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Abstract: Natural events have had a significant impact on over-
all  flight  activity,  and  the  aviation  industry  plays  a  vital  role  in
helping society cope with the impact of these events. As one of
the most impactful weather typhoon seasons appears and con-
tinues,  airlines  operating  in  threatened  areas  and  passengers
having travel  plans  during  this  time period will  pay  close  atten-
tion to the development of tropical storms. This paper proposes
a  deep  multimodal  fusion  and  multitasking  trajectory  prediction
model that can improve the reliability of typhoon trajectory pre-
diction and reduce the quantity of flight scheduling cancellation.
The deep multimodal fusion module is formed by deep fusion of
the feature output by multiple submodal fusion modules, and the
multitask generation module uses longitude and latitude as two
related  tasks  for  simultaneous  prediction.  With  more  depend-
able data accuracy, problems can be analysed rapidly and more
efficiently, enabling better decision-making with a proactive ver-
sus reactive posture. When multiple modalities coexist, features
can be extracted from them simultaneously to supplement each
other’s  information.  An  actual  case  study,  the  typhoon  Lichma
that  swept  China  in  2019,  has  demonstrated that  the  algorithm
can effectively reduce the number of unnecessary flight cancel-
lations compared to existing flight scheduling and assist the new
generation of flight scheduling systems under extreme weather.
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1. Introduction
With  the  development  of  the  present  era,  one  positive
point  is  that  each  new  generation  of  aircraft  shrinks  the
globe by decreasing the flying time between districts [1].
More people  than ever  before  are  flying,  using air  flight
as a standard mode of transportation much like the auto-

mobile.  Air  travel  faces  myriad  operational  challenges:
schedule  disruptions,  limited  resources  such  as  aircraft,
crew  and  maintenance  personnel,  and  increasing  cus-
tomer expectations.  Irregular  operations that  occur,  from
as  simple  an  event  as  a  mechanical  problem on  a  single
aircraft  to  more  impactful  events  such  as  a  weather
typhoon,  can  close  many  airports  and  cancel  numerous
flights.  Typhoons  usually  refer  to  tropical  cyclones  that
occur in the Northwest Pacific and South China Sea; tro-
pical cyclones in the Indian Ocean, Arabian Sea and Bay
of Bengal are often called cyclones; hurricanes generally
refer  to  strong  and  deep  tropical  cyclones  that  occur  in
the  Atlantic  and  eastern  North  Pacific.  Typhoons,
cyclones  and  hurricanes  are  all  considered  tropical
cyclones  that  occur  in  the  tropical  ocean.  Air  travellers
who experience extreme weather on trips know that it has
a  definite  impact  on  air  travel  and  its  participants,  air-
lines, ground handlers, airports and passengers [2].

Typhoons have caused significant concern and destruc-
tion across coastal countries and regions over the history
of  human  development.  Typhoons  are  one  of  the  most
severe  weather  events  affecting  human  activities.  With
such  a  serious  impact  in  the  entire  region,  it  is  under-
standable  that  we  need  to  be  extra  careful  when  travel-
ling in traffic. Theoretically, if the height of a typhoon is
not high, the plane can fly above it. Therefore, if the air-
craft can fly above the typhoon and enter its sight,  some
people  may  feel  that  the  airline  can  operate  during  the
typhoon.  However,  this  is  not  a  common  practice,  as  it
may  still  be  a  risky  move.  Suppose  there  are  any  prob-
lems in the air; if surrounded by typhoons, that can have a
huge  impact  [3,4].  For  example,  if  there  is  a  technical
problem or an emergency medical situation, the crew will
not  have  many  options.  The  path  of  the  typhoon  may
limit the pilot’s solutions. Thus, because carriers want to
avoid minor conflicts caused by typhoons, they must plan
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their operations ahead of time [5]. The overall track of the
typhoon can be predicted several days in advance. There-
fore,  operators  can  make  a  prior  decision  on  how  to
ensure  the  security  of  their  services.  Usually,  if  the
typhoon  approaches  the  neighbouring  airport,  they  will
cancel the flight and evacuate the aircraft as much as pos-
sible  before  arriving.  In  addition,  flight  travel  exemp-
tions  are  usually  provided  for  passengers  to  and  from
affected  cities.  These  factors  would  result  in  significant
resource consumption and economic losses [6].

Perhaps  with  the  continuous  improvement  of  predic-
tion and sensing technology,  people may be more confi-
dent  in  conducting  more  routine  flights  at  high  altitudes
or  in  typhoons.  However,  these  cyclones  often  cause
great  damage  across  regions.  Therefore,  companies  are
more  likely  to  choose  avoidance  as  the  best  action  plan.
In general, similar to several other severe weather condi-
tions,  pilots can also minimize the risk of difficult  situa-
tions in various ways. However, in harsh conditions, sci-
entific  and  accurate  predictions  and  planning  are  crucial
to the decisions made by the crew when transporting pas-
sengers to their destinations. Typhoons and other extreme
weather conditions can introduce problems ranging from
increased  turbulence,  more  difficult  take-offs  and  land-
ings, longer flights, more weight restrictions, airport clo-
sures, ground-related airport impacts and so on. The typi-
cal negative effects of flight cancellation decisions are as
follows [7]:

(i) Irregular flight schedule;
(ii) Cost of passenger disruptions;
(iii) Customer loyalty decrease for the airline.
All airlines want to return to normal operations quickly

to  minimize  the  disruption  and  inconvenience  caused  to
passengers.  While  many  irregular  operations,  such  as
weather delays,  are unavoidable,  how an efficient airline
responds  to  these  disruptions  is  critical  in  maintaining
passenger  goodwill.  The  most  salient  limitation  of  cur-
rent  approaches is  the lack of  global  situation awareness
and  precise  prediction.  The  aim  of  this  study  is  to  opti-
mize flight cancellations in adverse weather from an air-
port perspective in the joint airspace. We propose a deep

multimodal  fusion  and  multitasking  trajectory  prediction
model  that  can improve the reliability of  typhoon trajec-
tory prediction and reduce the quantity of flight schedul-
ing  cancellation.  With  more  dependable  data  accuracy,
problems  can  be  analysed  rapidly  and  more  efficiently,
enabling  better  decision-making  with  a  proactive  versus
reactive posture.

The  organization  of  this  paper  is  summarized  as  fol-
lows.  In  Section  2,  we  present  an  overview  of  flight
scheduling optimization algorithms and state the problem
of  flight  cancellation  caused  by  typhoons.  In  Section  3,
we  discuss  the  proposed  deep  multimodal  fusion  and
multitasking trajectory prediction model in detail. In Sec-
tion 4, we illustrate the application of the methodology to
a  real  typhoon  case.  Finally,  Section  5  concludes  this
work and gives recommendations for future research. 

2. Motivation and problem description
Weather prediction researchers are enhancing the quality
of their weather forecasts, which are becoming more pre-
cise  and  granular  in  their  data  details.  There  have  also
been improvements  in  radar  systems,  light  detection and
ranging sensors and satellites, along with improved com-
puter  hardware  performance,  all  improving  weather  pre-
dictions. In this paper,  we mainly focus on the overview
of flight scheduling optimization algorithms without dis-
cussing hardware improvements. 

2.1    Overview of flight scheduling optimization
algorithms

Table  1 shows  the  results  of  20  references  on  flight
scheduling  in  the  last  four  years. Table  1 mainly  intro-
duces the model  framework,  key algorithms,  model  exe-
cution,  model  verification,  and  results  publication  time.
For the model framework, it includes the stage division of
the  model,  the  number  of  targets  and  whether  there  is
mathematical  proof;  the  model  execution  is  divided  into
two  models,  namely,  static  and  real-time  dynamic;  for
model  verification,  whether  there  is  actual  aviation
data  and  whether  it  is  compared  with  other  models  are
tracked.

 
 

Table 1    Typical flight scheduling algorithms and respective characteristics in the last four years

Work
Model framework

Key algorithm Model execution
Model verification

Year
Stage Target Proof Real data Compared

[8] Four Three No Mixed integer linear programming Dynamic French airspace Yes 2020

[9] Two Single No Shift power law Dynamic Delta airlines No 2019

[10] Single Three Yes Dantzig-Wolfe decomposition Static Iranian airlines No 2018

[11] Two Two No Mixed integer linear programming Static Chinese airport Yes 2020

[12] Two Two No Partheno-genetic algorithm Static No Yes 2017
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Continued

Work
Model framework

Key algorithm Model execution
Model verification

Year
Stage Target Proof Real data Compared

[13] Two Single No Mixed integer linear programming Static No Yes 2020

[14] Three Two No Genetic algorithm Static American airline No 2017

[15] Single Single No Memetic algorithm Static Chinese airway network Yes 2018

[16] Two Single No Sample average approximation Static Legacy airline company Yes 2018

[17] Single Two No Genetic algorithm Static Chinese airspace Yes 2018

[18] Three Three Yes Mixed integer nonlinear programming Static No Yes 2018

[19] Single Single Yes Vertical navigation (VNAV) path model Static No No 2017

[20] Three Single No Genetic algorithm Dynamic No No 2019

[21] Single Single Yes Artificial bee colony algorithm Static No Yes 2017

[22] Single Three No Simulated annealing algorithm Static Beijing-Tianjin-Hebei airport Yes 2020

[23] Single Single No Mixed integer nonlinear programming Static Shanghai metroplex Yes 2020

[24] Single Single No Max-plus model Dynamic No No 2019

[25] Single Single No Network model Static Chinese airspace No 2017

[26] Two Single Yes Particle swarm optimization Static Jeju international airport Yes 2019

[27] Two Single No Integer linear programming Static Eastern China airline Yes 2019
 

Specifically,  Xu et  al.  [8]  proposed a collaborative air
traffic  flow management  framework  within  the  scope  of
trajectory-based  operations.  The  frame  contains  four
modules.  This  modular  design  allows  one  or  more  mo-
dules  to  be  flexibly  adjusted  for  various  purposes.  The
last  model  is  abstracted  into  mixed  integer  linear  pro-
gramming, and the entire model is verified through actual
cases  in  French  airspace.  Cao  et  al.  [9]  mainly  explored
the  internal  mechanism  of  flight  departure  delays  from
the  perspective  of  mathematical  statistics,  and  on  this
basis,  from  two  aspects,  namely,  airport  congestion  and
propagation  delays,  specific  measures  have  been  formu-
lated to solve flight delays and further improve flight real-
time scheduling performance.  Finally,  the verification of
actual  data  from  Delta  airlines  proves  the  effectiveness
and practicability of the method. Khaksar et al. [10] com-
pared the functions and economy of robust planning and
interruption  management  under  delayed  conditions.  The
Dantzig-Wolfe  decomposition  method  is  used  to  solve
this  problem.  The  proposed  technology  is  validated  by
major  Iranian  airlines.  The  calculation  results  show  that
this  method  can  better  solve  the  problem  and  greatly
reduce flight delays. The main research purpose of [11] is
to assign a group of flights to different runways, let each
flight take off or land in turn,  and determine their  actual
arrival  and  departure  times.  This  paper  proposes  the
improved  partheno-genetic  algorithm  used  in  this
research  to  simultaneously  minimize  flight  delays  and
maximize runway utilization. To reduce the cost affected
by  ground  services,  Tang  et  al.  [12]  proposed  a  single

genetic algorithm with hybrid heuristic rules to realize the
coordination  task  scheduling  plan  among  multiple  ser-
vices. At the same time, this paper also establishes a con-
current  and  chronological  optimization  model  for  multi-
flight  and  multi-service  problems.  The  test  results  show
that  the  proposed  model  and  algorithm  are  effective.
Cecen et al. [13] proposed a random mixed integer linear
programming  model  and  used  the  simulated  annealing
algorithm to address aircraft scheduling. Then, the results
of the stochastic method and the deterministic method are
compared,  showing  that  the  stochastic  version  of  the
model  can  significantly  reduce  airborne  delay.  Because
aircraft  sequencing  is  flexible  to  changes  in  wind  direc-
tion,  the  model  can  also  easily  find  a  new  schedule  for
each  aircraft.  Abdelghany  et  al.  [14]  proposed  a  mo-
delling framework for flight schedule planning that consi-
ders  network-level  competition  with  other  airlines.  This
framework integrates genetic algorithms, network compe-
tition  analysis  models,  and  resource  tracking  models  to
form a random search technology. The model proposed in
this paper is of great value to airline schedule planners. It
can also be used to test long- and medium-term planning
strategies.  Wang  et  al.  [15]  proposed  an  improved
memetic  algorithm  to  solve  the  flight  scheduling  prob-
lem.  The  algorithm  combines  the  local  search  with  the
global search strategy and uses the parallel memetic algo-
rithm and the  dynamic  local  search  sampling  strategy  to
control  the  number  of  local  search  samples.  Experimen-
tal results show that the algorithm is robust and meets the
requirements of time consistency. Kenan et al. [16] deve-
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loped  a  two-stage  stochastic  planning  model  for  flight
scheduling and fleet allocation. The proposed model pro-
vides  a  solution  that  indicates  which  fleet  will  be  allo-
cated  for  each  scheduled  flight,  considering  the  uncer-
tainty of demand and ticket prices. The model is tested in
real life, and sensitivity analysis is performed on some of
the  parameters.  Xiao  et  al.  [17]  proposed  a  new  hybrid
indirect  and  direct  coding  genetic  algorithm to  solve  the
problem of air traffic network flow optimization. Experi-
ments on comprehensive issues and actual data in China’s
airspace  show  that  this  method  is  superior  to  the  direct
coding  method  in  terms  of  efficiency  and  effectiveness.
Safak  et  al.  [18]  proposed  a  three-stage  stochastic  plan-
ning model that considers the randomness of demand and
non-cruise  time  while  determining  the  flight  time,  fleet
allocation and aircraft routing issues. In numerical experi-
ments, the method in this paper provides significant cost
savings  over  two-stage  stochastic  programming  and
deterministic methods. In [19], a nominal flight time opti-
mization strategy through the estimation/solution of delay
accumulation  was  proposed.  Through  numerical  traffic
simulation,  the  feasibility  of  optimizing  the  nominal
flight time is clearly proven. The main purpose of [20] is
to  provide  intelligent  decision  support  for  the  air  traffic
control  automation  system  by  accurately  controlling  the
arrival time and flight profile of the aircraft. Specifically,
this  paper  uses  updated  flight  status  data  and  scheduled
arrival  time  to  dynamically  optimize  the  flight  profile,
continuously  adjust  the  error  of  the  aircraft  arrival  time,
and  realize  four-dimensional  trajectory  guidance  in  real-
time.  The main goal  of  the study in [21]  is  to  determine
the  optimal  scheduling  by  evaluating  the  robustness  of
feasible solutions in their respective worst-case solutions.
A  new  artificial  bee  colony  algorithm  is  proposed  and
verified  by  experimental  results.  The  algorithm  can
obtain  near-optimal  results  with  less  computational  cost
within one hour of flight traffic planning. Geng et al. [22]
established  an  optimized  flight  schedule  model  for  a
multi-airport  integrated  management  system,  including
minimizing the maximum displacement of all flights, the
weighted  sum of  total  flight  adjustments  at  each  airport,
and flight delays. An improved simulated annealing algo-
rithm was designed to solve the proposed multiobjective
optimization  problem.  Yang  et  al.  [23]  proposed  formu-
las  and  solutions  for  a  stochastic  terminal  flight  arrival
and  departure  scheduling  problem  under  a  performance
based  navigation  environment.  This  paper  provides  an
effective  basis  for  complex  mixed  integer  and  nonlinear
programming to solve this problem and demonstrates the
capabilities  of  this  method  through  test  cases  of  actual
terminal  systems  in  the  Shanghai  metropolis.  Han  et  al.

[24]  proposed  a  method  for  generating  regular  flights
based  on  the  max-plus  model.  First,  a  system  model  is
established.  Then,  through  the  optimization  algorithm,  a
conventional scheduling method is obtained. In this way,
by  combining  system  parameters  and  traffic  flow  data,
the  control  method  of  the  air  traffic  network  can  be
pushed into,  and  the  air  traffic  flow control  strategy  can
adjust the large-scale airspace network in real-time. Zhao
et  al.  [25]  used  the  network  model  to  transform  the  air-
craft scheduling problem into a postman problem, which
considers  the  connectivity  of  the  airlines.  This  method
considers  not  only  the  maximization  of  the  company’s
interests but also the robustness of aircraft scheduling. To
perform optimal and robust design in aircraft sequencing
and scheduling problems, Hong et al. [26] proposed a two-
stage  stochastic  programming  algorithm  based  on  parti-
cle  swarm  optimization.  The  decision-making  problems
in  the  first  and  second  phases  are  defined  as  aircraft
sequencing  and  scheduling,  respectively,  and  the  uncer-
tainty generated by the flight time of the aircraft between
two  consecutive  repairs  is  considered.  Chen  et  al.  [27]
designed an air traffic control algorithm that can meet the
airport throughput and flight service quality requirements
in  terms  of  flight  delays.  The  algorithm  expresses  the
flight  scheduling  problem  via  integer  linear  program-
ming  and  then  transforms  it  into  a  multiobjective  opti-
mization  problem,  which  can  be  used  to  calculate  the
trade-off  between  scheduling  resolution  and  time  com-
plexity. Based on multiobjective optimization, a heuristic
algorithm  considering  time  uncertainty  is  designed  to
improve airport throughput and reduce flight delay.

Based on the main content of the above 20 typical re-
ferences,  we  can  provide  a  further  summary  of  the  cur-
rent  research  on  flight  scheduling  problems.  At  present,
to  solve  the  related  problems  when  designing  a  specific
model, we can merge a variety of methods to form a mul-
tistage process for more effective and accurate solutions.
The current commonly used model framework integrates
mixed integer programming and swarm intelligence opti-
mization algorithms to produce an effective and practical
model.  At  the  same  time,  as  the  model  improves,  more
goals  or  factors  can  also  be  taken  into  consideration  to
form  a  comprehensive  model  that  is  closer  to  reality.
However,  we  can  also  see  that  these  current  research
methods also have certain shortcomings or can be further
improved.  Many  models  generally  lack  a  theoretical
proof process because it  is  very difficult  to give a syste-
matic  derivation  process.  When  testing  the  model  in  the
early stage, most of the models do not pass the actual data
test.  Moreover,  most  of  the  current  models  do  not  have
real-time  and  efficient  computing  capabilities  and  can
only plan offline and static flights. 
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2.2    Flight cancellation caused by typhoons

These cyclones often cause great damage across regions,
which can be harmful. Therefore, the highlights of flight
scheduling  optimization  under  typhoon  weather  are  as
follows:

(i) Monitor flight progress with forecast in advance;
(ii) Leverage previous weather content;
(iii)  Proactively  manage  operations  with  intelligent

alerting;
(iv)  Help  improve  operational  efficiency  with  smart

methods;
(v) Streamline workflow to maintain airspace situation

awareness.
As  a  typical  case,  the  typhoon  Lichma  swept  across

China in 2019, causing a total of 14.024 million people in
China  and  a  direct  economic  loss  of  53.72  billion  Yuan
[28]. Due to the typhoon, many airlines and airports can-
celled  some  flights  to  ensure  the  safety  of  flight  opera-
tions.  We  selected  Beijing,  Qingdao,  Shanghai,
Hangzhou, Guangzhou and Taipei from August 9th 2019
to  August  11th  2019.  The  arrivals  and  cancellations  of

flights are shown in Table 2, and each day is divided into
four  time  periods:  0:00-6:00,  6:00-12:00,  12:00-18:00,
and 18:00-24:00. The data come from the Variflight App
[29]. Therefore, mining the temporal and spatial patterns
contained  in  the  historical  trajectory  and  predicting  its
position at a certain time in the future to achieve optimal
flight scheduling through the predicted position have high
application  value.  By  reasonably  predicting  the  typhoon
trajectory,  it  is  possible  to  maximize  the  optimization  of
flight scheduling and avoid the risks caused by improper
flight scheduling. In Table 2, (x,y) represents the number
of  flights  that  arrive  and  are  cancelled  during  the  time
period, where x represents the number of arriving flights,
including  the  number  of  on-time  arrivals  and  delayed
arrivals, and y represents the number of cancelled flights,
including  the  number  of  cancelled  flights  and  alternate
flights.  Grey  means  that  there  are  no  flights  in  this  time
period;  green  means  that  all  flights  in  this  time  per-
iod have arrived; yellow means that there are both arriv-
ing  flights  and  cancelled  flights  in  this  time  period;  red
means  that  all  flights  in  this  time period  have  been  can-
celled.

 
 

Table  2      Arrivals  and cancellations of  flights  of  Beijing,  Qingdao,  Shanghai,  Hangzhou,  Guangzhou and Taipei  from August  9th 2019 to
August 11th 2019

Start point End point
August 9th August 10th August 11th

[0,6) [6,12) [12,18) [18,24) [0,6) [6,12) [12,18) [18,24) [0,6) [6,12) [12,18) [18,24)

Beijing

Qingdao (0,0) (6,0) (2,0) (2,2) (0,0) (6,0) (1,1) (4,2) (0,0) (2,7) (0,2) (0,8)

Shanghai (0,0) (17,1) (3,15) (0,14) (0,0) (0,18) (1,22) (0,13) (0,0) (17,3) (18,2) (11,3)

Hangzhou (1,0) (11,0) (2,4) (0,8) (0,1) (2,9) (1,7) (4,4) (1,0) (11,1) (5,1) (9,0)

Guangzhou (0,0) (13,0) (13,1) (4,3) (0,0) (9,4) (13,0) (7,0) (0,0) (12,1) (13,0) (7,0)

Taipei (0,0) (2,2) (1,0) (1,0) (0,0) (2,0) (2,0) (1,0) (0,0) (2,0) (1,0) (2,0)

Qingdao

Beijing (0,0) (4,0) (4,1) (2,1) (0,0) (4,0) (5,0) (3,1) (0,0) (2,2) (1,7) (0,5)

Shanghai (0,0) (8,1) (6,3) (0,10) (0,0) (0,11) (0,9) (0,9) (0,0) (6,5) (2,7) (2,7)

Hangzhou (0,0) (3,0) (3,1) (0,1) (0,0) (0,4) (0,4) (0,2) (0,0) (2,1) (1,3) (0,1)

Guangzhou (0,0) (3,0) (4,0) (4,0) (0,0) (3,0) (4,0) (3,2) (0,0) (3,0) (1,3) (0,5)

Taipei (0,0) (0,1) (0,2) (0,0) (0,0) (0,0) (1,0) (0,0) (0,0) (0,0) (1,0) (0,0)

Shanghai

Beijing (0,0) (18,0) (13,4) (1,14) (0,0) (1,16) (0,19) (0,15) (0,0) (8,8) (13,4) (14,1)

Qingdao (0,0) (9,2) (7,1) (0,11) (0,0) (0,11) (0,8) (0,10) (0,0) (0,12) (3,4) (3,7)

Hangzhou (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

Guangzhou (0,0) (15,0) (13,3) (1,14) (0,0) (0,15) (0,16) (4,12) (0,0) (13,1) (14,3) (11,2)

Taipei (0,0) (0,5) (0,8) (1,3) (0,0) (0,3) (0,8) (0,4) (0,0) (6,0) (8,0) (3,0)

Hangzhou

Beijing (0,0) (8,0) (8,1) (1,9) (0,0) (0,8) (0,8) (4,6) (0,0) (8,0) (1,8) (0,10)

Qingdao (0,0) (5,0) (0,1) (1,2) (0,0) (0,4) (0,1) (0,4) (0,0) (1,4) (0,1) (2,1)

Shanghai (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

Guangzhou (2,0) (7,0) (9,1) (1,8) (0,2) (0,8) (0,9) (2,7) (1,1) (5,3) (9,1) (8,0)

Taipei (0,0) (0,1) (0,1) (1,0) (0,0) (0,2) (0,0) (1,1) (0,0) (2,0) (0,0) (1,0)
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Continued

Start point End point
August 9th August 10th August 11th

[0,6) [6,12) [12,18) [18,24) [0,6) [6,12) [12,18) [18,24) [0,6) [6,12) [12,18) [18,24)

Guangzhou

Beijing (0,0) (8,0) (9,0) (8,3) (0,0) (7,1) (11,2) (11,0) (0,0) (8,0) (13,0) (10,1)

Qingdao (0,0) (1,4) (5,0) (2,0) (0,0) (4,0) (4,1) (2,1) (0,0) (0,4) (2,3) (2,1)

Shanghai (1,1) (17,0) (6,11) (0,10) (0,2) (0,17) (2,15) (5,7) (4,1) (13,9) (16,1) (9,1)

Hangzhou (2,0) (9,0) (3,5) (0,9) (0,2) (0,9) (1,8) (6,4) (1,1) (6,4) (8,0) (8,0)

Taipei (0,0) (0,1) (2,1) (0,0) (0,0) (1,0) (2,0) (1,0) (0,0) (1,0) (2,0) (0,0)

Taipei

Beijing (0,0) (1,0) (1,2) (1,0) (0,0) (1,0) (2,0) (2,0) (0,0) (0,0) (3,0) (2,0)

Qingdao (0,0) (0,1) (0,2) (0,0) (0,0) (1,0) (0,0) (0,0) (0,0) (1,0) (0,0) (0,0)

Shanghai (0,0) (0,4) (1,11) (0,0) (0,0) (0,2) (0,2) (0,1) (0,0) (6,0) (12,0) (1,0)

Hangzhou (0,0) (0,0) (1,1) (0,1) (0,0) (0,1) (0,1) (1,1) (0,0) (1,0) (2,0) (0,0)

Guangzhou (0,0) (0,1) (3,1) (0,0) (0,0) (0,0) (3,0) (1,0) (0,0) (1,0) (2,0) (0,0)

 
 

3. Deep  multimodal  fusion  and  multitasking
trajectory prediction model

Using  deep  learning  technology,  a  deep  multimodal
fusion  and  multitasking  trajectory  prediction  model  is
proposed  to  predict  the  position  of  the  typhoon  [30].
An  airport  within  the  predicted  position  threshold  can
be  regarded  as  an  affected  airport,  and  all  takeoffs  and
landing  flights  of  that  airport  will  be  affected.  Then,
the  flights  at  the  airport  should  take  corresponding  eva-
sive measures.  The core part  of this method is trajectory
prediction. The more accurate the trajectory prediction is,
the  more  favourable  it  is  for  flight  scheduling,  and  the
more  favourable  it  is  for  the  optimization  of  flight
scheduling. 

3.1    Typhoon trajectory forecast

In  this  paper,  a  trajectory  prediction  model  is  proposed
based  on  deep  multimodal  fusion  and  multitask  genera-
tion, as shown in Fig. 1. It mainly includes two modules:
a deep multimodal fusion module that is formed by deep
fusion of the features output by multiple submodal fusion
modules and a multitask generation module that uses lon-
gitude and latitude as  two related tasks  for  simultaneous
prediction.  When  multiple  modalities  coexist,  we  can
extract features from multiple modalities at the same time
to  supplement  each  other’s information.  At  the  same
time, we can also capture the dynamic changes of the tra-
jectory in time and space to improve the accuracy of the
prediction.

 
 

LSTM

LSTM

LSTM

Typhoon

track data

Typhoon

track data

Image data

Image data

COV3D

COV3D

Multimodal

fusion module

Multimodal

fusion module

Deep multimodal

fusion module

Multitask generation module

Fully

connected

Fully

connected

Latitude

Longitude

…

Fig. 1    Deep multimodal fusion and multitask generation trajectory prediction model
 

(i) Trajectory data training
Trajectory data are common sequence data, and we use

long  short-term  memory  (LSTM)  to  process  trajectory
data  [31].  It  can  effectively  extract  the  characteristics  of
changes  in  time  series  over  time,  so  we  apply  LSTM to

extract  the  characteristics  of  changes  in  typhoon  trajec-
tory over time.

The  gates  of  LSTM  at  each  sequence  index  position
generally  include  forget  gates,  input  gates  and  output
gates [32]. The forget gate, as the name implies, controls
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whether to forget the hidden cell state of the upper layer
with a certain probability, as in

f t = σ(W f · [ht−1
tra , x

t
tra]+ b f ). (1)

f t

W f b f

ht−1
tra

xt
tra

σ

Among them,  the  value  of  in  each  dimension  is  in
the range of (0,1), then the information on the dimension
whose value is close to 0 will be forgotten, and the infor-
mation on the dimension whose value is close to 1 will be
retained;  represents  the weight  matrix,  represents
the bias term, and these two parameters are continuously
trained  by  the  neural  network  through  training  historical
data.  is the output of the hidden layer at moment t−1
and  is  the  input  of  the  hidden layer  at  moment t. “·”
represents  matrix  multiplication,  and  represents  the
sigmoid function.

it

C̃t

The  input  gate  is  responsible  for  processing  the  input
of  the  current  sequence  position  and  selectively  storing
new information  in  the  cell  [33].  There  are  two  steps  in
the  input  gate.  Equation  (2)  determines  the  value  to  be
updated and expressed by probability . In (3), the func-
tion  generates  a  new  candidate  vector  and  adds  it  to
the cell state. The two parts combine to form the input gate.

it = σ(Wi · [ht−1
tra , x

t
tra]+ bi), (2)

C̃t = tanh(WC · [ht−1
tra , x

t
tra]+ bC), (3)

Wi WC bi bC

tanh(·)
where ,  represents  the  weight  matrix  and , 
represents the bias term. The  function is a hyper-
bolic tangent function.

∗

Before  the  output  gate,  the  cell  state  needs  to  be
updated,  as shown in (4),  and the results  of the previous
forget  gate  and  input  gate  will  affect  the  cell  state  [34].
Here,  represents the Hadamard product.

Ct = f t ∗Ct−1+ it ∗ C̃t (4)

ot

Ct

ot ht
tra

t

The output gate determines what to output, and the out-
put will be based on the LSTM cell state, but it is also a
filtered  result  [35].  As  shown in  (5)  and  (6),  controls
how  much  the  current  output  can  be  used,  and  the
value of  is between (0, 1).  In addition,  is the out-
put of the hidden layer at moment .

ot = σ (Wo[ ht−1
tra , x

t
tra]+ bo), (5)

ht
tra = ot ∗ tanh(Ct), (6)

Wo bowhere  represents the weight matrix and  represents
the  bias  term.  These  two  parameters  are  continuously
trained  by  the  neural  network  through  historical  training
data.

ht
tra

ht
tra ∈ Rdt dt

To enable feature fusion of data of multiple modalities,
we  output  a  one-dimensional  feature  in  the  last  LSTM
layer;  is the final output feature of the trajectory data
training  part,  that  is, ,  and  is  the  size  of  the
feature extracted from the trajectory path data.

(ii) Satellite image convolution
LSTM’s feature  extraction  of  trajectory  data  extracts

only  the  change  features  of  the  trajectory  in  time,  while
the three-dimensional (3D) convolutional neural network
(3D CNN) [36]  can  extract  the  change  characteristics  of
the trajectory from time and space. In addition, 3D CNNs
are  more  suitable  for  learning  spatiotemporal  features
than  two-dimensional  (2D)  CNNs,  and  they  can  better
model  temporal  and  space  information  through  3D  con-
volution and 3D pooling operations.  In a  3D CNN, con-
volution  and  pooling  operations  are  performed  in  space
and time, while in a 2D CNN, they are completed only in
space. In actual applications, the number and structure of
neural networks should be adjusted accordingly based on
different application scenarios.

Traditional  2D  convolutional  neural  networks  cannot
process  or  need  to  be  combined  with  other  networks  to
capture  the  actions  of  consecutive  frames  in  video  data,
so  this  research uses  a  3D CNN to  process  the  temporal
dimension  information  of  adjacent  frames.  The  satellite
image  information  at  each  moment  is  regarded  as  the m
frame, the image data VIg are formatted as in (7), and the
trajectory changes in time and space are learned through
the 3D CNN. Here the abbreviation Ig means image.

VIg = reshape
(
X1

Ig,X
2
Ig, · · · ,Xm

Ig

)
∈ Rm×H×W×R (7)

Xm
Igwhere m represents the number of pictures, and  repre-

sent the height, width and colour channel of each satellite
picture. H, W, R represent the size of the convolution ker-
nel respectively.

ith
vi j jth

ith Hi,Wi,Ri

Ni

ith

The basic principle of 3D convolution is shown in Fig. 2
[37,38]. Each layer of the 3D convolution layer performs
a convolution operation on the 3D feature data (or origi-
nal  data)  output  by  the  previous  layer  through  the  3D
convolution kernel to obtain 3D feature data as the input
of the next layer. Assume that i represents the  3D con-
volutional  layer,  represents  the  3D  feature  data
output by the  3D convolutional layer,  repre-
sent the size of the convolution kernel, and  is the num-
ber of convolution kernels in the  convolutional layer.
 
 

Image data

Flatten

Reshape

X1
Ig

…

X2
Ig

XmIg

3D CNN

VIg

hIg

Fig. 2    Basic principle diagram of 3D convolution
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vi j (x,y,z)Then, the feature value  at  the position ,  that
is, the 3D convolution process, is as in

vx,y,z
i j = ReLU

bi j+

Ni−1∑
n=0

Hi−1∑
h=0

Wi−1∑
w=0

Ri−1∑
r=0

ωhwr
i jn v(x+h)(y+w)(z+r)

(i−1)n

 (8)

ReLU bi j

jth
ith ωhwr

i jn

where  represents the activation function,  repre-
sents  the  bias  function  of  the  3D feature  data  of  the

 convolutional layer, and  represents the weight.
The output of 3D convolution is multidimensional fea-

ture data. To integrate the features of multiple modalities,
we  finally  use  the  Flatten  layer  operation  to  flatten  the
result of the 3D convolution, that is, to make the multidi-
mensional feature data one-dimensional, as in

hIg = Flatten
(
vIg
) ∈ Rdi (9)

diwhere  represents  the  size  of  the  3D  convolution  fea-
ture.

(iii) Deep feature fusion

htra

hIg

Hfusion

Multimodal  fusion  of  various  submodules  performs
feature  fusion  between  the  features  of  the  training
output  of  the  trajectory  data  and  the  features  gene-
rated by the convolution of the satellite image [39]. Splic-
ing in the feature dimension forms a new feature ,
as shown in

Hfusion = htra⊕ hIg ∈ Rdt+di (10)
where  dt+di  represents  the  size  of  the  feature  generated
by the multimodal feature fusion module.

Trj = {X1,

X2, · · · ,XN}
subTrj1 = {X1,X2, · · · ,Xm},subTrj2 =

{X1+2τ,X2+2τ, · · · ,Xm+2τ}, · · · ,subTrjk = {X1+kτ,X2+kτ,

m τ
1 ⩽ m+ kτ ⩽ N

A  section  of  multimodal  trajectory 
 (its  length N)  is  divided  into k multimo-

dal  subtrajectories 
 ···,

Xm+kτ (each length ) through a sliding window, where 
is the sliding step length, .  The reason for
dividing the multimodal trajectory is to allow the changes
in  time and space  of  the  trajectory  to  be  reflected  in  the
characteristics.

kThe  features  output  by  the  multimodal  fusion  mo-
dules are spliced according to the time dimension to form
a deep mixed feature, as shown in

Hdf = H1
fusion⊕H2

fusion⊕ · · ·⊕Hk
fusion ∈ Rk×d f (11)

df = dt+di
Hdf

k×df

where ,  and the dimension of  the deep fusion
feature  output  by  the  deep  multimodal  fusion  mo-
dule is .

(iv) Multi-task generation module
HdfThe deep fusion feature  output by the deep multi-

modal  fusion  module  can  be  regarded  as  a  time-related
series  feature  data.  This  module  adopts  LSTM  training
deep fusion features and simultaneously predicts the lon-
gitude and latitude as related tasks. The prediction results
of the longitude and latitude are shown in (12) and (13),
respectively. The location information of the trajectory is
jointly  represented  by  the  longitude  and  latitude,  which
are  related  learning  tasks.  Therefore,  multitask  learning

can promote the learning effect of longitude and latitude
to improve the prediction accuracy.

X̂longitude = Hdf ·WLSTM ·Wflon, (12)

X̂latitude = Hdf ·WLSTM ·Wflat, (13)

WLSTM

Wflon,Wflat

where  is  the  weight  of  the  LSTM  network  train-
ing,  which is  shared in  the  multitask generation module.

 represent the weights of the longitude and lati-
tude full-connection layer training, respectively. 

3.2    Flight scheduling optimization

By accurately predicting the location of the typhoon’s tra-
jectory,  necessary  measures  can  be  taken  to  optimize
flight  scheduling  according  to  the  airports  within  the
typhoon’s trajectory. Therefore, it is possible to avoid the
waste  of  resources  caused  by  blindly  cancelling  flights
and to avoid flight hazards caused by untimely cancella-
tion  of  flights  [40].  According  to  the  convenience  query
website  (https://airportcode.bmcx.com/CAN_428__ac/),
the  location  information  of  major  airports  collected  is
shown in Table 3. To check the accuracy of this informa-
tion,  we  compare  it  with  Baidu  Map  information.  Take
Beijing  Capital  Airport  as  an  example,  the  coordinate
information displayed on Baidu Map is (40.08 N,116.60 E),
and the information provided by the website is (40.08 N,
116.58 E). It can be found that the coordinates of the air-
port  displayed  on  Baidu  Map  are  almost  consistent  with
the  information  provided  by  the  website.  After  all,  the
location information provided by different  tools  is  never
exactly the same.  Data can be considered usable as  long
as  it  is  within  a  reasonable  margin  of  error  for  this
research.
  

Table 3    Airport location information

Airport Location

Beijing Capital Airport （40.08 N，116.58 E）

Beijing Daxing Airport （39.51 N，116.41 E）

Qingdao Liuting Airport （36.27 N，120.38 E）

Shanghai Hongqiao Airport （31.19 N，121.34 E）

Shanghai Pudong Airport （31.14 N，121.79 E）

Hangzhou Xiaoshan Airport （30.33 N，120.22 E）

Guangzhou Baiyun Airport （23.18 N，113.26 E）

Taipei Taoyuan Airport （25.09 N，121.60 E）

Taipei Songshan Airport （25.06 N，121.55 E）
 

L
τ

According  to  the  published  data  of  the  Tropical
Cyclone  Data  Center  of  the  China  Meteorological
Administration  (http://tcdata.typhoon.org),  the  real  coor-
dinate  information  of  Lichma  at  0:00,  6:00,  12:00,  and
18:00 from August 9th to August 11th are summarized in
Table  4.  Assuming  that  the  distance  between  the  air-
port and Lichma is within the threshold , as in (14), it is
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determined that the airport will be affected and the flight
at  this  airport  should  be  cancelled.  In  this  case,  Beijing,
Shanghai and Taipei have two airports, so as long as one
airport in the area is affected and the flights are cancelled,
the flights at the other airport would also be cancelled.

L = (xtyphoon− xairport)2− (ytyphoon− yairport

√
)2 ⩽ τ (14)

 
 

Table 4    Location information of Lichma at 0:00, 6:00, 12:00, and
18:00 from August 9th to August 11th

Date Time Location

August 9th

0:00 (26.5 N, 123.4 E)
6:00 (27.0 N, 122.5 E)
12:00 (27.5 N, 122.0 E)
18:00 (28.3 N, 121.4 E)

August 10th

0:00 (28.9 N, 120.8 E)
6:00 (29.9 N, 120.3 E)
12:00 (30.7 N, 120.2 E)
18:00 (31.7 N, 120.5 E)

August 11th

0:00 (33.6 N, 120.2 E)
6:00 (34.8 N, 119.9 E)
12:00 (35.8 N, 120.2 E)
18:00 (36.9 N, 119.7 E)

 

4. Results
In this section, we will  provide numerical tests on a real
case  of  flight  cancellations  affected  by  typhoons  for  the
proposed deep multimodal fusion and multitasking trajec-
tory prediction model. 

4.1    Flight scheduling under real typhoon data

τ = 1.5◦Under the real typhoon trajectory, when  is taken,
the affected regional flights are shown in Table 5. The red
colour  in  the  table  indicates  that  flights  from  the  depar-
ture place to the destination are prohibited from taking off
at  that  time.  It  shows  which  flights  will  be  affected  and
which flights will not be affected when the typhoon track
is known. From 0:00-6:00 on August 10th, Hangzhou and
Shanghai  flights  will  be  affected;  from  6:00-12:00  on
August  10th,  Hangzhou  flights  will  be  affected;  from
12:00-18:  00  on  August  10th,  Hangzhou  flights  will  be
affected;  from  18:00-24:00  on  August  10th,  Hangzhou
and  Shanghai  flights  will  be  affected;  from  12:00-18:00
on  August  11th,  Qingdao  flights  will  be  affected;  and
from  18:00-24:00  on  August  11th,  Qingdao  flights  will
be affected.

 
 

Table  5      Influences  of  the  actual  location  of  typhoon  Lichma  on  the  arrival  and  cancellation  of  flights  in  Beijing,  Qingdao,  Shanghai,
Hangzhou, Guangzhou and Taipei from August 9th to August 11th

Start point End point
August 9th August 10th August 11th

[0,6) [6,12) [12,18) [18,24) [0,6) [6,12) [12,18) [18,24) [0,6) [6,12) [12,18) [18,24)

Beijing

Qingdao (0,0) (6,0) (2,0) (2,2) (0,0) (6,0) (1,1) (4,2) (0,0) (2,7) (0,2) (0,8)

Shanghai (0,0) (17,1) (3,15) (0,14) (0,0) (0,18) (1,22) (0,13) (0,0) (17,3) (18,2) (11,3)

Hangzhou (1,0) (11,0) (2,4) (0,8) (0,1) (2,9) (1,7) (4,4) (1,0) (11,1) (5,1) (9,0)

Guangzhou (0,0) (13,0) (13,1) (4,3) (0,0) (9,4) (13,0) (7,0) (0,0) (12,1) (13,0) (7,0)

Taipei (0,0) (2,2) (1,0) (1,0) (0,0) (2,0) (2,0) (1,0) (0,0) (2,0) (1,0) (2,0)

Qingdao

Beijing (0,0) (4,0) (4,1) (2,1) (0,0) (4,0) (5,0) (3,1) (0,0) (2,2) (1,7) (0,5)

Shanghai (0,0) (8,1) (6,3) (0,10) (0,0) (0,11) (0,9) (0,9) (0,0) (6,5) (2,7) (2,7)

Hangzhou (0,0) (3,0) (3,1) (0,1) (0,0) (0,4) (0,4) (0,2) (0,0) (2,1) (1,3) (0,1)

Guangzhou (0,0) (3,0) (4,0) (4,0) (0,0) (3,0) (4,0) (3,2) (0,0) (3,0) (1,3) (0,5)

Taipei (0,0) (0,1) (0,2) (0,0) (0,0) (0,0) (1,0) (0,0) (0,0) (0,0) (1,0) (0,0)

Shanghai

Beijing (0,0) (18,0) (13,4) (1,14) (0,0) (1,16) (0,19) (0,15) (0,0) (8,8) (13,4) (14,1)

Qingdao (0,0) (9,2) (7,1) (0,11) (0,0) (0,11) (0,8) (0,10) (0,0) (0,12) (3,4) (3,7)

Hangzhou (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

Guangzhou (0,0) (15,0) (13,3) (1,14) (0,0) (0,15) (0,16) (4,12) (0,0) (13,1) (14,3) (11,2)

Taipei (0,0) (0,5) (0,8) (1,3) (0,0) (0,3) (0,8) (0,4) (0,0) (6,0) (8,0) (3,0)

Hangzhou

Beijing (0,0) (8,0) (8,1) (1,9) (0,0) (0,8) (0,8) (4,6) (0,0) (8,0) (1,8) (0,10)

Qingdao (0,0) (5,0) (0,1) (1,2) (0,0) (0,4) (0,1) (0,4) (0,0) (1,4) (0,1) (2,1)

Shanghai (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

Guangzhou (2,0) (7,0) (9,1) (1,8) (0,2) (0,8) (0,9) (2,7) (1,1) (5,3) (9,1) (8,0)

Taipei (0,0) (0,1) (0,1) (1,0) (0,0) (0,2) (0,0) (1,1) (0,0) (2,0) (0,0) (1,0)
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Continued

Start point End point
August 9th August 10th August 11th

[0,6) [6,12) [12,18) [18,24) [0,6) [6,12) [12,18) [18,24) [0,6) [6,12) [12,18) [18,24)

Guangzhou

Beijing (0,0) (8,0) (9,0) (8,3) (0,0) (7,1) (11,2) (11,0) (0,0) (8,0) (13,0) (10,1)

Qingdao (0,0) (1,4) (5,0) (2,0) (0,0) (4,0) (4,1) (2,1) (0,0) (0,4) (2,3) (2,1)

Shanghai (1,1) (17,0) (6,11) (0,10) (0,2) (0,17) (2,15) (5,7) (4,1) (13,9) (16,1) (9,1)

Hangzhou (2,0) (9,0) (3,5) (0,9) (0,2) (0,9) (1,8) (6,4) (1,1) (6,4) (8,0) (8,0)

Taipei (0,0) (0,1) (2,1) (0,0) (0,0) (1,0) (2,0) (1,0) (0,0) (1,0) (2,0) (0,0)

Taipei

Beijing (0,0) (1,0) (1,2) (1,0) (0,0) (1,0) (2,0) (2,0) (0,0) (0,0) (3,0) (2,0)

Qingdao (0,0) (0,1) (0,2) (0,0) (0,0) (1,0) (0,0) (0,0) (0,0) (1,0) (0,0) (0,0)

Shanghai (0,0) (0,4) (1,11) (0,0) (0,0) (0,2) (0,2) (0,1) (0,0) (6,0) (12,0) (1,0)

Hangzhou (0,0) (0,0) (1,1) (0,1) (0,0) (0,1) (0,1) (1,1) (0,0) (1,0) (2,0) (0,0)

Guangzhou (0,0) (0,1) (3,1) (0,0) (0,0) (0,0) (3,0) (1,0) (0,0) (1,0) (2,0) (0,0)
 

A comparison between Table 5 and Table 2 shows that
in fact, many flights do not need to be cancelled, but air-
lines  have  actually  cancelled  them.  For  example,  all  air-
ports would not be affected during August 9th,  but from
Table 2, it can be seen that some flights on August 9 were
cancelled, which caused a waste of resources. From 12:00
to 18:00 on August 11th, Qingdao Liuting Airport will be
affected,  but  according  to  the  information  shown  in
Table 2, there are still flights arriving at Qingdao Liuting
Airport  or  departing  from  Qingdao  Liuting  Airport,
which is very dangerous. 

4.2    Flight scheduling under forecast typhoon data

If the location of the typhoon can be predicted more accu-
rately, the waste of resources can be avoided as much as
possible,  and the risk of air crashes can also be reduced.
Using  the  deep  multimodal  fusion  and  multitasking  tra-
jectory  prediction  model  shown in Fig.  1,  it  is  predicted
that, from August 9th to August 11th, the trajectory coor-
dinates of  Lichma at  0:00,  6:00,  12:00,  and 18:00 are as
shown in Table 6.

τ

τ

Because  the  predicted  trajectory  would  have  a  certain
deviation relative to the real trajectory, we set the thresh-
old  value to be larger than the real typhoon trajectory.
When  is  set  to  2.0°,  the  affected  regional  flights  are
shown  in Table  7.  It  shows  which  flights  would  be
affected  within  the  threshold  range  and  which  flights
would  not  be  affected  by  predicting  the  typhoon  trajec-

tory.  From  0:00-6:00  on  August  10th,  Hangzhou  and
Shanghai  flights  would  be  affected;  from  6:00-12:00  on
August  10th,  Hangzhou  flights  would  be  affected;  from
12:00-18:00 on August 10th, Hangzhou flights would be
affected;  from  18:00-24:00  on  August  10th,  Hangzhou
and  Shanghai  flights  would  be  affected;  from  0:00-6:00
on August 11th, Hangzhou and Shanghai flights would be
affected;  from  12:00-18:00  on  August  11th,  Qingdao
flights  would  be  affected;  and  from  18:00  to  24:00  on
August 11th, Qingdao flights would be affected.
  
Table  6      Predicted  trajectory  location  of  Lichma  at  0:00,  6:00,
12:00, and 18:00 from August 9th to August 11th

Date Time Predicted trajectory location

August 9th

0:00 (26.658 N, 124.986 E)

6:00 (27.007 N, 123.023 E)

12:00 (27.905 N, 121.832 E)

18:00 (28.424 N, 121.794 E)

August 10th

0:00 (29.593 N, 121.144 E)

6:00 (28.627 N, 119.829 E)

12:00 (30.038 N, 1196.68 E)

18:00 (307.72 N, 120.367 E)

August 11th

0:00 (321.87 N, 120.733 E)

6:00 (34.672 N, 120.636 E)

12:00 (35.968 N, 119.747 E)

18:00 (374.26 N, 119.390 E)

 
 

Table 7     Influences of the predicted location of Typhoon Lichma on the arrival and cancellation of flights in Beijing, Qingdao, Shanghai,
Hangzhou, Guangzhou and Taipei from August 9th to August 11th

Start point End point
August 9th August 10th August 11th

[0,6) [6,12) [12,18) [18,24) [0,6) [6,12) [12,18) [18,24) [0,6) [6,12) [12,18) [18,24)

Beijing
Qingdao (0,0) (6,0) (2,0) (2,2) (0,0) (6,0) (1,1) (4,2) (0,0) (2,7) (0,2) (0,8)

Shanghai (0,0) (17,1) (3,15) (0,14) (0,0) (0,18) (1,22) (0,13) (0,0) (17,3) (18,2) (11,3)
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Continued

Start point End point
August 9th August 10th August 11th

[0,6) [6,12) [12,18) [18,24) [0,6) [6,12) [12,18) [18,24) [0,6) [6,12) [12,18) [18,24)

Beijing

Hangzhou (1,0) (11,0) (2,4) (0,8) (0,1) (2,9) (1,7) (4,4) (1,0) (11,1) (5,1) (9,0)

Guangzhou (0,0) (13,0) (13,1) (4,3) (0,0) (9,4) (13,0) (7,0) (0,0) (12,1) (13,0) (7,0)

Taipei (0,0) (2,2) (1,0) (1,0) (0,0) (2,0) (2,0) (1,0) (0,0) (2,0) (1,0) (2,0)

Qingdao

Beijing (0,0) (4,0) (4,1) (2,1) (0,0) (4,0) (5,0) (3,1) (0,0) (2,2) (1,7) (0,5)

Shanghai (0,0) (8,1) (6,3) (0,10) (0,0) (0,11) (0,9) (0,9) (0,0) (6,5) (2,7) (2,7)

Hangzhou (0,0) (3,0) (3,1) (0,1) (0,0) (0,4) (0,4) (0,2) (0,0) (2,1) (1,3) (0,1)

Guangzhou (0,0) (3,0) (4,0) (4,0) (0,0) (3,0) (4,0) (3,2) (0,0) (3,0) (1,3) (0,5)

Taipei (0,0) (0,1) (0,2) (0,0) (0,0) (0,0) (1,0) (0,0) (0,0) (0,0) (1,0) (0,0)

Shanghai

Beijing (0,0) (18,0) (13,4) (1,14) (0,0) (1,16) (0,19) (0,15) (0,0) (8,8) (13,4) (14,1)

Qingdao (0,0) (9,2) (7,1) (0,11) (0,0) (0,11) (0,8) (0,10) (0,0) (0,12) (3,4) (3,7)

Hangzhou (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

Guangzhou (0,0) (15,0) (13,3) (1,14) (0,0) (0,15) (0,16) (4,12) (0,0) (13,1) (14,3) (11,2)

Taipei (0,0) (0,5) (0,8) (1,3) (0,0) (0,3) (0,8) (0,4) (0,0) (6,0) (8,0) (3,0)

Hangzhou

Beijing (0,0) (8,0) (8,1) (1,9) (0,0) (0,8) (0,8) (4,6) (0,0) (8,0) (1,8) (0,10)

Qingdao (0,0) (5,0) (0,1) (1,2) (0,0) (0,4) (0,1) (0,4) (0,0) (1,4) (0,1) (2,1)

Shanghai (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

Guangzhou (2,0) (7,0) (9,1) (1,8) (0,2) (0,8) (0,9) (2,7) (1,1) (5,3) (9,1) (8,0)

Taipei (0,0) (0,1) (0,1) (1,0) (0,0) (0,2) (0,0) (1,1) (0,0) (2,0) (0,0) (1,0)

Guangzhou

Beijing (0,0) (8,0) (9,0) (8,3) (0,0) (7,1) (11,2) (11,0) (0,0) (8,0) (13,0) (10,1)

Qingdao (0,0) (1,4) (5,0) (2,0) (0,0) (4,0) (4,1) (2,1) (0,0) (0,4) (2,3) (2,1)

Shanghai (1,1) (17,0) (6,11) (0,10) (0,2) (0,17) (2,15) (5,7) (4,1) (13,9) (16,1) (9,1)

Hangzhou (2,0) (9,0) (3,5) (0,9) (0,2) (0,9) (1,8) (6,4) (1,1) (6,4) (8,0) (8,0)

Taipei (0,0) (0,1) (2,1) (0,0) (0,0) (1,0) (2,0) (1,0) (0,0) (1,0) (2,0) (0,0)

Taipei

Beijing (0,0) (1,0) (1,2) (1,0) (0,0) (1,0) (2,0) (2,0) (0,0) (0,0) (3,0) (2,0)

Qingdao (0,0) (0,1) (0,2) (0,0) (0,0) (1,0) (0,0) (0,0) (0,0) (1,0) (0,0) (0,0)

Shanghai (0,0) (0,4) (1,11) (0,0) (0,0) (0,2) (0,2) (0,1) (0,0) (6,0) (12,0) (1,0)

Hangzhou (0,0) (0,0) (1,1) (0,1) (0,0) (0,1) (0,1) (1,1) (0,0) (1,0) (2,0) (0,0)

Guangzhou (0,0) (0,1) (3,1) (0,0) (0,0) (0,0) (3,0) (1,0) (0,0) (1,0) (2,0) (0,0)
 

By comparing Table  7 with Table  2,  according  to  the
predicted  results,  all  flights  on  August  9th  would  not  be
affected; Qingdao Liuting Airport would be affected from
12:00 to 18:00 on August 11th. Comparing Table 7 with
Table  5,  although  the  predicted  results  cannot  optimize
flight  scheduling as  much as  the real  typhoon trajectory,
compared  with Table  2,  flight  optimization  can  still  be
carried out to a greater extent. 

4.3    Comparison of flight passability rate

ηban

ηtotal

We  use  to  denote  the  number  of  time  periods
during  which  a  flight  is  cancelled,  and  denotes  the
number  of  all  time  periods,  as  shown  in  (15)  to  express
the  flight  passability  rate,  that  is,  the  proportion  of  the
time  periods  during  which  the  flight  is  safe  to  fly  in  all
time periods.

η = 1− ηban

ηtotal
(15)

ηban

η = 1− 156
320
= 0.512 5

η = 1− 62
320
≈ 0.806

η = 1− 86
320
≈ 0.731

In Table  2,  when  we  calculate  the  flight  passability
rate,  if  there  are  flight  cancellations  within  the  time
period,  it  is  counted  in .  The  flight  passability  rate
shown  in Table  2 could  be  calculated  as

.  The  flight  passability  rate  shown

in Table  5 is .  The  flight  passability

rate shown in Table 7 is .
Therefore, under the condition of a known typhoon tra-

jectory,  the  flight  passability  rate  is  the  highest,  namely,
the flight  scheduling is  the best  and the resource utiliza-
tion  rate  is  the  highest.  Although  the  flight  passability
rate  under  the  forecast  result  is  lower  than  the  known
conditions  of  the  typhoon,  compared  with  the  real  flight
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schedule,  the  flight  passability  rate  can  be  greatly
improved  through  prediction,  so  the  precise  predicted
result can optimize the flight schedule. 

5. Conclusions
To  contain  the  negative  impacts  of  extreme  weather
(typhoon  in  this  research),  airlines,  airports,  associations
and  regulatory  bodies  are  considered  ways  to  better
address  fallouts  from  climate  change  and  extreme
weather conditions. They are turning to flight scheduling
optimization  under  typhoon  weather  for  solutions  that
mitigate some of these challenges. In this research, a deep
multimodal  fusion  and  multitasking  trajectory  prediction
model  is  proposed  as  an  automated  planning  tool  that
analyses  flight  schedules  and  generates  optimal  resource
levels. Actual case studies have shown that the algorithm
converges quickly, which can effectively reduce the num-
ber of unnecessary flight cancellations compared to exist-
ing flight scheduling and provide help for the new gene-
ration of flight scheduling systems to improve the predic-
tion reliability under extreme weather conditions.

Major  future  research  work  will  include  discussing
other adverse weather events, e.g., fog, snow storms, and
intense falls; and considering more comprehensive uncer-
tainties, e.g., airport capacity, holidays, and epidemic sit-
uations.  Looking  forward  to  the  future  development  of
artificial  intelligence  technology,  further  advance  mea-
sures  will  be  implemented  to  both  predict  weather
impacts and minimize their disruptions on air transporta-
tion and related operations.
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