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Abstract: With the extensive application of large-scale array
antennas, the increasing number of array elements leads to the
increasing dimension of received signals, making it difficult to
meet the real-time requirement of direction of arrival (DOA) esti-
mation due to the computational complexity of algorithms. Tradi-
tional subspace algorithms require estimation of the covariance
matrix, which has high computational complexity and is prone to
producing spurious peaks. In order to reduce the computational
complexity of DOA estimation algorithms and improve their esti-
mation accuracy under large array elements, this paper pro-
poses a DOA estimation method based on Krylov subspace and
weighted [;-norm. The method uses the multistage Wiener filter
(MSWEF) iteration to solve the basis of the Krylov subspace as an
estimate of the signal subspace, further uses the measurement
matrix to reduce the dimensionality of the signal subspace
observation, constructs a weighted matrix, and combines the
sparse reconstruction to establish a convex optimization func-
tion based on the residual sum of squares and weighted /;-norm
to solve the target DOA. Simulation results show that the pro-
posed method has high resolution under large array conditions,
effectively suppresses spurious peaks, reduces computational
complexity, and has good robustness for low signal to noise
ratio (SNR) environment.
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1. Introduction

One of the research hotspots of array signal processing is
to use array antennas to estimate the angle parameters of

Manuscript received March 27, 2023.

*Corresponding author.

This work was supported by the National Basic Research Program of
China.

illuminators and achieve precise localization of these
sources. The precise estimation of direction of arrival
(DOA) has been widely studied in fields such as radar
positioning, array direction finding, and satellite commu-
nication. In recent years, in order to obtain more flexible
beam control, higher angular resolution, and more accu-
rate coverage [1], the number of antennas has increased
significantly. For example, compared with traditional
four-element and eight-element arrays, the number of ele-
ments in large-scale phased-array antennas can range
from several hundreds to tens of thousands. For large-
scale multiple input multiple output (MIMO) radar arrays
[2], the data dimension is the product of the transmission
and reception dimensions, so its dimension is even
higher. With the application of large-scale arrays, the
number of array elements is increasing, making the
computational complexity of traditional spatial spec-
trum estimation methods significantly increased, which
is proportional to the cube of the number of elements
and difficult to process in real-time due to the strong
temporal variation of the received signal with an in-
crease in the number of illuminators [3,4]. The ‘“high
dimensionality ” of high-dimensional signals leads to a
high computational complexity of matrix inversion and
covariance matrix operations, and spurious peaks are eas-
ily generated under low signal to noise ratio (SNR). The
spatial sparsity of the signals is of great practical signifi-
cance for estimating the DOAs of high-dimensional sig-
nals.

Development of DOA estimation algorithms has expe-
rienced from conventional beamformer (CBF)/Bartlett
beamformer [5] to adaptive beamforming methods that
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solve adaptive weights with different optimal criteria,
such as Burg’s maximum entropy method (MEM) [6] and
Capon’s minimum variance method [7]. After 1986,
Schmidt proposed the multiple signal classification
(MUSIC) algorithm [8], which divides array received sig-
nals into two mutually orthogonal subspaces and uses the
orthogonal characteristics of the two subspaces to deter-
mine the DOA. Using the rotation-invariant characteris-
tics of the signal subspace, Roy et al. proposed the esti-
mation of signal parameters via rotational invariance
techniques (ESPRIT) algorithm [9]. Compared with the
MUSIC algorithm, it does not require spectral peak
searching and directly estimates DOA using the least
squares method. Super-resolution spectral estimation
methods further improve the resolution of the algorithm,
breaking the “Rayleigh limit” and developing rapidly in
many fields such as radar, communication and sonar. The
limitation of these traditional algorithms is that the con-
ventional signal subspace estimation method requires
estimation of the covariance matrix of the received sig-
nals and performs eigenvalue decomposition or singular
value decomposition (SVD) on it, and its computational
complexity is proportional to the cube of the number of
elements. Therefore, under the condition of a large num-
ber of array elements, it usually cannot meet the real-time
estimation requirements. The Krylov subspace [10] is a
method for dimensionality reduction and solving large
sparse matrix, which has been proven to be equivalent to
the signal subspace under certain conditions. The multi-
stage Wiener filter (MSWF) method proposed by [11,12]
is a method that uses the Krylov subspace to solve DOA,
which does not require estimation of the covariance
matrix, has low computational complexity and fast con-
vergence speed, but requires prior knowledge of the
expected signal and cannot be directly applied to DOA
estimation.

With the application of the sparse reconstruction of
compressed sensing theory [13—17] in DOA estimation,
high-dimensional signals are usually spatial sparsity, and
reconstructing signals at a lower sampling rate has great
advantages in solving high-dimensional signals process-
ing caused by the increasing number of array elements
[18,19]. Since Donoho [20] combined the spatial sparsity
of the incident signal to reconstruct the received signal,
which achieves super-resolution estimation. Using sparse
reconstruction into DOA estimation has been widely
studied. Malioutov et al. [21] first combined /,-norm
and SVD to achieve accurate DOA estimation at high
SNR and small number of snapshots by solving optimiza-
tion functions. However, this algorithm has low resolu-

tion and inaccurate estimation at low SNR. Cong et al.
[22—24] proposed a DOA estimation based on covari-
ance sparse reconstruction, which performs well under
conditions of low SNR and small number of snapshots,
but has a high complexity. Zuo et al. [25—27] proposed a
method based on weighted /,-SVD algorithm, which is
determined by the orthogonality of the subspace and
determined a weighted matrix, the DOA of sparse signal
is obtained by solving the optimization function. Wang et
al. proposed a DOA estimation method based on
weighted improved /y-norm [28], which has good DOA
estimation performance under low SNR and few snap-
shots. These algorithms can effectively suppress the devi-
ation, but the calculation complexity is high under a large
number of array elements.

Based on the sparsity of signal in spatial domain, the
iterative algorithm can be used to realize signal recon-
struction, such as orthogonal matching pursuit (OMP)
[29] and approximate message passing (AMP). The
greedy algorithm, represented by OMP, solves the opti-
mal solution by iteration, which has low computational
complexity, but the accuracy of DOA estimation deterio-
rates in the case of low SNR. The AMP algorithm is a
classical sparse reconstruction method by iterative
denoising. The AMP-net [30] algorithm has been applied
to deep learning model as a data-driven sparse recon-
struction algorithm. Making full use of the sparsity of /-
norm and the optimization of sampling matrix can effec-
tively improve the reconstruction performance.

In order to solve the problem of high computational
complexity and inaccurate estimation of DOA of high-
dimensional signals under a large number of array ele-
ments, this paper proposes a method based on Krylov
subspace and weighted [/,-norm for DOA estimation.
Firstly, the received signal model of a uniform linear
array (ULA) is established, and Krylov subspace is intro-
duced to iteratively solve the signal subspace, which
reduces the computational complexity caused by the
matrix SVD in the /,-SVD algorithm under a large-scale
array. The signal subspace is estimated quickly by imple-
menting MSWF iterations based on the basis of the
Krylov subspace, and the weighted matrix is determined
by the orthogonality of the subspace. Then, a measure-
ment matrix is designed to further reduce the dimensions
of the signal subspace and the perception matrix, and a
DOA estimation model is established based on the joint
weighted [;-norm of the sparse signal residual sum of
squares. The robustness of the algorithm is improved by
constructing the objective function using a weighted
scheme. Finally, the second-order cone optimization
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problem is solved to obtain an accurate estimation of the
DOA. In this paper, the algorithm avoids the calculation
of covariance matrix of received data and reduces the
computational complexity of the algorithm through two
operations to reduce dimension in the case of large-scale
array. And the objective function is constructed by using
the weighted /,-norm, so that the reconstructed signal is
equally constrained, the sparsity of the solution is guaran-
teed, and the estimation accuracy of the algorithm is
improved.

2. Algorithm description

Assuming that the array consists of M identical antennas
uniformly arranged in a straight line, 6 = [6,,6,,---,6k]
represents the DOA of uncorrelated signals incident on
the array by K (M>K) illuminators, as shown in Fig. 1.
Assuming that K is known and the array element spacing
is half wavelength, the data model received by the array
at time ¢ is given by

(0= ) @@ O+n®), 1=1,2,,T (1)

k=1
where
2ndsiné 2n(M—1)dsing, |T
ak(ek):[lse_ el 4 )
d is the array element spacing, A is the wavelength of the

signal, T is the number of snapshots, and 6, is the DOA
of the signal.
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Fig.1 ULA
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Write (1) in vector form as follows:
X®O=A0O)SO+N®) ()

where A(0) =[a(6,),a(6,),---,a(fx)] is an array mani-
fold matrix of MxK dimensions; S()=/[s, (),
8, ,sx@®]" is a signal of K X T dimensions; N (¢) is
Gaussian white noise with a mean value of zero and a
variance of o2.

Due to the application of large-scale array, the number
of array elements increases significantly, resulting in a
high-dimensional received signal. The Krylov subspace

algorithm is an iterative algorithm for solving large
sparse linear equations. In this paper, The Krylov sub-
space algorithm is used to reduce the dimension of the
received signal to obtain a low-dimensional signal sub-
space.

Let R, € C™"f € C™!, then the Krylov subspace of D
dimension is defined as

K" (R,,.f) =span(f.R,f.--.R,"'f). (3

Assuming that there is any scalar p, Krylov subspace
has the following properties:

7(D (Rxwf) = (](D (Rxn _pIM’f)' (4)

The covariance matrix R,, of the data received by the
array is

R, =E{X(0X" (1)} =
E{{A@)SO+NOHAGO SO +N )"} =
AE{S(HS®)"} A" +E{N(ON (1)} =

AORAWO" +01,, (5)
where R, = E{S GN (t)“}. I, is the identity matrix whose
dimension is M x M.

The array covariance matrix R,, satisfies the Krylov
subspace property, including

K" Ry ) = K” (R = 2L, f) = K" (A(O) RA (0)". f)..

(6)

When the vector f is not orthogonal to the signal sub-

space, the maximum dimension of K? (R,,,f) is K+1

dimension, let f be a linear combination of basis of the
signal subspace U,. f can be expressed as

f=(11/1|+a’2/12+"'+(11(ﬁk. (7)

Since the signal subspace is orthogonal to the noise
subspace, f is orthogonal to the noise subspace, and the
rank of Krylov subspace is K, i.c.,

span(f’Rfo"" ’RxxKilf).

Weippert et al. [11] proved that there exists a set of
orthogonal basis G = [g1,82,""* ,&x | yxx» a0d a nonsingu-
lar matrix F € C* in K-dimensional Krylov subspace:

G =K*Rof)F =K (AO)RA®)".f)F =
[f. UV Ui, UV U F =
vutf vt v F=U0 )
where
Q=|U"f.v.U f. - VUS| F.

Therefore, if the linear combination of all input signals
can be represented by vector f, then
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K* (R, ) = span(U,). 9

The Wiener-Hopf equation is solved by forward itera-
tion of K-order Wiener filter: R, W,, = r,,,. In this paper,
R, is the received data, and r,, is the cross-correlation
matrix between the received signal and the expected sig-
nal, B; is a blocking matrix that suppresses signals in the
desired direction. Wiener filter is composed of decompo-
sition filter bank and synthesis filter bank based on the
minimum mean square error. The input signal is decom-
posed by orthogonal projection property, and the filter
output error is obtained by forward recursion. MSWF
does not require covariance matrix estimation and has
fast convergence speed, so it has low computational com-
plexity and high real-time performance in the processing
of high-dimensional signals. When the column vectors of
the dimensionality reduction matrix are orthogonal, the
K-order Wiener filter is equivalent to a set of orthogonal
basis of the Wiener-Hopf equation in the K-dimensional
Krylov subspace K* (R, r).

The structural schematic diagram of the MSWF is
shown in Fig. 2.

x,(k)

Fig.2 Two-stage Wiener filtering

In this paper, the blocking matrix is chosen as
B; =null{h;} and B''h, = 0.
Initial value:

Xo = X
. (10)
d, = mean(X,)
Forward recursion:
r.q = Elx;(k)d; (k)]
hi+l = T
norm(r.,) . (11)

dy,, (k) = hij,x; (k)
X1 (k) = x; (k) = hyyydiyy (k)

Orthogonal vector Tx = [hy,h,,---,hg] is obtained by
K times forward recursion, which is the signal subspace
U,.

Because of the large number of elements, the dimen-
sion of the signal subspace U is still high. In this paper,
the signal subspace obtained is further reduced in dimen-
sion, and the signal subspace is sparse in space. There-

fore, a Gaussian random measurement matrix
@ e C™M(p<N) is designed to compress and observe
the vectorized signal subspace, and the following results
are obtained:

U,=®xU, e C¥. (12)

Construct a sparse representation DOA estimation
model: divide the possible incident angle range [-90,90]
of the signal into {6,,0,,---,6;} at equal intervals, then
each direction corresponds to a column of the array mani-
fold matrix, and construct a spatial over-complete dictio-
nary set B = [a(6,),a(6,),---,a(0,)].

Sparse signal S = [s, (1), s, (t),-++, s, ()]", when 6, = ,,
§ is a non-zero value. The DOA estimation model
expressed by sparse signals is

X=BS+N.

Using the spatial sparsity of the incident signal, the sig-
nal § is reconstructed by the processed received data X
and the over-complete dictionary set B. In this paper, the
optimization problem is constructed by using the residual
sum of squares:

]
minZlX—BSlz +yIWSll, (13)
i=1
where y is a regularization factor; W is the weighted
matrix; ||S]|, is penalty function, which is a function with
non-zero amplitude value in constraint §, thus limiting
the sparsity of the model. The residual sum of squares
between the actual value and the fitting value is used as
the standard to measure the accuracy of reconstruction,
and the /,- norm of the signal is added as the constraint
condition of signal sparsity, and the objective function
and constraint function are combined to construct an opti-
mization expression to solve it.
ly-norm is the number of non-zero elements in the vec-
tor, and its numerical solution is non-deteministic polyno-
mial (NP)-hard. Dohono et al. [20] proved that /,-norm
will lead to a sparse solution under certain conditions, so
l;-norm is the optimal convex approximation of /,-norm.
Using [,-norm instead of /,-norm to solve the optimiza-
tion problem reduce the complexity of /,-norm [31-33].
When the residual € obeys normal distribution, the
optimal parameter estimation value appears when the
maximum likelihood function of the sample reaches the
maximum value, then
i
min > (X - BS)’.
i=1
That indicates the parameter estimation is optimal
when the residual sum of squares is minimum.
In order to make the amplitude of sparse signal equally
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binding on the reconstructed signal and improve the
recovery accuracy of the sparse reconstruction algorithm,
weighted constraints are applied to it. The position with
the illuminator is multiplied by a smaller weight, and the
position without the illuminator is multiplied by a larger
weight to enhance the sparseness of the results. Using the
recursive noise subspace, the weighted matrix is con-
structed as
T
W, = a(6) R,a(6) (14)
|a©"R,a )

where R, =1,,-U,U".

Substituting it into the signal subspace after com-
pressed observation to obtain the following sparse recon-
struction expression:

U,=B,S+N. (15)
The new sensing matrix is
B, =®Y¥ cC™. (16)
The objective function of optimization is
]
min > [U,,— B,SF +yIWS|. (17)

i=1
Solving this convex optimization problem by second-
order cone optimization:

min p +vyq
1

U,.-B,SI<
St ZI whsp (18)

YIWS|, <q

The above formula can be solved to get the DOA esti-
mation value using software package.
The algorithm flow is presented in Algorithm 1.

Algorithm 1 The proposed DOA estimation algorithm
1. The array received data X (¢) is observed, flow pattern
matrix A (6)

2. Selected MSWF forward recursive initial value: X, =
X,d, = mean(X,)

3. Carry out K times forward recursion to obtain Krylov
subspace T = [hy,h,, -, hg], which is equivalent to U,.

a(®'R,a(6)
a® 'R,a®’

4. Determine the weighted matrix: w; =
R,=1,-UU"

5. Construct the measurement matrix @, reduce the
dimension of U, by compressive observation, and get U,
and B,.

6. Solving the weighted /,-norm convex optimization

]
problem to get the DOA estimation: min(Z|USS—
B\ SP +yIWSII) !

3. Simulation results

Experiment 1 Comparison of the spatial spectral
estimation performance of the proposed algorithm and the
[;-SVD algorithm under the large number of array ele-
ment.

Assuming that the number of ULA elements M=64, the
number of sources K=2, the number of snapshots /=200,
and the illuminator DOA parameters are 6 = [-30,0,10]
and SNR=-10 dB, the simulation results are shown in
Fig. 3.
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(a) Spatial spectrum of algorithm in this paper
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(b) /,-SVD algorithm spatial spectrum

Fig.3 Comparison of two algorithms for spatial spectrum
estimation

As shown in Fig. 3, under the condition of low SNR,
the proposed algorithm improves the accuracy of the
algorithm due to the weighted matrix and uses the resi-
dual sum of squares as the optimized objective function,
thus it can accurately distinguish two similar signals and
effectively suppress the formation of spurious peaks.
the [,-SVD algorithm is prone to pseudo-peaks and inac-
curate estimation results under low SNR. Therefore, the
spatial spectrum estimation performance of the proposed
algorithm performs better under certain conditions.
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Experiment 2 Comparison of the spatial spectrum
estimation performance of the proposed algorithm and
the /,-SVD algorithm under high SNR.

Assuming that the number of ULA elements M=64, the
number of sources K=2, the number of snapshots F =20,
the illuminator DOA parameters are 6=[0,1] and
SNR=10 dB, the simulation results are shown in Fig. 4.
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Fig. 4 Comparison of two algorithms for spatial spectrum
estimation

As shown in Fig. 4, the proposed algorithm can distin-
guish the signals within a beam width at high SNR, while
the [,-SVD algorithm is prone to producing spurious
peaks at high SNR and small angular intervals, and the
estimation results are inaccurate.

Experiment 3 Comparison of the spatial spectrum
estimation performance of the proposed algorithm, the /-
SVD algorithm, the OMP algorithm and the MUSIC
algorithm under low SNR.

Assuming that the number of ULA elements M=64, the
number of sources K=5, the number of snapshots F =80,
the illuminator DOA parameters are 6=[-10°,0°,
5°,30°,60°], and the SNR=-10 dB, the simulation results
are shown in Fig. 5.
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VY A\
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=
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~100 /VV\N\/WW WWJ
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DOA/(°)
—— Proposed algorithm; ——:/,-SVD;

: MUSIC; e: OMP.

Fig. 5 Comparison of four algorithms for spatial spectrum
estimation

It can be seen that the proposed algorithm can cor-
rectly distinguish five signals with narrow beam width
and good resolution. In contrast, the /,-SVD algorithm,
the OMP algorithm and the MUSIC algorithm cannot
correctly distinguish five signals when the number of
sources is large and the SNR is low, and the estimation is
inaccurate.

Experiment 4 Variation curve of ULA DOA estima-
tion performance with SNR.

DOA estimation is performed in the simulated ULA
using 64 array elements for two sources, and 100 Monte
Carlo experiments are performed to compare the root
mean square error of SNR at —15 dB to 15 dB, using the
proposed algorithm, the [,-SVD algorithm, the OMP
algorithm, and the MUSIC algorithm, respectively. The
simulation results are shown in Fig. 6.

Root mean square error/(°)

'5 T s 0 5 10 15
SNR/dB
—a—: Proposed algorithm; ——: /,-SVD;
——: MUSIC; : OMP.

Fig. 6 Comparison of root mean square error of four algorithms

As can be seen from Fig. 6, the proposed algorithm
introduces a weighted matrix and uses the residual sum of
squares as the optimization objective function, and the
root mean square error is smaller than the other three
algorithms when the SNR is low, so its estimation accu-
racy of DOA is higher than that of several other algo-
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rithms.

Experiment 5 Comparing the computational com-
plexity of the proposed algorithm, the /,-SVD algorithm,
and the MUSIC algorithm.

Assuming a ULA with M array elements, K sources,
N snapshots, and a sampling rate of P for compressed
observations, compare the computational complexity of
several algorithms, as shown in Table 1. The conven-
tional subspace-like algorithm requires the estimation of
covariance matrix and eigenvalue decomposition, and its
computational complexity is O(NM?+ M?). The main
computational complexity of the [,-SVD algorithm is
O(N*)+ 0((N x K )3) during the solution of the SVD and
the second-order cone optimization. The proposed algo-
rithm requires K forward MSWF recursions, and the
weighted process is negligible compared with the compu-
tational complexity of second-order cone optimization,
which is O(KMN)+0((P><K)3). Therefore, in the case
of large-scale arrays, the computational complexity of the
proposed algorithm is related to the one-time square of
the number of array elements, while the /,-SVD algo-
rithm is proportional to the cube of the number of array
elements. The computational complexity of the proposed
algorithm is better than that of the /,-SVD algorithm, and
the computational complexity is lower than that of the
subspace algorithm in large-scale arrays. For example,
when the number of array elements is 64 and the number
of snapshots is 80, the computational complexity of the
MUSIC algorithm reaches the order of 10°, the computa-
tional complexity of the /;-SVD algorithm is 10°, and the
computational complexity of the proposed algorithm is
10°. The computational speed of the proposed algorithm
is improved when the number of array elements is larger.

Table 1 Comparison of computational complexity of three
algorithms
Algorithm Algorithm complexity
MUSIC O(NM? + M?)
11-SVD O(N*)+0((Nx K)*)
The proposed algorithm O(KMN) +0((Px K))

4. Conclusions

In this paper, the proposed DOA estimation method for
high-dimensional signals based on weighted [;-norm
combines the MSWF algorithm with the sparse recon-
struction in compressed sensing, obtains the signal sub-
space without calculating the covariance matrix and the
inverse of the matrix, and further reduces the dimension-
ality through the measurement matrix. Since the weighted

matrix is used to constrain the signal amplitude to be
closer to the /;-norm model, the proposed algorithm is
more accurate in estimating DOA and can effectively
suppress the pseudo-peaks at the same time. The use of
the residual sum of squares as the objective function of
the optimization problem allows it to be closer to the
maximum likelihood estimation of the sample under non-
ideal conditions, and performs well under conditions such
as large number of array elements and low SNR, with
higher resolution, smaller root mean square error and
high estimation accuracy. The algorithm proposed in this
paper has higher resolution and better robustness com-
pared with the traditional [,-SVD algorithm, the OMP
algorithm and the MUSIC algorithm under the condi-
tions of lower SNR and smaller number of snapshots.
Simulations show that the Krylov iterative subspace algo-
rithm is introduced in combination with the sparse recon-
struction method to solve the DOA estimation problem of
high-dimensional large-scale signals.

As one of the meaningful further consideration,
although the proposed algorithm has some advantages
comparing with the classical DOA estimation algorithm
under low SNR, however, when the number of illumina-
tors exceeds the maximum freedom of the array, the reso-
lution performance of the illuminators deteriorates. In
order to solve the problem of multi-dimensional parame-
ter estimation, tensor calculation can be used to expand
the algorithm in this paper and establish the tensor model
of the array.

With the future wide application of large-scale arrays
in radar, communication, astronomy and other fields, the
dimensionality reduction method in this paper can be fur-
ther extended to two-dimensional DOA estimation, thus
reducing the computational complexity and improving
the accuracy of DOA estimation.
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