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Abstract: This paper systematically introduces and reviews a
scientific exploration of reliability called the belief reliability.
Beginning with the origin of reliability engineering, the problems
of present theories for reliability engineering are summarized as
a query, a dilemma, and a puzzle. Then, through philosophical
reflection, we introduce the theoretical solutions given by belief
reliability theory, including scientific principles, basic equations,
reliability science experiments, and mathematical measures. The
basic methods and technologies of belief reliability, namely,
belief reliability analysis, function-oriented belief reliability
design, belief reliability evaluation, and several newly developed
methods and technologies are sequentially elaborated and
overviewed. Based on the above investigations, we summarize
the significance of belief reliability theory and make some
prospects about future research, aiming to promote the develop-
ment of reliability science and engineering.
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1. Introduction

Reliability is a significant attribute of products. It is gene-
rally regarded as the capability that a product can per-
form its specified functions under specified conditions
over a specified period of time [1]. Improving and veri-
fying reliability have become one of the most crucial
aspects in various engineering fields.

Essentially, reliability originated from people’s desire
for safety, stability, longevity and other positive stuff. In
this sense, we can say that reliability is an ancient but still
young engineering science. It is ancient because there has
been a constant quest for reliable life since the dawn of
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mankind. From using thicker tree trunks to cross rivers to
fighting in heavier armor, people used experiences to pur-
sue and ensure reliability in ancient days. It is still young
because it was not until around the 1950s that people
began to use quantitative methods to ensure and enhance
reliability [2,3]. Compared with mechanics and electric-
ity engineering, the 70-years history of modern reliability
theory is still too short.

Since the emergence of quantitative reliability theories
in the 1950s, people have used a plenty of techniques to
model, analyze and design products’ reliability quantita-
tively [4-6], and obtained a great number of achieve-
ments. However, due to the in-depth application of inno-
vative technologies in new products and the continuous
compression of product development cycles, many classi-
cal reliability theories tend to be unable to adapt to this
new trend in real engineering. For example, the
success/failure logic-based methods can only provide
limited guidance for product function and performance
design [7], the small sample size makes the probabilistic
statistics method fail to generate a reasonable distribu-
tion [8,9], and the new technology brings unknown fai-
lure mechanisms and serious epistemic uncertainty
[10-12]. These problems have been always challenging
the reliability theoretical framework and putting reliabi-
lity engineers into an embarrassed situation. Where
should reliability engineering go from here? Do we have
a better theory to solve these problems?

In recent years, Kang has provided an alternative solu-
tion, which is called the belief reliability theory. The con-
cept of belief reliability was first proposed in 2013 [13],
and then refined by Kang et al. in 2020 [7]. Belief relia-
bility tries to interpret reliability with new scientific per-
spectives and new mathematical tools, which formulate a
new theoretical framework of reliability. Till now, belief
reliability has made numerous new developments, and
this scientific exploration performs well in various engi-
neering scenarios. To comprehensively demonstrate the
basic thoughts, basic principles and basic methods of
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belief reliability theory, in this paper, we will give a sys-
tematic overview of the belief reliability theory, inclu-
ding the motivation and origin, the theoretical discourse,
the basic methods and technology, so as to show its
present results and overall framework.

The remainder of this paper is structured as follows. In
Section 2, the background and motivation of belief relia-
bility are first overviewed. This paper then goes on to the
theoretical discourse of belief reliability in Section 3,
which embeds the most central idea in belief reliability
theory. The theoretical framework of belief reliability is
also summarized in this section. Section 4 further elabo-
rates the belief reliability methods and technologies. In
Section 5, we summarize the contributions and signifi-

cance of belief reliability theory and make some
prospects about future research.

2. Origin of belief reliability

In this section, we will elaborate the basic motivation to
develop the belief reliability theory. We will first provide
a brief survey of the history of reliability engineering.
Then, the problems faced by the traditional reliability the-
ories are discussed. The main contributions of belief reli-
ability are summarized finally.

2.1 Brief history of reliability theory

In this paper, the history of reliability is divided into four
stages, which is shown in Fig. 1.
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Fig. 1 Stages of reliability history

The concept of reliability first gained prominence in
the 1940s, specifically during World War II (WWII)
when a large number of United States (U.S.) weapons
failed due to unreliable vacuum tubes. Around the same
time, reliability ideas began to take shape in Germany
during the flight testing of the V1 “flying bomb” (missile)
[14]. After the war, Robert Lusser, a German engineer
who worked on the V1 missile, formally published his
ideas about calculating system reliability using the pro-
duct of the reliability of each component, with component
reliability obtained through statistical methods [3,15].
This marked the first quantitative expression of system
reliability and became known as Lusser’s Law [16].

During the 1950s and early 1960s, reliability enginee-
ring has experienced significant growth and development.
One of the key events during this period was the release
of a report on the reliability of electronic products in
1957 by the Advisory Group on Reliability of Electronic
Equipment (AGREE) [2]. The AGREE report laid the
foundation for modern reliability theory and is consi-
dered a significant milestone [17]. Based on the report,
the U.S. military developed various standards and specifi-
cations regarding requirements, outlines, and tests to
guide reliability work more systematically [18], such as
MIL-STD-785 [19], MIL-HDBK-217 [20], and MIL-
STD -781 [21]. In addition, the physics-of-failure (PoF)
approach emerged during this period and attracted great

attention, which opened a new area to examine failure
from a micro perspective and acquire failure time using
physical knowledge [22].

After the late 1960s, reliability engineering entered a
prosperity stage. Reliability has been applied in various
areas and attracted enormous attention all over the world.
In the U.S., the design and testing methods were further
applied to guarantee the reliability of the F-111 aircraft,
the Apollo spacecraft, the Minuteman missiles, and other
equipment. Japan applied the reliability technologies to
railway, automotive and civilian electronics industry
[23,24]. Accompanied with the total quality control,
Japan created numerous national brands such as Toyota,
Hitachi and NSK. Soviets also contributed greatly to reli-
ability theories when they adopted complex systems like
fuel energy complexes and multicomputer complexes
[25], in which the redundancy technology, statistics,
Markovian process, etc., were further studied. Other
countries, such as UK, France and China, also built pro-
fessional reliability organizations sequentially for reliabil-
ity research and applications [18,26].

With the development of technology and the increase
of system complexity, reliability theory entered a new
development stage after the 1990s. Besides the continu-
ous exploration of reliability models for dynamic and
complex systems [27] (e.g., dynamic fault tree, Petri net,
goal oriented (GO) method), people also started to apply
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digital and intelligent technologies to reliability enginee-
ring. A representative technique is the prognostics and
health management (PHM) [28], which is oriented to the
product operation and maintenance (O&M) process, and
predicts and infers the product status through intelligent
methods, thus facilitating condition-based maintenance
[29]. In recent years, the digital twin-based reliability
technology has gradually emerged and is now mainly
used in the product O&M process [30].

2.2 Problems of the present theory

Formally, the reliability is usually defined as the capabi-
lity that a product can perform its specified functions
under specified conditions over a specified period of
time. Since the release of the AGREE report, the follow-
ing expression is widely adopted to quantify reliability
[1,2]:

R(t) =Pr{T > 1} (1)

where R(f) is the reliability at the specified time ¢ and is
also called the reliability function, T is the time to fail-
ure of the product, Pr{-} is the probability measure. This
expression indicates that the reliability refers to the prob-
ability that a product will function normally over a cer-
tain time ?.

From the reliability history, we may find that the above
concept and expression have been widely applied and
adopted in textbooks, standards, and real products. Even
though, from the perspective of system science, the
present theory is still incomplete in essentially describing
the product’s ability to be reliable. This section will ela-
borate three issues.

(1) A query for reliability function

It can be easily figured out that reliability is a kind of
ability of products, which is directly related to the speci-
fied functions, the specified conditions, and the specified
time. The significance of three ‘“specified” issues are
stated clearly in the definition, but in the reliability func-
tion given by (1), only the “specified time” can be found.
Where are the other two “specified” issues?

More specifically, reliability ultimately lies in the
“specified function” of a product, which is greatly related
to how the product is designed, what environment it is
subject to, how long it works, and how people require it.
Confusingly, when we quantify reliability, only the time
factor is involved, while the influence of other factors is
more or less ignored. This indicates the present reliabi-
lity function is not consistent with the reliability defini-
tion.

In fact, this is actually a problem left over by history. If
we date back to the era of reliability’s birth, it was actu-
ally the statistical quality control techniques emerged

with mass production in the 1920s [17] and the Ameri-
can data culture formed therefrom [31] that made Ameri-
can scientists more inclined to transform the product reli-
ability problems into statistical analysis problems. Since
the failure time reflects the length of time that the prod-
uct remains functional, the most straightforward method
to quantify reliability could be to analyze the products
failure time data using statistical methods, and this fur-
ther derived (1). Since such a form of reliability function
was effective at that time, it was not explored in depth
whether such a representation covered all the elements of
reliability.

With the increase in the complexity of product func-
tions and the diversity of the use scenarios, people
seemed to be aware of this problem to some extent, which
led to the birth of physical methods of reliability. Unfor-
tunately, the study of reliability physics still comes down
to the acquisition of statistical parameters. For example,
the covariate models are used to obtain failure rates, and
the PoF models can be utilized to obtain statistical pro-
perties of the time to failure [32].

Since the idea of “reliability is a statistical problem” is
deeply rooted in people’s minds, all the studies of relia-
bility engineering have ultimately gone to the description
of the inconsistency of product failure time. Clearly, they
cannot explain the essential question of “what makes a
product reliable”. Therefore, a more complete reliability
function is urgently needed.

(i1) A dilemma of probability

The reliability function clearly shows that reliability is
measured by probability. As stated before, this stems
from the perception of “reliability is a statistical problem”
that arises from mass production. Probability and proba-
bilistic statistics, as basic methods for describing uncer-
tainty in mass production processes, naturally become the
mathematical tools for reliability problems. By analyzing
the failure time data using probabilistic statistics, the
product reliability can be easily calculated [5,33]. How-
ever, with time going by, various facts, especially the
small sample problem, have shown that these tools are
now in an embarrassed situation.

Essentially, the above issue is due to the properties of
the mathematical tools. The most original purpose of
probability is to characterize the trend of an event fre-
quency over a large number of trials. Consistently, there
is a prerequisite for probabilistic statistics called the “law
of large numbers”, stating that only when the sample size
is close to infinity does the frequency tends to probabi-
lity [34]. When applied to product reliability, the core
task will be to acquire the variability of failure times with
failure data. Nevertheless, unlike the statistical control in
the mass production, failure time data that is oriented by
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reliability statistics is quite difficult to obtain, and the
small sample problem is a common phenomenon in relia-
bility engineering. In this case, the probabilistic statisti-
cal methods will fail in some sense. This makes us fur-
ther reflect on the rationality of using probability theory.

It is undeniable that the inconsistency (uncertainty) of
failure time in reliability can be described with probabi-
lity when the data are sufficient, but the using scenarios
of probability are really limited due to its own dilemma
explained above. More critically, reliability is not just a
problem of uncertainty, so the measurement of failure
time inconsistency (uncertainty) is not the whole picture
of reliability. Nowadays, products are becoming more
and more complex. We are more concerned about how
the products can accomplish their functions and avoid
failures, while the statistical laws of their failure time are
not even that important. Therefore, the identification and
quantification of uncertainty for reliability engineering
need further discussion and exploration.

(iii) A puzzle of the system reliability

In today’s reliability engineering, the Lusser’s Law is
still widely used in the system basic reliability calcula-
tion and the reliability allocation [35]. Let us consider a
series system consisting of 50 identical components with
reliability 0.9. If these components are working indepen-
dently, the system reliability will be 0.005. Obviously,
this result makes no sense in decision making, because it
tells you that the product is totally unreliable. In fact,
even when we use a series design, the actual reliability
will not be that low. Moreover, let us consider a simplest
reliability allocation problem for this system with a high
reliability requirement of 0.9999, then each component
reliability should be at least 0.999998, which is really
hard to meet for the components. Further, according to
the property of probability, it is nearly impossible to ver-
ify whether the designed component is that highly reli-
able through tests.

These bad results are essentially caused by the misuse
of the product theorem in the probability theory. In fact,
to use the product theorem in reliability, we must accept a
strong assumption that the components are independent
and are working all the time. However, according to the
mathematical definition, the independence is usually not
able to be acquired until you get the result of system reli-
ability and component reliability. Moreover, the compo-
nents may not work uninterruptedly in the system in
many cases. In other words, the above assumption is usu-
ally not valid in real cases, and the way of calculating and
allocating the system reliability simply derived from the
logical relationship of components using the product theo-
rem is not in line with the system reality. Unfortunately,
most of the books or engineering standards are still keen

to guide engineers in using this formula for system relia-
bility, which may cause various confusions.

From the perspective of systems engineering and sys-
tems science, we may be able to better understand the
puzzle of system reliability. On the one hand, a system
consists of individual components and their interrelation-
ships [36], that is, the elements of the system are essen-
tially physically interrelated, whether in terms of struc-
ture, function, or timing relationships. On the other hand,
systems are “emergent” in nature [37], i.e., the character-
istics and behaviors exhibited by a system are not simply
the sum or product of the characteristics and behaviors of
all components. Therefore, the way to use product theo-
rem is debatable. The system reliability calculation is still
a puzzle for a lot of reliability engineering scenarios, so it
is necessary to start with the physical properties and func-
tional behaviors of the system (including structural and
functional correlations, and timing characteristics), rather
than only focus on the logic relationships of the compo-
nents.

2.3 Some efforts made regarding the problems

According to the above discussion, it can be found
that these problems have seriously affected the effective-
ness of reliability engineering techniques. Facing these
issues, researchers do have made some efforts to address
these problems. We hereby briefly review them in four
aspects.

(1) Structural reliability method

As a branch of reliability research, the structural relia-
bility method provides a different reliability calculation
method from (1), i.e., it uses the probability that the limit
state function is greater than 0 to characterize the struc-
tural reliability [38]. The structural reliability method
gives us a great inspiration that in the reliability measure-
ment, various factors affecting the product reliability
should be taken into account as much as possible, and it
is not necessary to be restrict to the expression of (1), just
as stated in the “query of reliability function”. However,
the structural reliability method is so far dedicated only to
structural studies, that is, the limit state function is merely
used for the static or kinematic related structural charac-
teristics such as stress, deformation, deflection, and
movement accuracy, but has failed to be migrated and
applied in other fields, not to mention forming a common
expression with the reliability calculation method of (1).
This drawback comes to the fore when we face a general
system consisting not only of mechanical structures, but
also of electronic devices, control systems, etc. Besides
the description of structural characteristics, the role of
other properties like electrical performance, thermal per-
formance, and control stability, should also be consi-



ZHANG Qingyuan et al.: Belief reliability: a scientific exploration of reliability engineering 623

dered in system reliability analysis.

(i1) Small sample method

Small sample problem is usually interpreted as the
effect of epistemic uncertainty [39] and people try to

Table 1

solve this problem by introducing different mathematical
tools to reliability. The representative methods are previ-
ously reviewed and compared by Kang et al. [10], and
here we list some important findings in Table 1.

Review of representative methods considering epistemic uncertainty

Representative method

T
ype (mathematical basis)

Existing problem if applied to reliability engineering

Due to the inclusion of subjective information, Bayesian probabilities are not probabilities
in the sense of frequency, so it is questionable to still follow Kolmogolov’s axiomatic

Bayesian reliability
(Bayesian theory)

system for subsequent calculations.
When available information is scarce, the results of Bayesian reliability analysis are

greatly sensitive to the prior knowledge and are often not sufficiently complete to support

decision making.

Imprecise probability-based
method Evidence reliability

(evidence theory)

The basic formula of Bel < Pr < Pl has not been strictly proved.
The results of the interval form will cause interval expansion problems in the system

reliability calculation.

The results can also bring interval expansion problems.

Interval reliability
(interval analysis theory)

The interval analysis is not self-consistent in mathematics (for two events related to
interval analysis with A C A, we may find n{A} > n{A}, where = is a likelihood measure;

one can refer to [40] for an example).

New mathematical measure-
based method

Posbist reliability
(fuzzy theory)

We can derive results that are not self-consistent, i.e., the sum of reliability and
unreliability is not equal to 1.

They do can quantify the epistemic uncertainty associ-
ated with small sample problems to some extent, but they
still have different problems when applied to reliability
engineering. Generally, these methods can be mainly ca-
tegorized as two types [10]. One is to use different mathe-
matical methods (e.g., Bayesian theory [41], evidence
theory [42], interval theory [43]) to model and quantify
the epistemic uncertainty brought by small samples, and
then use imprecise probabilities, i.e., intervals of proba-
bility, to measure the product reliability. Since various
subjective information is often involved in these
approaches, they are actually contradicted with the origi-
nal meaning of probability. In other words, the obtained
results of these methods may not be strict probabilities
but are still interpreted as probabilities and computed
using the operational laws of probability theory. This will
lead to the interval expansion problem, that is, the epis-
temic uncertainty will be excessively amplified, making
the reliability measurement nearly meaningless in practi-
cal engineering [10]. The other type directly discards
probability and chooses another mathematical measure to
measure reliability. The most representative is the pos-
bist reliability [44], which uses the possibility measure (a
measure defined in fuzzy theory) as the basic measure of
reliability. However, as discussed by Kang et al., posbist
reliability does not satisfy self-duality, i.e., the sum of
reliability and unreliability is not equal to one, which will
lead to counterintuitive consequences in reliability engi-
neering [10,45]. In addition, posbist reliability ignores the
existence of uncertainty with large sample features and

only one-sidedly quantifies the epistemic uncertainty,
which is also incomplete.

(ii1) Quantification of margin and uncertainty (QMU)
method

In the 2000s, the three U.S. national laboratories (Los
Alamos, Lawrence Livermore, and Sandia) have pro-
posed a QMU method in the course of annual certifica-
tion of nuclear weapons [46,47]. The core idea is to deter-
mine whether the product is reliable by quantifying the
designed performance margin M and uncertainty U and
calculating the confidence ration of CR = M/U, where
CR > 1 means the system is reliable. The QMU approach
is indeed very enlightening since the concept of “perfor-
mance margin” is a more general means of describing
system reliability and fits well with the need to construct
a scientific system of reliability. However, the QMU
method also has significant shortcomings that should be
improved. Since QMU is mainly oriented to the annual
certification of nuclear weapons, the information pro-
vided by CR is usually “pass” or “fail”, and other infor-
mation is very limited, which in turn tends to bring new
difficulties to other reliability activities, such as system
reliability design. This is because that the QMU method
does not emphasize much on the physical relationship
between performance margins and system design vari-
ables, environmental variables and other factors [48], but
focuses more on the integration and evaluation of various
types of data reflecting performance margins [49], so it is
difficult to guide the design and production of systems
based on reliability metrics (or specifically, the CR value).
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(iv) Existed scientific exploration

In 2017, Rocchi published a book with a very resound-
ing assertion: Reliability is a New Science [50]. In this
book, he attempted to study reliability in a different view-
point and explain the laws exhibited in reliability engi-
neering from the perspective of fundamental physics
using a tool of reliability entropy [51]. In this year, a
panel discussion on “Is reliability a new science” was
held in the International Conference on Mathematical
Methods in Reliability, and a corresponding special issue
on journal Applied Stochastic Models in Business and
Industry was organized to make a worldwide discussion
[52]. Although some scholars believe that there may not
be a scientific interpretation of reliability or this discus-
sion is not very meaningful [52—55], some others believe
that we should look at reliability from a more scientific
perspective rather than limiting it to technology
[52,56,57].

In fact, since the 1980s, Chinese scholars have been
treating reliability as a science and have explored and dis-
cussed the related methodology [58]. Song studied the
relationship between reliability and failure study [59],
and proposed the idea of constructing a failure science to
complement the reliability theory [60]. Zhong et al. stu-
died the philosophical idea of failure science based on the
practice of material fatigue and electrical and mechanical
systems, and proposed the concept of “failurology”,
which means a science for failure [61,62]. In recent years,
Sun has claimed that the theoretical basis of reliability
analysis may require the assistance of the “applied theo-
retical physics” [63], and his team tried to interpret some
reliability concepts such as time-variant hazard functions
using the maximal entropy principle of statistical
mechanics [64,65]. Unfortunately, all the above explo-
rations did not result in a complete scientific theory sys-
tem for reliability engineering till now.

The authors of this paper have also participated in the
scientific exploration of reliability [56]. Though we agree
with the viewpoint of Prof. Rocchi that reliability is a sci-
ence, we still differ from his basic ideas in sight of how to
interpret the reliability science. The entropy-based relia-
bility theory is gorgeous, but it seems to be limited in
guiding engineering practices. In our opinion, reliability
originates from human’s practice, which indicates that
reliability science should be extracted from engineering
to better solve engineering problems; in other words, reli-
ability should be an engineering science. We philosophi-
cally analyze the validity of reliability science from the
perspective of human practice and subject-object relation-
ship, and draw the conclusion that “reliability science is
the unity of certainty and uncertainty” [56], based on
which we have started our new exploration of the science

for reliability engineering—the belief reliability theory.
2.4 Belief reliability theory: innovation in China

As discussed earlier, people have attempted to solve the
problems in reliability engineering from various perspec-
tives, but still have not fully scientifically resolved “the
query of reliability function”, “the dilemma of probability
and “the puzzle of system reliability” that we mentioned.

From the perspective of constructing reliability sci-
ence, the existing reliability theory and methods are still
in a fragmented state and are not strong enough to sup-
port the scientific edifice of reliability. Delightfully, these
attempts have given us great encouragement and inspira-
tion, and have promoted the birth of belief reliability.

The concept of “belief reliability” was proposed by
Kang and his team from Beihang University in 2013 [13].
Later, a relatively complete theoretical and methodology
framework of belief reliability was formulated in around
2020 [7]. Belief reliability theory is an innovative theory,
which aims to provide a scientific way to measure,
model, design, and verify products’ reliability. Briefly
speaking, belief reliability theory addresses the three
problems mentioned above from the following three per-
spectives:

(i) Belief reliability theory proposed three scientific
principles and three basic equations of reliability, based
on which the causal relationship between product reliabi-
lity and specified functions, specified conditions, and
specified time can be constructed, thus enabling a more
reasonable reliability measurement.

(i1) Belief reliability theory extends the measurement
of uncertainty. The theory adopts a new axiomatic mathe-
matical theory called uncertainty theory [66] to measure
epistemic uncertainty, and continues to employ probabi-
lity theory for aleatory uncertainty, thus forming a com-
prehensive uncertainty quantification framework.

(iii) Belief reliability theory systematically considers
the emergence property of systems. The modeling of reli-
ability is performed based on the functional principles of
the system and the correlations of the constituent ele-
ments, thus providing a more scientific description and
characterization of the system reliability.

The first one makes belief reliability be able to organi-
cally incorporates all the reliability-related elements into
the reliability function and thus answer the query for reli-
ability function. The second one makes belief reliability
be able to better cope with small sample problems with
uncertainty theory and reliefs the dilemma of probability.
The third one makes belief reliability be able to describe
product reliability at system level with a systematic cha-
racterization of the system function and physical depen-
dence, thus overcoming the puzzle of system reliability.

T2
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To summarize, the belief reliability theory attempts to
explore a more scientific method for reliability engine-
ering. This theory is inspired by the philosophical think-
ing of Chinese scientist and engineers and embraces peo-
ple’s good vision of reliability science. In the following
part of this paper, we will elaborate the foundations of
belief reliability theory and review the present research
and applications of it.

3. Theoretical discourse of belief reliability
3.1 Philosophical reflection

The research of belief reliability begins with some philo-
sophical reflections about reliability. Zhang et al. claimed
that reliability is definitely an engineering science ori-
ented to the world of failures, where the failures are stu-
died and resolved to achieve system optimization [56].
Since failure comes from the cognition and experience of
people, it possesses a nature of subordination to human
beings. To be further, the ultimate reason why the system
generates failures is that humans are practical beings with
the unity of certainty and uncertainty [7]. Therefore, the
meaning of reliability should be re-examined from the
perspective of certainty and uncertainty.

The certainty of reliability is reflected in two aspects.
From the perspective of the object, the product reliability
has its objective laws that are usually deterministic and
can be grasped, such as the function of products and the
trend of performance degradation. It is easy to know that
these deterministic laws of reliability are closely related
to the product’s own properties (inner factors) and exter-
nal environment or conditions (external factors). Diffe-
rent influencing factors can result in different functions,
performances, and evolution processes of a product when
being used. From the perspective of the subject, human
thought is with sovereign [67], i.e., human beings can
always understand and grasp the laws of objective exis-
tence and make correct practical choices under certain
historical conditions, such as to avoid, locate and repair
possible failures. Moreover, whether a product is reliable
or not often depends on the subject’s experience and
practice. Specifically, reliability depends to a large extent
on how much the subject (people) require and expects the
object (product) when using it. This is a certainty issue
that should and must be clarified in reliability.

The uncertainty of reliability is also reflected in two
aspects. From the perspective of the object, the real world
is filled with various forms of risks, which create uncer-
tainty in the product performance and failure process.
This kind of uncertainty is usually manifested as aleatory
uncertainty. From the perspective of the subject, human
thought is also with non-sovereign [67], i.e., people’s
understanding of the objective world is always limited,

which may generate a systematic bias between practice
purposes and results, thereby causing failures. This kind
of uncertainty can be interpreted as epistemic uncertainty.
Generally, the certainty parts of reliability (including the
internal and external influencing factors from the object
aspects, and the use requirements from the subject
aspects) are often affected by uncertainty to a greater or
smaller extent. In practical problems, depending on dif-
ferent product characteristics and use scenarios, the kinds
of uncertainty of these factors may be cither aleatory or
epistemic.

Actually, the three “specified” elements have shown us
some key points. First, the core of reliability is the speci-
fied function, which is determined by some internal
mechanisms and people’s requirements. This is a cer-
tainty result or an external appearance after the product is
designed and manufactured according to specific influ-
encing factors. Second, the time scale requirement for
reliability is given by the specified time, in which the
product should not be fundamentally changed. It implic-
itly reflects a certainty evolutionary process and rules of
the product in a certain time period. Of course, there is
also uncertainty in the evolutionary process because of
the variability of different factors. Third, the use scenar-
ios embedded in reliability is the specified condition,
showing the various internal and external influences. This
reflects that the product is always in an uncertain environ-
ment with dynamic changes. We should say the failures
that emerge in people’s practice are essentially caused by
the contradiction between certainty and uncertainty.

According to the above analysis, reliability should be
regarded as an integration of certainty and uncertainty,
and the certainty part may be even more important in reli-
ability engineering, because the certainty laws are the
basis for generating uncertainty. In this sense, the reliabi-
lity theory should be used to optimize certainty and
resolve uncertainty of products. Only through exploring
the certainty and understanding uncertainty can we better
quantify reliability. Based on the thinking of integrating
certainty and uncertainty, belief reliability theory pre-
sented three scientific principles, which are shown in
Subsection 3.2.

3.2 Scientific principles

In belief reliability theory, reliability is first a problem of
certainty, i.e., whether a product is reliable or not depends
on the margin (the distance between performance and its
requirement) and the degradation law of the product. The
greater the margin is and the slower the degradation is,
the more reliable the product is. Reliability is also a prob-
lem of uncertainty, i.e., the various uncertain factors will
jointly affect the magnitude of margin and the trend of
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degradation. Therefore, Kang et al. summarized the fol-
lowing scientific principles of reliability [7,45]:

Principle 1 Margin-based reliable principle: the per-
formance margin determines how reliable the product is.

Principle 2  Eternal degradation principle: the mar-
gin of the product always undergoes degradation along
the time.

Principle 3  Uncertainty principle: the margin of the
product is uncertain.

The margin-based reliable principle points out the most
basic demand of people to the products. A larger margin
implies that the product can perform its specified func-
tion more effectively (the product is stronger and harder
to fail). The eternal degradation principle highlights the
objective law of product operation. Products inevitably
undergo an irreversible degradation process over an
infinitely long time scale. The uncertainty principle
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points out another element of reliability practice, i.e., the
uncertainty. It is not enough to simply understand the cer-
tainty laws of margin and degradation; we must also con-
sider the impact of different types of uncertainty.

Essentially, reliability is regarded as a kind of engi-
neering science guided by the above three scientific prin-
ciples. As Qian stated in Engineering Cybernetics [68],
“an engineering science aims to organize the design prin-
ciples used in engineering practice into a discipline and
thus to exhibit the similarities between different areas of
engineering practice and to emphasize the power of fun-
damental concepts”, the reliability scientific principles
are derived using inductive method based on extensive
experiences gained during the product design and manu-
facturing processes. The aim is to capture the essence of
what makes products reliable. This process is depicted in
Fig. 2.

Product design principles and experiences

Generalized reliability principle

Architecture & | . partial coefficient
machinery « Safety factor
products LI
@ Deratine desien How to ensure product reliability?
Electronic . Protecti%/e des%gn . * Er}hance the strength »
products . « Disperse the stress
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Compl,
ompTex « Feedback control
systems .
Machiner - Fatigue design
y « Lubrication
products . Product performance degrades .
@ ) ‘ over time scale »
Electronic * Degradation test « Delay the degradation
* Thermal design
products .
« Process control
« Statistical ana]ysis Uncertamty 18 everywhere
@ All products - Reliability testing « Control random fluctuation »
« Failure mode and effect * Accumulate knowledge
analysis

Fig. 2 Inductive process of reliability scientific principles

First, various design principles and experiences have
taught us that we can make products stronger or safer by
drawing on related disciplinary knowledge. Some tools
commonly used to ensure or enhance product reliability
are listed in the first row of Fig. 2. For example, many
structural reliability related standards or codes specify
partial coefficient or safety factors for different struc-
tures to increase their design strength [69]. For electronic
products, derating and protective design are often used to
reduce or isolate the impact of external environments on
components [26,70]. For more complex products, redun-
dancy or feedback methods are often employed to
increase their ability to resist internal and external distur-

bances [71]. By examining the underlying principles of
these tools, we can see that they either enhance the
strength of the product or disperse the stress that the
product is experiencing. In this sense, reliability is essen-
tially determined by the margin, which characterize the
distance between the product current performance status
and its functional boundaries. The above thinking forms
the first principle.

Second, engineering practices have consistently shown
that over a long enough time scale, any system will
inevitably deteriorate. This means that products are sub-
ject to degradation processes that significantly impact
their lifetime and user experience. To address this, engi-
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neers use various methods, such as fatigue design, lubri-
cation, and thermal design, to delay the degradation pro-
cess. For more refined designs, degradation testing is ne-
cessary to explore the degradation characteristics of pro-
ducts, such as their degradation path and rate. The above
discussion highlights the origin of the second principle of
reliability.

Third, as Leibniz once said, “no two leaves in the
world are exactly the same”, and the same applies to the
production of products. According to our philosophical
understanding of reliability, uncertainty permeates every
aspect of reliability practice. Engineering experiences
have also taught us this fact. For instance, random fluctu-
ations can cause stress to exceed the product strength at
some point, or an unknown failure mechanism can occur
under new use conditions. Therefore, in product design
and production processes, various measures and statisti-
cal methods are used to quantify variability and accumu-
late knowledge, with the aim of controlling the various
uncertainties. As a major enemy of reliability, uncer-
tainty constitutes a reliability principle.

3.3 Basic equations

On the basis of the scientific principles, some basic equa-
tions of belief reliability theory are further proposed. The
equations are first given by Zhang et al. [56] in the philo-
sophical thinking of the theoretical discourse of reliabi-
lity. Later, they are refined by Kang et al. [7,45]. The
specified time, the specified condition and the specified
function are all included in these equations. In this paper,
we would like to give some more details and explana-
tions about these equations. The equations are expressed
as follows:
(i) Equation No.l—Margin equation:

M =d(P,Py,).

(i1) Equation No.2—Degradation equation:
P=f.(X7Y,0.

(ii1) Equation No.3—Measurement equation:
R = u{M > 0}.

In these equations, three quantities are the core points,
i.e., the performance P, the margin M and the reliability
R. These quantities are related to three functions, i.e., the
distance function d(-), the degradation function f,(-) , and
the measure function uf-}. The influencing factors are
also listed within the functions, where Py, is the thresh-
old of P, X is the vector of product internal variables
(e.g., material, size, layout), Y is the vector of external
variables (e.g., operating and environment conditions), #
is the reversible time (or Newton time), ¢ is the irre-

versible time (or degradation time) with specific direc-
tion, and is also usually written as 7 to emphasize its
directional properties, and the wave line above the M
means a quantification of uncertainty. For convenience,
these equations are labeled with numbers according to
their usage.

Equation No.l is called the margin equation, which
corresponds to the margin-based reliable principle. It
characters a distance between the performance and its
threshold. In the equation, P describes the specific form
and exhibited features of a product to perform its func-
tion, while Py, is determined according to our require-
ments of the specified function. According to the charac-
teristic of performance, the distance function may have
different forms [10,45]. This equation has implied a truth
of reliability, that is, a greater value of margin indicates a
more reliable product.

Equation No.2 is called the degradation equation,
which corresponds to the eternal degradation principle. It
shows a quantitative description of the degradation pro-
cess of the performance, whose degradation path is
related to X, Y and ¢. The subscript ¢ of the degradation
function f;(-) is a time vector [50], which is essentially
different with the reversible time # (the difference will be
explained later). It means the degradation process is
directional and irreversible, indicating that degradation
equation only describes the system behavior with the time
flows positively (e.g., from 0 to ¢) and the performance
status cannot go back to any former status without any
external energy input or intervention in the degradation
process.

Equation No.3 is called the measurement equation,
which corresponds to the uncertainty principle. It is
essentially an uncertainty quantification of the event that
the margin is greater than 0, since a positive margin
means the product can accomplish the specified function.
According to different types of uncertainty, different
mathematical measures should be used. For example,
probability measure, uncertain measure and chance mea-
sure are all candidate measures.

By integrating the three basic equations, we can recog-
nize that R in Equation No.3 is ultimately an abbreviated
form of R(X,Y,t,t,Py), which indicates that the reliabil-
ity metrics is determined by all related factors from Equa-
tion No.1 and No.2. From the perspective of the reliabil-
ity definition, it can be found that the margin require-
ment Py, of performance P reflects the “specified func-
tion”, the degradation time ¢ reflects the “specified time”,
and the internal and external variables, i.e., X and Y,
reflect the “product character” and “specified condition”.
Therefore, the reliability function based on the four equa-
tions can truly cover all the elements in the definition of
reliability.

For these three basic equations, we must further make
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several remarks of their connotations.

Remark 1 About the irreversible time

The irreversible time (also called the degradation time)
t is essentially different from the reversible time (also
called the Newton time) ¢. The irreversible time can be
illustrated by the second law of thermodynamics, that is,
the system is always moving to a state of disorder irre-
versibly, which means the performance degradation has a
specific direction. We can only figure out the degrada-
tion process as the time flows from 0 to £, but cannot go
back from ¢ to 0. Correspondingly, the reversible time ¢
applies to the classical Newtonian mechanics, that is, the
associated equation will be always applicable to the sys-
tem no matter the time flows positively (e.g., from 0 to )
or negatively (e.g., from ¢ to 0). For example, the time ¢
in the Newton’s second law, which can be written as
F =dp/dt, is reversible, where p is the momentum and
F is the force.

A small case of the slider-crank mechanism (SCM) can
better show the difference of the two kinds of time. Since
the main purpose of an SCM is to use the rotation of the
crank to drive the linear movement of the slider, the dis-
placement of the slider is the critical performance of the
SCM, and this performance may degrade because of the
wear in joints. When establishing the basic equations of
SCM, ¢t exists in the wear process model (e.g., an
Archard model) where the time is irreversible, and ¢ will
show up in the geometric relationship of the movement
related to angular velocity where the time is reversible.
Further, if we want to get the degradation rate, we should
find the partial derivative of £, rather than ¢.

In real engineering, the two kinds of time often exist
simultaneously. However, when the product is designed,
the irreversible time is usually not considered completely
or even ignored; when the product reliability is analyzed,
the reversible time is not considered well. These treat-
ments may cause imprecise evaluation of the product reli-
ability and lifetime. Therefore, the belief reliability the-
ory will consider both kinds of time by utilizing these
basic equations.

Remark 2 About the interdisciplinary equation

If the degradation effect of the performance is not con-
sidered, Equation No.2 will degenerate to a special case.
It is called as the interdisciplinary equation, which is
denoted as P = fi¢(X,Y,r). This equation is determined
by fundamental laws in different discipline areas that the
product will obey. We advocate that the interdisciplinary
equation should be given by scientists and engineers in
every discipline related with the designed product, such
as mechanics, electricity, and electromagnetism, and thus
forming the inputs of reliability issues. Actually, before
we establish the margin equation and degradation equa-

tion, we usually should first figure out the interdisci-
plinary equation. Therefore, the interdisciplinary equa-
tion is also labeled as Equation No.0, which means it is
the basis of the three basic equations.

A perfect interdisciplinary equation should include not
only the physical laws of the system operation corre-
sponding to its design factors, but also the system interac-
tion with the environment. Take a simple resistance-
capacitor (RC) filter circuit for example. Basically, the
circuit is dominated by electrical property equations such
as the Kirchhoff’s equation, but when establishing the
interdisciplinary equation, we should also figure out how
the resistance and capacitance change under different
electrical stresses and temperatures.

Remark 3 About the hierarchy

The internal variable X and the external variable Y in
the three basic equations can also be functions, which is
especially true for systems with multiple levels. For X,
the internal factors in the system equations may be deter-
mined by the internal factors and performance of the sub-
systems, which is further dependent on the internal fac-
tors and performance of the components. For example,
the landing distance of an aircraft is related to internal
variables such as the mass of the aircraft, brake pressure,
and spoiler counterthrust, which are further related to all
subsystem masses, brake subsystem deceleration rates
and response times, and spoiler profiles and angles. For
Y, the operating or environmental stresses experienced at
the system level may be the result of the transmission of
components from bottom levels to the top level layer by
layer, and the stresses at the component level may also be
the result of the decomposition of stresses at the system
level downward. For example, the thermal performance
of a computer depends on the external temperature and
the computer housing temperature, which originates from
the thermal stress generated by the heat of chips and
power devices. Another example is that the vibration
stress in the steering subsystem of a car is transmitted
from the vibration that the whole car is subjected to. In
this sense, the above property of the basic equations
enables belief reliability theory to cope with the complex
systems with different levels.

3.4 Experimental verification

The basic equations have quantitively described the sci-
entific principles of reliability. Apparently, these equa-
tions are very abstract expressions. For a particular relia-
bility problem of a product, we need to first answer the
certainty issues in reliability, i.e., what are the specific
structures of the functions fi—,, f;, and d, which are the
foundations of calculating margin. In essence, we can
transform the above problems into the following two gen-
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eral problems:

(i) What are the laws, over a “certain range”, that go-
vern the variation of the product performance with physi-
cal properties, external stresses, and degradation time?

(i) What is the “certain range” of a product?

To answer these questions, it is necessary to start with
the “scientific method”. In other words, we need to deter-
mine and organize the characteristics of a phenomenon
by observations and experiments, after which the logic of
the human mind should be utilized to formulate conjec-
tures about the causes and conditions of the phenomenon,
and then to apply further experiments to test these conjec-
tures and formulate theories through logical deductions
based on the verified conjectures [37]. Correspondingly,
we must discover and verify the forms of the equations,
especially the interdisciplinary, margin, and degradation
equations, through science experiments, which is called
reliability experiment in belief reliability.

Reliability experiment is regarded as a kind of experi-
ment that explores the product reliable boundary con-
structed by X, Y, ¢ and Py,, and degradation laws charac-
terized by the causal relationship among P, X, Y and ¢
[72]. Generally, reliability experiments are categorized as
two types: reliable boundary experiment (RBE) and
degradation law experiment (DLE) [72,73]. The RBE is
conducted to investigate the boundaries where the pro-
duct can function well and how the product functions
within these boundaries, so as to verify the margin mag-
nitude and Equation No.l. Mathematically, the reliable
boundary is constituted by the value ranges of X, Y, ¢
and Py, denoted as Cx, Cy, C, and Cp,, respectively.
The DLE is designed to explore the time varying degra-
dation path of P and sensitivity factors of X, Y over the
value space formulated by Cx, Cy and C,, thus verifying
the Equation No.2 [74,75].

In general, reliability experiments are performed start-
ing from a deterministic theoretical model or hypothesis.
The experiments are used to verify the accuracy of the
model or hypothesis and to make corrections accordingly.
In the actual implementation of the reliability experi-
ments, the means of stress applying in some tests such as
reliability enhancement tests or degradation tests (e.g.,
stepwise applying) can be used to assist in obtaining the
reliable boundaries and degradation processes. As men-
tioned earlier, if we are dealing with a complex system
with multiple levels, i.e., when both X and Y become a
function, then reliability experiments need to be carried
out layer by layer, thus making verifications and analysis
of the equations at each level. While exploring certainty
laws, the reliability experiment can also cope with uncer-
tainties embraced in the certainty laws, including the
uncertainty of parameters (i.e., X, Y, and Py) and the
uncertainty of the functions themselves (i.e., f;o and

f+,). These uncertainties can be analyzed and quantified
using statistical inference methods in real application,
which involves the sample size problem and correspond-
ing statistical techniques.

It also needs to be noted that reliability experiments are
different from the traditional reliability testing. Reliabi-
lity experiments aim to explore the evolution laws of
function and performance of products under different
design schemes and environmental factors considering
various uncertainties, while the reliability testing can only
provide a quantification of the stochastic character of
product lifespan under a determined condition [2,33].
Therefore, the traditional reliability testing, such as relia-
bility qualification testing and reliability enhancement
testing, is actually special cases of reliability experiments
[72]. Furthermore, if there is a small sample problem in
the reliability testing, it will face the problem of epis-
temic uncertainty, which is actually not compatible with
the reliability testing under the principle of probability
sampling. In this sense, only reliability experiments can
help us truly understand the product and construct the
basic scientific equations.

3.5 Chance prediction

Through theoretical analysis and experiment verification,
the certainty laws can be constructed and verified, and the
data for uncertainty quantification can also be collected.
A crucial issue that arises thereafter is how to predict the
reliability of a product by integrating the three basic
equations. This raises a vital question: how do we choose
the mathematical measure in Equation No. 3? Since the
measure is a tool to describe and quantify uncertainty, we
must get back to uncertainties.

The previous explorations in reliability engineering
have shown that uncertainties are typically classified into
aleatory uncertainty and epistemic uncertainty. Aleatory
uncertainty refers to the inherent randomness of the phy-
sical world [39], and it is widely believed that probability
can effectively describe this type of uncertainty [39,76].
Epistemic uncertainty, on the other hand, arises from our
lack of knowledge or information [39], and there is still
no consensus on the best method to represent it [8]. As
we argued earlier, the various existing theories for mathe-
matically expressing epistemic uncertainty still have limi-
tations, but the emergence of uncertainty theory has pro-
vided us with a brand new alternative. The uncertainty
theory was founded to describe the uncertain phe-
nomenon related to humans [66]. It is based on four
axioms and can be regarded as a new branch of mathe-
matics parallel to probability theory [77]. Liu was the
first scholar to use uncertainty theory in reliability analy-
sis [78]. Later it was thought to be a good tool for
describing epistemic uncertainty and was formally intro-
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duced to reliability engineering [13]. Kang et al. have
compared it to existing non-probabilistic reliability meth-
ods, highlighting its theoretical advantages [10]. Nume-
rous real applications have also demonstrated its superio-
rity in the precision of evaluation, the conformity to
actual data, and the stability under small sample cases
[75,79]. Therefore, the uncertainty theory is chosen to
represent epistemic uncertainty in belief reliability.

Generally, the real products are subject to the com-
bined effects of both aleatory and epistemic uncertainties.
Therefore, in belief reliability theory, the chance predic-
tion is utilized, where y is chosen as a general measure
called the chance measure [80]. This measure is essen-
tially a mixture of probability measure (for aleatory
uncertainty) and uncertain measure (for epistemic uncer-
tainty). From this perspective, Zhang et al. have identi-
fied three cases of the chance prediction [81]:

(1) When we can collect enough data and information
of the product, the chance measure may degenerate to the
probability measure, and the product can be regarded as a
random system that is mainly affected by aleatory uncer-
tainty.

(il) When we face with small sample data or we have
some subjective information from expert inference, the
chance measure may degenerate to the uncertainty mea-
sure, and the product can be regarded as an uncertain sys-
tem that is mainly affected by epistemic uncertainty.

(i) When the product contains the above two cases
simultaneously, i.e., some parts have enough data and
information while the other parts do not, the chance mea-
sure will be used to integrate the two types of uncertainty
comprehensively, and the product will be called an uncer-
tain random system.

Based on the above discussions and Equation No.3, the
belief reliability is given as the chance that the system
margin is greater than 0 [81]. Mathematically, it is writ-
ten as

Ry =Ch{ M >0} @)

where R is called the belief reliability, Ch{:} is the
chance measure, and M is the system margin. Particu-
larly, for random systems or uncertain systems, we may
use special mathematical measures, which are written as

{RB=Pr{1\7[>O}

Ry = M{ M >0} ®)

where Pr{ -} and M{:} are probability measure and
uncertain measure, respectively. According to the three
basic equations of belief reliability, the belief reliability
function can be more specifically written as

R(Xa Y7t’ t7Pth) = Ch{d(ft(X7 Y’ t)’Pth) > 0}’

showing that all the factors related to reliability are con-
sidered and the chance prediction is more complete.

Researchers have identified two special cases for dif-
ferent usages of prediction framework [7]. Firstly, the
margin can be narrowly defined as the performance mar-
gin, denoted as m,, such as electrical or mechanical per-
formance margin, representing the distance between
physical performance and its threshold. The correspon-
ding belief reliability is called the performance margin-
based belief reliability, which was first proposed by Zeng
et al. [82,83] and later refined by Zhang et al. [81] and
Kang [7]. Secondly, the margin can also be defined as the
time margin denoted as my, such as failure time margin
or service time margin, representing the gap between a
featured time and the specified time threshold. The corre-
sponding belief reliability is called the time margin-based
belief reliability and was modified from Zeng’s [13,84]
definition by Zhang [85]. In most cases, the performance
margin-based belief reliability is used for reliability anal-
ysis, design and experiment, while the time margin-based
belief reliability is mostly used for reliability evaluation.
In fact, these two special cases provide different perspec-
tives on prediction based on the basic equations. The first
one predicts directly using the performance margin mag-
nitude, while the second one predicts based on the relia-
bility boundary of degradation time. Of course, we can
also provide prediction methods based on reliability
boundaries of environmental stress or product physical
properties accordingly, when other factors affecting relia-
bility are fixed. This means that the prediction of reliabi-
lity in belief reliability theory can be more flexible. It can
adapt to most of the reliability engineering scenarios and
information sources, demonstrating the powerful capabi-
lities of belief reliability theory.

It is important to note that chance prediction is carried
out on the basis of deterministic equations with the con-
sideration of uncertainty. Therefore, a key aspect of pre-
diction is to identify and quantify the uncertainty in the
equations. As stated before, the analysis and quantifica-
tion of uncertainty are usually achieved by conducting
reliability experiments to collect relevant information.
From the perspective of the three basic equations, sources
of uncertainty include the variables such as X, Y, Py,
and the structure of the equations themselves [85]. There-
fore, when applying reliability experiments, we must use
the related data to model and analyze different kinds of
uncertainties through statistical methods. In general,
probability distributions are used to describe variables/
parameters with aleatory uncertainty, such as the disper-
sion of shape variables and material parameters; and
uncertainty distributions are used to model the epistemic
uncertainty, for example, the design variables without
sufficient data, environment parameters with lacking
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knowledge about application scenarios, and incomplete-
ness of the model itself. Moreover, after making a chance
prediction of the product reliability, we can also feed the
result back to the basic equations and reliability experi-
ments, making further updates or validations.

What is discussed above has formed a relatively com-

plete framework of belief reliability metrics. We hereby
summarize it in Fig. 3. Under this framework, several
variants related to belief reliability metrics have emerged,
including uncertain random reliability index [86,87],
belief availability [88], and uncertain connectivity relia-
bility [89].
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Basic equations

Experimental verification Chance prediction

Margin-based

Margin equation

Uncertain random
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_ Certainty reliable principle RBE Syslem
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Fig.3 Framework of belief reliability

4. Belief reliability methods and technologies

Under the theoretical discourse and framework of belief
reliability, critical methods and technologies are sequen-
tially developed. In literature, scholars mostly focus on
three aspects, namely, belief reliability modeling and
analysis, function-oriented belief reliability design, and
belief reliability evaluation. Some other methods and
technologies, namely maintainability and supportability,
risk analysis, and PHM, are also being researched under
the framework of belief reliability in recent years. In this

section, we tend to introduce some current results from
the above studies, with the aim of highlighting the advan-
tages and advancements of belief reliability theory.

4.1 Belief reliability modeling and analysis

Belief reliability modeling and analysis is the most
important and fundamental technology in belief reliabi-
lity theory, for which it receives the most attention in
recent research. The main topics about belief reliability
modeling and analysis are summarized in Table 2.

Table 2 Research topics and representative papers about belief reliability modeling and analysis

Topic

Representative paper

Basic model and analysis procedure [7,13,83,85], adjustment factor model [82], structure reliability index

Methodol
ethodology method [86,90]

Belief reliability analysis of different products: hydraulic servo actuator [82,85], aircraft lock mechanism [91],

Belief reliability analysis based on

the basi ti
© basic equations disk of aircraft engine [96]

gear [92], electrical connector [93], harmonic reducer [90,94], DC power supply [95], filter circuit [73], turbine

Uncertainty propagation

Propagation formula and algorithm [85,97], propagation model in different stages [96]

Series systems [13,78,81,84,98—101], parallel systems [13,81,84,98-101], series-parallel hybrid systems

Belief reliability analysis of different
system configurations

[81,99-102], cold standby systems [99,101,103—105], warm standby systems [103], k-out-of-n systems
[84,100,106—109], bridge systems [85,110], general configurations and algorithms [78,81,100,110]

Fault tree analysis

Minimal cut set theorem [13,84], analysis algorithm [84]

Importance index

Uncertain system [108,111], uncertain random system [112]

Uncertain degradation with random shock arrival time and uncertain shock size [113,114], uncertain degradation
Belief reliability analysis of systems with uncertain shock [115-118], degradation-shock dependency with a change point [119] and uncertain failure
with degradation-shock dependency threshold [120], belief reliability analysis with different shock modes [121], belief reliability analysis for
systems with failure trigger effect [122]
Connectivity belief reliability of transportation network [89] and crude oil maritime network [123], belief
reliability of traffic network [124,125], service reliability analysis of cloud data centers [126], cascading failure
modeling for circuit network [127]
Belief reliability analysis of multi- Modified universal generating function technique with uncertain measure [128], multi-state k-out-of-n system
[108], uncertain state transition chain method considering degradation [129]

Network system belief reliability

state system
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Basically, the belief reliability modeling and analysis is
conducted under the theoretical framework shown in Sec-
tion 3 [7,45]. More specifically, we firstly, in most cases,
need to establish the various Equation No.0 according to
the specific disciplines that the product’s critical perfor-
mance parameters belong to. Later, the Equations No.l
and No.2 need to be obtained considering the characters
of the performance parameters and the effect of
internal/external factors. Various uncertainty effects
should be then quantified and propagated using reason-
able mathematical tools, and Equation No.3 can thus be
constructed. Inevitably, the construction of the four equa-
tions needs to be verified by reliability experiments,
including the form of equations, the sensitivity of influ-
encing factors, and the uncertainty character of important
variables. The above procedure is mainly summarized in
some methodology papers involving belief reliability,
where several models are also put forward (see Table 2).

As explained before, a vital problem of the method is
the uncertainty quantification and propagation, which
means to quantify the uncertainty characters of input vari-
ables within the Equations No.l and No.2 and to calcu-
late the uncertainty character (e.g. distribution, moment)
of the performance margin based on them. Accounting
for the amount of available data and information, the
variables are usually classified into different uncertainty
categories, where aleatory uncertainties are described by
random variables and epistemic uncertainties are descri-
bed by uncertain variables [85]. For random variables, we
can often collect enough data to make estimates of their
probability distributions, and the commonly used proba-
bility statistics methods can all be used for uncertainty
quantification. For uncertain variables, there is often only
sparse data that we can collect, so uncertain statistical
methods are usually used to obtain their uncertainty dis-
tributions. Commonly used uncertain statistical methods
include two types: parametric and nonparametric meth-
ods. The parametric methods include the method of
moments [130] and the method of graduation formula
[131]; the nonparametric methods include the maximum
entropy method [132], the distribution average based on
the Delphi method [133], and the interpolation method of
expert empirical data [40]. To verify whether the obtained
uncertainty quantification results match the actual sparse
data, the hypothesis testing method under uncertainty
measure can also be used [134]. Based on the result of
uncertainty quantification, different uncertainty propaga-
tion methods based on chance theory, uncertainty theory
and probability theory have been proposed, and thus dif-
ferent belief reliability formulas in terms of performance
margin are put forward [85,90].

In addition to the previous issues, scholars also studied

the belief reliability modeling and analysis according to
the system structures and compositions using reliability
logic models. It should be noted that some of these stu-
dies are still under the assumptions of independent situa-
tion of components. Although it does not make sense in
the context of reliability science, these studies make
important contributions to the thinking of the “puzzle of
system reliability” and is therefore presented in this
paper. Among these research, the product axiom of
uncertain measure called “minimal event measure” [135]
is widely utilized, and a lot of them have concentrated on
the system belief reliability analysis of different system
configurations with both aleatory and epistemic uncer-
tainty, including series system, parallel system, k-out-of-n
system, and cold standby system. The concepts of uncer-
tain systems, random systems and uncertain random sys-
tems are put forward to describe the different uncertainty
categories embraced by the systems (see [81]), and con-
siderable belief reliability formulas and importance mea-
sure are developed by using uncertainty theory, probabil-
ity theory and chance theory, respectively. In addition,
some researches have also attempted to model the depen-
dence in reliability at the system level using system simu-
lation and surrogate models [124], semi-Markov chain
models [125], petri net models [126], and cascading fail-
ure models [127].

Another hotspot of belief reliability modeling and ana-
lysis is oriented to the system with degradation-shock
dependency. Considering the epistemic uncertainty, the
system degradation process is usually modeled as an
uncertain process (e.g., the Liu process [135]) and the
shock process is modeled by a Poisson process or an
uncertain renewal process [135]. Several models are pro-
posed to account for different interact effects of degrada-
tion and shock. The belief reliability analysis method also
involves network systems and multi-state systems, in
which the probability theory and uncertainty theory are
flexibly utilized for different uncertainties and have
shown their effectiveness.

In general, the significance of belief reliability model-
ing and analysis methods are manifested in two aspects.
First, by using the basic equations to model products, the
reliability can be truly linked to the value spaces of vari-
ables (i.e., the internal and external factors) related to the
function of products. This makes it possible to improve
the reliability of products by changing design variables
and controlling the external environment, so as to achieve
a function-oriented reliability design (see Subsection 4.2).
Second, the existing results show that the “puzzle of sys-
tem reliability” can be solved to some extent by introduc-
ing uncertainty theory and some system reliability mo-
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dels to analyze reliability, thus the over-amplification of
epistemic uncertainty and the excessive risk-taking in the
decision-making process can be avoided [85,96].

4.2 Function-oriented belief reliability design

Function-oriented belief reliability design, regarded as
another important technique of belief reliability theory,
refers to a reliability design process that utilizes methods
of belief reliability analysis and optimization to acquire
the design options and control strategies under the con-
straints of reliability requirements related to each “speci-
fied function” of a product. The ultimate target of func-
tion-oriented belief reliability design is to make a pro-
duct achieve its “specified function” as well as possible.
Since the quantitative relationships between reliability
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indexes and the internal/external factors can be estab-
lished and various uncertainties can be reasonably
described, the function-oriented belief reliability design
method can better embed reliability into the product func-
tion and performance design process (especially for the
development of innovative or new products with great
epistemic uncertainty) and provide a more convenient and
persuasive design approach.

Essentially, the function-oriented belief reliability
design is conducted according to the basic equations of
belief reliability. In this paper, we summarize the main
procedure in Fig. 4. Basically, it contains mainly four
parts, namely the requirement input process, the belief
reliability analysis process, the iterative optimization pro-
cess, and the specifications output process.

Requirement | Product reliability requirements I
input l
| Critical performance parameters ‘
Interdisciplinary equations
Marg.m N RBE Degradz'mon DLE
modeling modeling
Belief
rehablll.ty Degradation equations
analysis
Use & Design &
environment process
data data
| Belief reliability ‘
Enhance Control the Control the Delay the
the margin environment process degradation
Iterative T T - '[ T
optimization No Requirements No
satisfied?
Yes

Product design options

Specification

output

Design specifications

Pro

Supply chain control specifications

cess specifications

Fig. 4 Flow chart of function-oriented belief reliability design

The reliability requirements, which are the input of the
function-oriented belief reliability design process, are
usually determined comprehensively after balancing the
user demands and costs [136]. For products with hierar-
chical relationships, the belief reliability allocation

method is usually used to decompose the system reliabi-
lity requirements into individual subsystems and compo-
nents [137,138]. It is noted that the reliability require-
ments may vary for different products. For example, the
reliability requirements of an aircraft usually fall on the
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total lifetime and mean time to failure (MTTF), but for an
electronic product, the requirements may be the initial
reliability.

The belief reliability analysis process has been previ-
ously reviewed in Subsection 4.1. It is regarded as a fun-
damental part of the function-oriented belief reliability
design because it will provide the objective for the fol-
lowing optimization process. In this part, the determina-
tion of critical performance parameters and the usage of
reliability experiments are two important parts that should
be further discussed:

(1) The determination of critical performance parame-
ters. In the function-oriented belief reliability design,
a formalized method called “function, performance and
margin analysis” (FPMA) is usually utilized to obtain
the critical performance parameters thus avoiding overly
burdensome analysis and design work [85,139]. FPMA
is developed to figure out the key factors affecting pro-
duct reliability by analyzing the functions, corres-
ponding performances, and margins step by step.
Through FPMA, we can not only obtain the performance
parameters that affect product reliability significantly,
but also identify the core design variables that we should
concentrate on in reliability analysis and design optimiza-
tion.

(i) The use of reliability experiments. Reliability
experiments are indispensable to better understand the
product and can help designers choose better design
options according to margin magnitude and degradation
path. For a newly developed product, as pointed out pre-
viously, the RBE and DLE are effective tools to verify
the margin and degradation, respectively. Another vital
role of the reliability experiments is to embrace the inter-
nal factors (design and process variables) and external
factors (use and environmental variables) in the credible
Equations No.l and No.2, making it possible to increase
product reliability by controlling these variables, which is
also the initial intention of function-oriented belief relia-
bility design.

The iterative optimization process is to ensure that we
can get the optimal design options. In this part, we need
to first compare the calculated belief reliability index
with the reliability requirements. If the requirements are
not satisfied, the designers should try to increase the
product reliability by various feasible means. The most
direct strategy is to enhance the margin and delay the
degradation by adjusting the value combination of design
variables according to the Equations No.l and No.2.
Another effective method to achieve this strategy is to use
redundancy techniques [140—-142], which may change the
form of the first two basic equations but will work well at

the same value combination of design variables. As the
uncertainty is another important factor of belief reliabi-
lity, we can also try to decrease the effect of uncertainty
by controlling the environment and manufacturing pro-
cesses, thereby increasing the product reliability. Because
the internal factors, the external factors, and their uncer-
tainty characters are all involved in the four equations, we
can choose and make trade-offs within the above mea-
sures under the constraints of cost and resources. Differ-
ent optimization methods can be used in this part to
achieve the reliability goals according to different
demands and product situation [73,143,144].

The specifications output process is a summary of all
the above processes by the designer. For different pro-
ducts, there are usually different means of designing for
reliability. In the function-oriented belief reliability
design, the designers should organize the practiced relia-
bility design methods into several specifications accor-
ding to the characteristic of the product. The output speci-
fications should include, but not limited to, the design
specification, the process specification, and the supply
chain control specification. These specifications can
improve the efficiency of research and development pro-
cesses, and the reliability of similar products can be
enhanced by referring to them. Of course, the specifica-
tions also need to be updated after accumulating the
actual using data, maintenance feedback, and other infor-
mation.

4.3 Belief reliability evaluation

Belief reliability evaluation refers to a technique that
aims to calculate the system belief reliability using statis-
tical methods with the various data that provide informa-
tion of reliability. From the perspective of the scientific
principle of reliability, the product reliability data is
essentially the margin data of the product, because it
directly reflects how reliable the product is according to
the margin-based reliable principle. Referring to the
belief reliability function, the information of reliability
data (margin data) is then shown by the character of the
data for X, Y, ¢, P and Py,. In this paper, we call the data
of these factors as the reliability metadata. Different com-
binations of reliability metadata will derive different
information about reliability (or margin), thus different
belief reliability evaluation methods should be used.

It is an undeniable fact that the more adequate reliabi-
lity metadata we can collect, the more accurate the belief
reliability evaluation will be. According to the amount of
data, belief reliability evaluation methods usually choose
different mathematical tools for statistical analysis. In
existing literature, traditional probability statistical meth-
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ods are effective when a large sample of data is available.
Once we can only get a small sample of data, uncertain
statistical methods based on uncertainty theory should be
utilized because the probability statistical methods are
based on the assumption of big sample size. As elabo-
rated in the “dilemma of probability”, there are few cases
with a large sample size. Therefore, this paper focuses on
belief reliability evaluation methods based on small sam-

ple data.

To better elaborate the methods and models of
belief reliability evaluation, in this paper, we establish
a “metadata tree” (see Fig. 5) to show the method that
is suggested to be chosen for different combinations
of collected metadata. This metadata tree is rooted in
the metadata set that we obtain in real engineering prac-
tices.

Product character X |Working condition ¥ Degrqdatloq time or Fpnctlon and
failure time ¢ requirements P, Py,
S
——A
S S
D o
S D
—A
S
D A S
Se b —— 9O
(== [ D
Metadata A
set D SorD SorD SorD ©
S: Same D: Different

A\ : Ending symbol, meaning that we cannot collect data in this branch in real cases

@ : Method symbol, numbering the method used for the data in this branch

Fig. 5 Metadata tree for belief reliability evaluation

By sequentially figuring out whether the elements
described by the collected metadata are same or not
according to the criteria given in Table 3, a numbered
method symbol can be obtained. Then, the belief reliabi-
lity evaluation methods or models can be found accord-
ing to Table 4, where the main research of belief reliabi-
lity evaluation are listed. For example, if we collect meta-
data in an accelerated degradation testing for a product

with several samples, then the metadata will correspond
to the products with same X, accelerated stress ¥ with
different levels, different ¢, and same P and P, . Accord-
ing to the metadata tree, we need to find the methods with
symbol 2 in Tbale 4. Further, since the data mainly
embrace the information of degradation, the uncertain
process model and time-variant distribution model should
be chosen.

Table 3 Meaning of “same” and “different” for each element in metadata set

Element of

Meaning of being “same”
metadata € &

Meaning of being “different”

The products corresponding to the collected
metadata are from the same population, i.e.,

The products corresponding to the collected metadata are from the different populations,

X i.e., the types and design values of X for each product may be different, but similar, for

the types and design values of X are same
for each product

example, the digital simulation prototype, improved version, etc

The type and size of the stress that the
Y products bear during working are all the

The type of the stress that the products bear during working is same, but the size is

same

different, for example, different stress level in tests, stress in both tests and actual use, etc

The degradation time or lifetime/failure time obtained are usually different due to the
uncertainty of products

P, Py,

The products corresponding to the collected
metadata are designed for same function
with same performance parameters and

requirements

(i) The products corresponding to the collected metadata are designed for same function
with different performance parameters and requirements

(ii) The products corresponding to the collected metadata are designed for different
functions
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Table 4 Belief reliability evaluation methods or models for different metadata combinations

Method
symbol

Method or model

Graduation formula method [131], the &th moment method based on maximal entropy principle [132,145], order statistics method with
Bernard approximation [146]

1

Metadata with information of degradation

(i) Uncertain process-based models [75,147,148]
P(0) = (e(s) + 03&y) - +0C(P),
C(#) ~ N(O,7), e(s) ~ N(ue(5),0e(5)). 055 ~ N(0,055)

(i1) Time variant uncertainty distribution model [149]

-1
307 (t

(iii) Uncertain differential equation-based model [150]
dP(1) = Boyexp(Bip(s)P’ " di+ oy exp(B1 ()"~ dC(1),
C(1) ~N(0,1), P0)=0

(iv) Performance and health status margin degradation framework
for belief reliability evaluation [151]

Metadata with information of lifetime/failure time

Data fusion method: consistent belief degree method (data
equivalence method and constant coefficient of variation method)
[79], maximal cross entropy method [152]

3 Similarity fusion method [152]

Note the research in existing literature tabulated in
Table 4, a significant point is to determine an uncertainty
distribution through the small sample data collected by
different ways, especially the various data obtained in the
whole product developing process, including the simula-
tion and testing in design phase, and the actual operation
in use phase. The proposed methods are concentrated on
the identification of the belief degree of each data point
and the expansion of data set, thus forming a reasonable
uncertainty distribution with as much data information as
possible for belief reliability evaluation. Researchers have
also made some comparisons between these methods and
other methods to cope with small sample data. For exam-
ple, by randomly selecting small sample data from the
whole data set, the reliability prediction results of the pro-

posed belief reliability evaluation models using uncer-
tainty theory are more stable than those obtained by
Bayesian methods [79,147]. Besides, the predicted degra-
dation paths acquired with these methods have shown
better fitness to the real data [148], which indicates the
proposed belief reliability evaluation process may be
more convincing under the cases with only small sample
data.

4.4 Other methods and technologies

In recent years, some new belief reliability-based meth-
ods and technologies have gradually come into being in
the face of real engineering scenarios with great epis-
temic uncertainty. In this paper, we summarize these
researches in Table 5.

Table 5 Some new belief-reliability-related methods and technologies

Field

Representative paper

(i) Maintenance optimization model: maintenance indexes and analysis for repairable systems [153], optimization of the

Belief reliability centered
maintenance and

level of repair considering spare stocks [154]

(ii) Spare parts optimization: variety optimization [155,156], quantity optimization [45,157], depot location

rtabilit timizati
Supportabliity opumization . .. ation [158—160]

Risk analysis

Uncertainty representation and propagation in risk analysis [161—-163], aviation risk assessment [164,165],
transportation risk assessment and avoidance [89]

Prognostics and health
management

Failure prognostics with scarce data [166], remaining useful life prediction with degradation data [167]

Software belief reliability Software belief reliability growth model using uncertain differential equation with perfect [168] or imperfect [169]

assessment debug processes

Others

path selection in maritime transportation [173]

Belief reliability analysis of supply chain [170], soil slopes design [171], assembly line analysis and optimization [172],

The belief reliability centered maintenance and sup-
portability optimization plays an important role in the
belief reliability framework. It is strongly related to the

availability of products, aiming to obtain the optimal
maintenance strategy or spare parts plan. In existing lite-
rature, these problems are usually transformed to multi-
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attribute decision problems with reliability constraints or
objectives, thus the data envelopment analysis (DEA)
method is widely utilized, especially in the spare parts
optimization. For the widely existing cases with small
samples in maintenance and supportability optimization,
the uncertainty theory is introduced to DEA (i.e., the
uncertain DEA [174,175]). Due to the lack of real data,
there may be some human influence on the determination
of variable distributions or solution preferences, but the
uncertain DEA method can eliminate as much as possi-
ble the influence of subjective human tendencies on deci-
sion making, thereby giving a reasonable solution for the
maintenance strategy or spare parts plan.

Risk analysis and PHM are also performed under the
frame of belief reliability theory. Similarly, the uncer-
tainty theory and probability theory are used to model the
epistemic uncertainty and aleatory uncertainty, respec-
tively. It is found that the risk analysis results based on
belief reliability show better duality and robustness than
the Bayesian methods when the epistemic uncertainty
cannot be ignored [161,162], and the results in PHM
under belief reliability framework can better fit the degra-
dation data and provide a more precise prediction of
remaining useful life [166,167]. Software belief reliabi-
lity assessment is a new application of belief reliability
theory. Due to the complex failure mechanisms and the
strong relationship with coders, the software is always
full of epistemic uncertainty. Thus, the belief reliability
theory is utilized to assess the software reliability under
the process of debugging based on uncertain differential
equations [168,169].

5. Summary and prospects

Belief reliability is a scientific theory aiming to solve the-
oretical and practical problems in reliability engineering.
Compared with the present reliability engineering theory
that resorts to “phenomenological theory”, belief reliabi-
lity constructs the “first principle” of reliability science,
based on which the basic theories are systematically
explored, and the methodological research is carried out,
so that it can better serve reliability engineering. In this
paper, we have comprehensively elaborated the related
issues about belief reliability, including its origin, theore-
tical discourse and basic methods and technologies. As
overviewed in this paper, the belief reliability theory is
now also applied in different areas, such as aeronautics,
astronautics, automobile, and electronic products.

It should also be noted that the current research regar-
ding belief reliability is mainly conducted by Chinese
researchers. To show the whole research picture of belief
reliability, this paper compiles relevant research from all
over the world as far as possible. We hope to convey the

latest thoughts of Chinese researchers to all over the
world, and we believe this is one of the contributions to
the world reliability community.

In sight of these research and practices, we hereby pro-
vide a broad summary about the significance of belief
reliability theory:

(1) Belief reliability reveals that reliability science is an
integration of certainty and uncertainty. By constructing a
theoretical discourse system consisting of philosophical
reflection, scientific principles, mathematical expressions,
experimental verification, and chance prediction, the
belief reliability theory provides a new paradigm for
studying reliability science.

(i1) Belief reliability theory realizes the complete
expression of reliability function, expands the connota-
tion of uncertainty, and enriches the way of reliability
research of complex systems. This enables the “query of
reliability function”, the “dilemma of probability”, and
the “puzzle of system reliability” in reliability enginee-
ring to be fully solved.

(iii) Belief reliability have provided affluent methods
and techniques oriented to various problems in reliability
engineering, including measurement, analysis, design,
verification, and evaluation, which have shown great
advantages. This indicates a good adaptability of belief
reliability theory to the reliability engineering practice
and provide an important direction for future reliability
research.

In the long run, the current research of belief reliabi-
lity is still in the growth stage. Numerous details of belief
reliability methods and technologies still need to be
enriched. For example, the dependency of performance
margin that involves different disciplines should be fur-
ther studied in belief reliability analysis; more distribu-
tion types should be considered in belief reliability evalu-
ation; more optimization models and algorithms need to
be developed, etc. More generally, to better promote the
development of reliability science and engineering, it is
convinced that further work on reliability theory is
needed in the following areas.

(1) About the theoretical system

The present belief reliability theoretical discourse,
especially the description of margin and degradation in
the basic equations tend to be relatively conceptual. Will
there be a uniform representation of margin that can inte-
grate different disciplines and interpret the evolution of
systems? For this question, we may need to resort to sys-
tem sciences, from which a more comprehensive opera-
ting behaviors and laws of products can be explored.

In the framework of belief reliability, a central ele-
ment is the system function and its associated perfor-
mance. In terms of system characteristics, the relation-
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ships between system components are usually nonlinear
and have dynamic characters. In this case, the exhibition
of system performance is essentially due to the continu-
ous flow, conversion, transfer, and dissipation of energy
within the system [176]. Therefore, if the system opera-
tion process can be studied from the perspective of
energy generation and dissipation, it could be possible to
give a general expression of the system performance
emergence, and thus obtain some common representa-
tions of the margin.

(ii) About the application

From the perspective of application, though the belief
reliability has been tested in practice, it is still far from
the standard of “engineering science” mentioned by Xue-
sen Qian.

When applied to the general industrial systems, there is
still an urgent need for more individualized belief relia-
bility methods and techniques regarding different disci-
plines. For example, for electronic products, there are
multiple characteristics to consider such as the matching
of component performance, the ability of the circuit to
withstand stress (temperature, vibration, etc.), and the
depletion of the circuit board structure (e.g., solder joint
fatigue). The reliability equations corresponding to these
characteristics are all different. For another example,
many performances of control systems are constrained by
differential equations and there is usually no explicit
solution, so the reliability equation in this case should
also be expressed differently. Besides, for different types
of products, the uncertainty factors are also different. Fur-
ther exploration is needed in practical applications.

Furthermore, we are convinced that the belief reliabi-
lity theory should be applied to a wider range of systems
besides engineering systems, such as financial systems,
social systems, human body systems, artificial intelli-
gence systems, etc., thereby help reliability morph into a
common science that can guide the development of tech-
nology in various fields.

(ii1) About the reliability tools

From the perspective of serving humanity and trans-
forming the world, the methodology which attempts to
discover the laws of “product to be reliable” in belief reli-
ability theory is still an idealized framework. In real engi-
neering practice, it is necessary not only to conduct
detailed modeling for products, but also to carry out relia-
bility experiments as much as possible to verify the rele-
vant laws and accumulate models and experiences. In this
process, we also need to use more digital and intelligent
tools. For example, by building a digital twin model
based on belief reliability, we can better guide design,
production and use. In addition, to achieve higher pro-
duct reliability at a relative lower cost, we also need to

organize and develop various standards, databases, and
software related to belief reliability, making the theory
more practical and instrumental.

In summary, reliability research should intersect with
other disciplines more extensively and deal with practi-
cal problems in reliability engineering more flexibly, so
as to construct a more scientific system of reliability.
With the rapid theoretical research and numerous practi-
cal applications of belief reliability, we believe this new
theory can contribute more to reliability engineering.
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