visualize some assessment results from
MC experiments, including the flight trajectory of UAV
in an experiment, the action given by agent over time,
and the reward agent received over time, as shown in
Fig. 19, Fig. 20, Fig. 21 and Fig. 22. In Fig. 19(a),
Fig. 20(a), Fig. 21(a), and Fig. 22(a), the red solid line
represents the flight trajectory of UAV, the red point and
the green “x” indicate the start position and the end posi-
tion of UAV respectively, the blue “+” and the blue
dashed circle surrounding it indicate the target position
and its effective area respectively. In (b) subplots of these
figures, these are the curve of action output by algorithm
and the curve of rewardsover time.
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Fig.20 Visualization of test experiment for the trained policy of PER-
DDPG and RS without advice in the guidance towards area task
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Fig. 21 Visualization of test experiment for the trained policy of

UER-DDPG and RS with advice in the guidance towards area task

120 000 - -
I” \\\
fl’ \\
100 000 | i +
\
7 1
7 4
5 8o00f S Tee- i
z
60 000 |

20000 40000 60000 80000 100000 120000
East/m
(a) Flight trajectory of UAV

5
g
£ 0
<
=5
0 200 400 600 800
2 F
ke
s
2
Q
=4
-1 T T T
0 200 400 600 800

t/s
(b) Curves of reward and action over time

Fig. 22 Visualization of test experiment for the trained policy of
PER-DDPG and RS with Advice in the guidance towards area task

In Fig. 19(a), Fig. 20(a), Fig. 21(a), and Fig. 22(a), we
can see that the trained policy of each algorithm with dif-
ferent kind of reward function in the guidance towards
area task converges to the near optimal point because of
its approximate optimal performance. The UAV could
enter the mission area from arbitrary position and ran-
dom azimuth, and all the algorithms show good perfor-
mance on this task. Meanwhile, we can see that the pol-
icy outputs a reasonable control value at different situa-
tions according to the curves of action for each algorithm.
For example, when the UAV flies towards the target area,
the action of policy is approximately equal to 0. If the tar-
get area is located on the front left side of UAV, the
action of policy will be a negative value. On the contrary,
the policy will give a positive value while the target area
is located on the front right side of UAV. And the reward
curve also shows the same trend which means when
the UAV selects the action which makes it closer to the
target area, the reward given by model will be bigger.
Especially for the model improved by RS with advice,
when the UAV selects the action that potentially makes
bigger difference between current state and last state, it
could receive a positive value, as shown in Fig. 21(b) and
Fig. 22(b).

Furthermore, the trained policies show good perfor-
mance in the guidance towards area task, but different
kinds of shaping function produce disparate performance
in terms of policy output. Obviously, the output of those
algorithms with advice in Fig. 21(b) and Fig. 22(b) are
much stabler than those without advice in Fig. 19(b) and
Fig. 20(b), because there are not so many high-frequency
fluctuations in the curves of reward and action of Fig. 21
and Fig. 22.

Thereby, it is proven that the algorithms and the modi-
fied model we design is reasonable and effective to solve
the guidance towards area task and improve the auton-
omy of UAV during the process of adjusting attitude
when it prepares to drop bomb. Furthermore, the trained
results of UER-DDPG and PER-DDPG with expert
advice have more superior quality in terms of policy’s
output than algorithms without expert advice because the
output of policy involved in UER-DDPG and PER-
DDPG with expert advice is smoother.

3.3 Simulation results and analysis of guidance

towards specific point task
3.3.1 Parameters setting of algorithms

Similarly, before we start to train, some parameters
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should be assigned. Parameters assignments of algorithm
are shown in Table 6. Moreover, we design the structure
of networks Q(s,alfy) and pu(sl6,) as shown in
Table 7 and Table 8 respectively. In this paper, the net-
works are all designed to dense network.

Table 6
towards specific point task

Parameters assignment of algorithm for the guidance

Parameter Value Meaning

K 100 Policy’s learning period

N 50000 Historical buffer capacity

T 0.01 Soft updating parameter

k 256 Size of minibatch

ym 0.001 Actor networks’ learning rate
no 0.001 Critic networks’ learning rate
a 0.5 Availability exponent of PER
Bo 0.1 Initial IS exponent

3000 Maximum training episodes

T 5000 Maximum steps per episode

Table 7 Structure of critic network Q(s,aIGQ) for the guidance

towards specific point task

Layer structure

Layer name
Unit Activation function

Input layer of state 16 ReLU
Input layer of action 16 ReLU
Hidden layer 1 32 ReLU
Hidden layer 2 64 ReLU
Hidden layer 3 32 ReLU
Output layer 1 None

Table 8
towards specific point task

Structure of actor network ,u(sloﬂ) for the guidance

Layer structure

Layer name
Unit Activation function
Input layer 16 Tanh
Hidden layer 1 32 Tanh
Hidden layer 2 64 Tanh
Hidden layer 3 32 Tanh
Output layer 1 Tanh

3.3.2 Analysis of simulation results

Similar to the guidance towards area task, we also obtain

reasonable results after training. As shown in Fig. 23,
Fig. 24, Fig. 25 and Fig. 26, these are the loss diagrams
of critic networks and actor networks involved in UER-
DDPG without advice, PER-DDPG without advice, UER-
DDPG with advice, and PER-DDPG with advice for the
guidance towards specific point task, respectively.
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Fig. 23  Loss curves of actor network and critic network over

training steps under the setting of UER-DDPG and RS without
advice in the guidance towards specific point task
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Fig. 24  Loss curves of actor network and critic network over

training steps under the setting of PER-DDPG and RS without
advice in theguidance towards specific point task
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Fig. 25 Loss curves of actor network and critic network over
training steps under the setting of UER-DDPG and RS with advice
in the guidance towards specific point task

In Fig. 23(a), Fig. 24(a), Fig. 25(a), and Fig. 26(a),
the loss curves of actor network are presented, which
show that actor’s losses increase or decrease until stabi-
lizing at a deterministic value. In Fig. 23(b), Fig. 24(b),

Fig. 25(b), and Fig. 26(b), the loss curves of critic net-
work are shown, which demonstrate that the critic net-
works stabilize at a good value after lots of training,
though there are some peaks during training. Among
these figures, we could find that all the algorithms under
different reward functions converge to near optimal point
and the loss of PER-DDPG is more stable than UER-
DDPG after convergence in terms of the smoothness of
loss curve.
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(a) Loss curve of actor network over training steps
0.10
0.08
0.06
¢
=
0.04
0.02
0
0 200 400 600 800 1000
Training episode
(b) Loss curve of critic network over training steps
——— :Raw data;, ——— : Smoothed data.
Fig. 26  Loss curves of actor network and critic network over

training steps under the setting of PER-DDPG and RS with advice
in the guidance towards specific point task

Moreover, Fig. 27, Fig. 28, Fig. 29, Fig. 30 show
the training parameters generated from training pro-
cess over simulation episodes, including the epis-
ode rewards and successful rate under the settings
of UER-DDPG without advice, PER-DDPG without
advice, UER-DDPG with advice, and PER-DDPG with
advice.
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Fig. 27 Curves of evaluation parameters for training under the
setting of UER-DDPG and RS without advice in the guidance
towards specific point task

0

0

—1 000

—2 000

Episode reward

-3 000}

0 200 400 600 800 1000
Simulation episode
(a) Curve of cumulative rewards over simulation episodes

1.2

1.0 m e e
0.8F
0.6+
041

Successful rate

0.2}

0

0 200 400 600 800 1000
Simulation episode
(b) Curve of successful rate over simulation episodes

: Raw data; —— : Smoothed data.

Fig. 28 Curves of evaluation parameters for training under the
setting of PER-DDPG and RS without advice in the guidance
towards specific point task
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Fig. 29 Curves of evaluation parameters for training under the
setting of UER-DDPG and RS with advice in the guidance towards
specificpoint task

Fig. 27(a), Fig. 28(a), Fig. 29(a), and Fig. 30(a)
show that the episode rewards increase gradually till a
fixed value. Fig. 27(b), Fig. 28(b), Fig. 29(b), and
Fig. 30(b) are the curves of successful rate, which show
that though the training process is fluctuant, the actor and
critic of each algorithm converge at an excellent level.
Among these results, we can obtain the optimal policy in
all the training experiments, but much more time is con-
sumed during the process of training when introducing
expert advice due to similar reasons. In addition, algo-
rithms are required to operate UAV more accurately in
guidance towards specific point task because the impact
point will be target point far away when the agent only
slightly adjusts the azimuth of UAV due to the range of
bomb. Thereby, it is difficult for algorithms to converge
to the optimal point due to overestimate bias and vari-

ance.
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Fig. 30  Curves of evaluation parameters for training under the setting
of PER-DDPG and RS with advice in the guidance towards specific point
task

In the same way, we also design a group of MC experi-
ments to assess the quality of trained results of algo-
rithms above in the guidance towards specific point task.
Statistical analysis results of MC test experiments are
shown in Table 9. We can see that all four groups of
experimental results demonstrate that the trained results
converge to the near optimal point and have achieved an
available and satisfied level.

Table 9 Statistical results of MC test experiments in the guidance
towards specific point task

Number of

Number of successful Successful

Method . .
experiments experiments rate
UER-DDPGand RS, 743 0.743
without advice
PER-DDPGand RS = 893 0.893
without advice
UER-DDPGand RS, ) 957 0.957
with advice
PER-DDPG and RS 1000 943 0.943

Simultaneously, we visualize some assessment results
from MC experiments, including the flight trajectory of

UAV in an experiment, the action given by agent over
time, and the reward agent received over time, as shown
in Figs. 31-34. In (a) subplots of each figure, the red
solid line represents the flight trajectory of UAV, the red
dashed line represents the trajectory of bomb on the hori-
zontal plane, the red point and the green “x” indicate the
start position and the end position of UAV respectively,
and the blue “+” and the blue dashed circle surrounding it
indicate the target position and its effective area sepa-
rately.
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Fig. 31 Visualization of test experiment for the trained policy of UER-
DDPG and RS without advice in the guidance towards specific point task
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Fig. 32 Visualization of test experiment for the trained policy of
PER-DDPG and RS without advice in the guidance towards spe-
cific point task
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Fig. 33  Visualization of test experiment for the trained policy of
UER-DDPG and RS with advice in the guidance towards specific
point task

Similar to guidance towards area task, the proposed
algorithms show a good performance in the guidance
towards specific point task. As shown in Figs. 3134, the
policy converges to the near optimal position after train-
ing. In Fig. 31(a), Fig. 32(a), Fig. 33(a), and Fig. 34(a),
the UAV reaches an appropriate position to release bomb

by giving a reasonable control value to adjust the attitude
of UAV. For instance, if the desired impact point is
located at the front left side of UAV, the policy will give
a negative action. On the contrary, the action output by
policy will become positive when the point is located at
the right left side of UAV. We could find these results
from the curve of action in Fig. 31(b), Fig. 32(b),
Fig. 33(b), and Fig. 34(b).
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Fig. 34 Visualization of test experiment for the trained policy of
PER-DDPG and RS with advice in the guidance towards specific
point task

Moreover, we could find the good performance of
trained policies in the guidance towards specific point
task, but different kinds of reward shaping methods cause
the difference of policy in terms of output stabi-
lity and robustness. Obviously, the output of policies
trained based on RS with advice is much stabler than
those based on RS without advice, because there is not
much irregular noise in the output value of policy shown
in Fig. 33(b) and Fig. 34(b), compared with Fig. 31(b)
and Fig. 32(b).

Thereby, it is proved that the algorithms and the modi-
fied model we design is reasonable and effective to solve
the guidance towards specific point task and enhance the
autonomy of UAV during the process of aiming at the
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target when it prepares to release bomb. Furthermore, the
performance of trained results of UER-DDPG and PER-
DDPG with expert advice is similar to the results in the
guidance towards area task. The output of algorithms
introducing expert advice is smoother than that of algo-
rithms without expert advice. This superiority could help
the policy trained by the DRL-based algorithm be trans-
ferred to the real world, because the high frequency
vibration is unbearable for machine.

4. Conclusions

In the present work, we refine and describe the guidance
towards area task and the guidance towards specific task
in air-delivery. According to the definitions of problems,
we propose the UAV maneuvering decision-making algo-
rithm based on DRL to execute air-delivery mission
autonomously. Among this work, we design and con-
struct the UAV maneuvering decision-making model
based on MDPs, consisting of state space, action space
and reward function of each task. Then, we present the
UAV maneuvering decision-making algorithm based on
PER-DDPG, in which the PER sampling method
improves the availability of historical data during the
training process. Specifically, we propose a construction
method of modified reward function that took domain
knowledge and expert advice into account to improve the
inference quality of trained policy network.

Meanwhile, we design extensive experiments to ve-
rify the performance of proposed algorithms and model.
The parameters generated from training process show that
PER method could help algorithm converge more quickly
than UER and the trained results are stabler than that
using UER. Furthermore, the MC experiments results
demonstrate that the modified reward function involving
expert advice can significantly improve the quality of po-
licy trained by algorithms and has better performance to
achieve accurate operation.

In the future, we will consider the influence of infor-
mation dimension loss, which means environment is par-
tially observed. And we will extend the proposed algo-
rithm to manipulate real UAVs in a 3D environment
while performing special missions.
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