Journal of Systems Engineering and Electronics
Vol. 35, No. 2, April 2024, pp.396 — 405

Classification of aviation incident causes using LGBM with
improved cross-validation

NI Xiaomei'"?, WANG Huawei'"~, CHEN Lingzi', and LIN Ruiguan'

1. School of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
2. School of Aeronautical Engineering, Nanjing Vocational University of Industry Technology, Nanjing 210023, China

Abstract: Aviation accidents are currently one of the leading
causes of significant injuries and deaths worldwide. This entices
researchers to investigate aircraft safety using data analysis
approaches based on an advanced machine learning algorithm.
To assess aviation safety and identify the causes of incidents, a
classification model with light gradient boosting machine (LGBM)
based on the aviation safety reporting system (ASRS) has been
developed. It is improved by k-fold cross-validation with hybrid
sampling model (HSCV), which may boost classification perfor-
mance and maintain data balance. The results show that emp-
loying the LGBM-HSCV model can significantly improve accu-
racy while alleviating data imbalance. Vertical comparison with
other cross-validation (CV) methods and lateral comparison with
different fold times comprise the comparative approach. Aside
from the comparison, two further CV approaches based on the
improved method in this study are discussed: one with a different
sampling and folding order, and the other with more CV. Accord-
ing to the assessment indices with different methods, the LGBM-
HSCV model proposed here is effective at detecting incident
causes. The improved model for imbalanced data categorization
proposed may serve as a point of reference for similar data pro-
cessing, and the model’s accurate identification of civil aviation
incident causes can assist to improve civil aviation safety.
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1. Introduction

The safety of the air transportation system is becoming
increasingly important as the demand for air travel is pre-
dicted to skyrocket over the next two decades. Despite
the fact that aviation has a high level of safety, accidents
and incidents continue to occur [1]. It is a good way to
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learn from accident and incident reports, which show why
accidents happen and why they do not, and can help iden-
tify both the dangers and the precautions [2]. A few
machine learning studies have been carried out to ana-
lyze these reports [3—6].

The Civil Aeronautics Administration, the Traffic
Management Bureau, and other agencies have acci-
dent reports with extensive civil aviation incident infor-
mation. Almost every aspect of aircraft operations that
could go wrong is covered by the aviation safety report-
ing system (ASRS) [7]. However, due to the following
challenges, developing a model from ASRS data for the
prediction of causes linked with accidents is not a simple
task:

(i) High-dimensional data. Each incident record con-
sists of more than 50 items ranging from the operational
context (weather, visibility, flight phase, and flight condi-
tions) to the characteristics of the anomalous operation
(aircraft equipment, malfunction type, and event synop-
sis). It is likely for the incident to occur at any phase and
location due to a variety of factors (i.e., company poli-
cies, weather, human factors, etc.), which makes it hard
to predict the exact cause of incidents with complex fea-
tures [8,9].

(i1) Primarily categorical data. Over 99% of the items
in the ASRS database are categorical, and only a few
attributes (i.e., crew size) are numerical in each record.
Since the categorical features are not informative, how to
improve the accuracy of the classification of the model
trained by the categorical features without compromising
the model performance is an issue worthy of investiga-
tion.

(iii) Imbalanced class distribution. In the ASRS, the
number of records in one class (e.g., the incidents directly
caused by aircraft) is significantly larger than that of the
others (e.g., the incidents directly caused by company
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policies or the environment). Because of the imbalance in
the distribution of causes, incidents that were originally
caused by airline policies are now being identified as
being caused by aircraft failures, and resources in civil
aviation safety management are being misdirected to air-
craft repair at the expense of actual causes such as ma-
nagement.

Machine learning algorithms that presume a somewhat
well-balanced distribution will have a severe problem
when the number of data across distinct classes is highly
skewed [10,11]. Due to its powerful ability to establish a
dense representation of the feature space, which makes it
effective in learning high-order features from the raw
data [12,13], gradient boosting decision tree might be a
good candidate to discover the highly intricate relation-
ship between characteristics and incident causes when
dealing with categorical data [14,15]. Since the chal-
lenges in ASRS above, an improved cross-validation
(CV) method to optimize the classification model with
light gradient boosting machine (LGBM) is adopted in
this paper. To learn the correlations between incident
characteristics and causes, an LGBM [16,17] is first cre-
ated to analyse categorical data. The imbalance of causes
is then addressed using an upgraded CV approach. CV is

the most widely used approach for evaluating a model’s
predicted performance before or after it is generated via a
modeling procedure [18—20].

This paper addresses the aforementioned issues and
technologies, as well as the vital requirements of aviation
safety situational awareness, intelligent management [21],
and “the annual implementation plan for strengthening
transportation safety production”[22].

2. Data analysis

ASRS is a program operated by the National Aeronautics
and Space Administration (NASA) with the ultimate goal
of increasing aviation system safety by discovering sys-
tem safety hazards hidden in the multitude of air traffic
operations. Over the past few decades, ASRS has become
one of the world’s largest sources of information on avia-
tion safety and human factors. As one of its primary
tasks, ASRS collects, processes, and analyzes voluntarily
submitted aviation incident/situation reports from pilots,
flight attendants, air traffic controllers, dispatchers, cabin
crew, ground workers, maintenance technicians, and others
involved in aviation operations. A sample situation record
from the ASRS database is shown in Table 1.

Table 1 An example incident record from ASRS

Attribute

Content

Time/day

Date: 201801
Local time of day: 0601-1200

Place

Local reference.Airport: ZZZ.Airport
State reference: US
Altitude.Mean sea level (MSL).Single value: 1800

Environment

Flight conditions: visual flight rules
Light: daylight

Aircraft

ATC/Advisory: TRACON ZZZ
Aircraft operator: air carrier
Make model name: B737-800
Crew size.Number of crew: 2
Operating under FAR Part: Part 121
Flight plan: IFR
Flight phase: approach
Airspace: class B ZZZ

Component

Aircraft component: landing gear
Problem: malfunctioning

Event

Were passengers involved in even: N
Detector: flight crew
When detected: in-flight
Result: general maintenance action

Assessment

Contributing factors/situations: aircraft
Contributing factors/situations: aircraft
Primary problem: human factors

Synopsis

B737 Captain reported malfunctioning landing gear
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In ASRS, taking the identification of the causes of
an incident as an indicator of civil aviation safety, the
target has the characteristic of data imbalance. Namely,
the occurrence of the incident is usually caused by
aircraft or human factors, but factors like company pol-
icy and weather cannot be ruled out, so the data structure
always presents a characteristic of imbalance. At the
same time, the high-dimensional and primarily categori-
cal data mentioned in the background also pose chal-
lenges.

Therefore, a composite model is proposed to clean
the data while solving the problem of imbalanced classi-
fication. The analysis will help the Civil Aviation Admi-
nistration (CAA) accurately determine the cause of the
incident, to take targeted measures to better manage
the civil aviation industry. The airlines and the CAA
may utilize this to determine the initial cause of the
incidents and minimize the number of workers and
their degree of knowledge necessary, increasing civil avi-
ation safety management while decreasing resource
waste.

2.1 Features of the classification model

The indexes include time, place, environment, aircraft,
and event assessments, in detail. The time includes date
and period, and the place includes airports, air traffic con-
trol (ATC) facilities, intersection, and state. The environ-
ment includes flight conditions, lighting, and weather.
The aircraft includes federal aviation regulations part,
flight plan, flight phase, make and mission, where the
mission is people. Event assessment includes event type,
detector, primary problem, contributing factors, and
result. When the aircraft operator is air carrier, the air-
craft is always flying under Federal Aviation Regulations
(FAR) 121 part [23].

The primary problem of the occurrence is the catego-
rization model’s aim. The following are the most preva-
lent causes of occurrences in the recent decade: aircraft,
human factors, weather, company, environment, ambigu-
ity. Furthermore, unusual causes are consistently classi-
fied as others.

The distribution of the causes for all the incidents
reported from January 2009 to December 2018 is illus-
trated in Fig. 1.

Therefore, a composite model is proposed to clean the
data while solving the problem of imbalanced classifica-
tion. The analysis will help the CAA accurately deter-
mine the cause of the incident, to take targeted measures

to better manage the civil aviation industry.

8000

Primary cause

Fig.1 Primary causes of incidents in 10 years

2.2 Data pretreatment

2.2.1 Data cleaning

Data cleaning mainly refers to the processing of missing
values, unique values, and data filling. For this paper, fea-
ture selector [24] with python is used to clean data.

The remaining features after removing the highly miss-
ing data include flight phase, detector, above ground level
(AGL), crew, local reference, problems, when detected,
airspace, flight conditions, ATC, results, anomaly, light,
aircraft, contributing causes, flight phase, time, make
model name and state.

Then, fill in the original numeric variables according to
the average value of each category when filling the miss-
ing values and fill the encoded numeric variables accord-
ing to the mode of the category. After the data is filled,
all variables are complete variables, with no missing
value.

2.2.2 Feature selection

Feature selection mainly refers to collinear features and
feature importance. For each pair of collinear features,
the feature that will be removed is the one that comes last
in terms of the column ordering in the data frame. No fea-
tures are high correlated.

Furthermore, feature selection is also selected by fea-
ture contribution, and feature importance is selected th-
rough eXtreme gradient boosting (XGBoost) and LGBM
for the features after data cleaning. The result is shown
in Fig. 2. In the two algorithms, crew, discoverer, flight
plan, area, and AGL contribute less to the classifica-
tion model and are removed in the final classification
model.
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Fig. 2 Feature contribution of the two methods

3. Methodology
3.1 LGBM model

LGBM [25,26] is a new gradient boosting library imple-
mented by Microsoft in April 2017. The LGBM algo-
rithms provide the advantages of being distributed (paral-
lelized), higher efficiency with faster training speeds,
lower memory space, better accuracy, and providing scal-
able solutions.

LGBM aims to make gradient boosting on decis-
ion trees faster. This algorithm is used in sorting, classi-
fication, regression, and many other machine learn-
ing tasks and supports efficient parallel training. The
idea is that instead of verifying all of the splits when
constructing new leaves, only a subset of them is
checked: sort all of the characteristics and bucket the
observation into discrete bins. When a leaf in the tree is
split, instead of iterating over all of the leaves, all of the
buckets are iterated over simply. This implementation is
called histogram implementation (as shown in Fig. 3)
[26].

D:D, T iy T

RN i
| N 7

Data Bins
(a) Histogram implementation of LGBM

@%@gfb?g...

(b) Leaf-wise tree growth of LGBM
Fig.3 Structure of LGBM

Features
Features

32 CV

CV [27] is a procedure for estimating the generalization
performance. Data is split usually into two parts and
based on this splitting, on one part, training is done while
the predictive performance is tested on the other part. The
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training-and-testing scheme works equally well for classi-
fication models of machine learning. The schematic dia-
gram of CV is shown in Fig. 4.
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Fig. 4 Schematic diagram of CV

We use some of the dataset to train a model and leave
some out to test the model once it has been trained. This
is the underlying principle in CV. As a result, CV is

Aircraft D Training data D Testing data

(original) (original)
Human
Procedure

I ASRS |—>| Company

Environment

1

Ambiguity

Others

widely accepted in the data mining and machine learning
community and serves as a standard procedure for
the sake of model selection or modeling procedure selec-
tion.

The method proposed in this paper is to divide the
ASRS data according to the proportion of the incident
cause, that is, the major causes, aircraft, human factors,
and procedure are under-sampling without returning, and
the minority causes, weather, company, environment,
ambiguity and others are over-sampling with returning.
These are the main causes of civil aviation mishaps that
have occurred in the recent decade. In essence, it is a
sampling method that combines under-sampling and over-
sampling. The sample is evenly divided into five sub-
samples. However, the traditional stratified CV method
generally retains the sample an imbalanced situation. The
schematic diagram of improved CV is shown in Fig. 5.
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[ (original) [ (original)
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Fig. 5 Schematic diagram of CV

It is worth mentioning that the proposed approach is
more broad than the usual hybrid sampling method since
each subsample is generally balanced and distinct within
the sample at this moment.

Appropriate evaluation criteria are the key to evaluate
the performance of the classification method. The binary
classification system yields the following results: true
positive (TP) denotes a right prediction of positive exam-
ples as positive, false negative (FN) denotes a prediction
of positive examples as incorrect, false positive (FP)
denotes a prediction of false examples as positive, and
true negative (TN) denotes a prediction of false examples
as positive. Referring to the definition of each indicator in
the dichotomous classification, a certain category of
cause Cl for example, if the confusion matrix can be
defined as Table 2.

Table 2 Confusion matrix of C1

Category Cl The other cause
Cl TP FP
The other cause FN TN

Common evaluation criteria include precision (P),
recall (R), accuracy (A), and F'1 value.

Combined with the actual situation of civil aviation,
accuracy is the primary cause of being correctly classi-
fied as the proportion of all results. This indicator reflects
the discriminative ability of the model from the overall
level. The precision refers to the proportion of the correct
classification of this category in the model predicted to
occur. The recall, which focuses on the model’s capacity
to identify the primary cause, is the proportion of the
main primary that is accurately predicted to all the
causes. It represents the model’s capacity to distinguish
the primary cause. Both the precision and the recall are
important reference indicators for judging the civil avia-
tion safety management capability, and F1 weights the
two to better reflect the model’s performance.

The accuracy, precision, recall, and F1 of each cate-
gory are expressed as A;, P;, R;, and F1; respectively.
The main classification evaluation index in this paper is
the weighted average and weight. There are seven cate-
gories, aircraft, human, company, weather, procedure,
abnormal, and others.
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4. Results and discussion
4.1 LGBM model

As Fig. 6 illustrates, LGBM has the benefits of high accu-
racy and rapid speed among the machine learning me-
thods such as support vector machine (SVM), K-nearest
neighbor (KNN), and random forest (RF), without being
tuned. Therefore, it makes sense to choose LGBM to
determine the cause of the incidents.

For complex ASRS data, LGBM can process features
quickly and effectively, thus establishing a better inci-
dent cause classifier.

4.2 Hyperparameter tuning

The hyperparameters tuning involves searching for the
best algorithm by adjusting parameters to optimize pre-

diction accuracy [28,29]. The best parameters are identi-
fied through trials of several different combinations. The
parameters that yield the best performing model are
selected for developing a model that is used in the predic-
tion. The current study uses a Bayesian optimization
algorithm implemented in the Optuna package to search
for the best parameters for LGBM classifiers [30].
The Bayesian optimization algorithm achieves a better
performance than random search as it uses past evalua-
tion results to choose the next hyperparameters in the

analysis.
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Fig. 6 Accuracy and runtime of methods
The optimized hyperparameters of the LGBM classi-
fier, range of searches, and final or best parameter values
are presented in Table 3.

Table 3 Set of parameters optimized in LGBM classifier

Parameter Range of grid Final parameter Parameter Range of grid Final parameter
num\_leaves [100, 400] 143 feature\_fraction [0.2,1] 0.63
max\_bin [50, 300] 147 bagging\ fraction [0.2,1] 1
max\ depth [4,20] bagging\ freq [1,7] 7
min\_child\ weight [1,6] learning\ rate [5, 100] 68
A [0.001,1] learning\ rate [0.01,0.5] 0.04
A2 [0.001,1] 0.75 n\_estimators (500, 5000) 1045

4.3 Classification

The improved five-fold LGBM-CV with hybrid sam-
pling (LGBM-HSCV) is employed, whereby five datasets
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after hybrid sampling for balance are divided and four
sets are used for training while the resulting model is va-
lidated with the remaining set of the data. The evaluation
indices of each fold are shown in Fig. 7.
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Fig. 7 Evaluation indeices of LGBM-HSCV

Then evaluation indices are the average of all folds,
that is, the accuracy of the LGBM-HSCV is 0.896, the
precision is 0.901, the recall is 0.912 and the F'1 value is

0.90
0.899.
Besides, the confusion matrix is shown in Fig. 8. The 0851
classification result of the category is also the average of
all folds. 2 0.80 |
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It can be seen that the method proposed in this paper 0.70 -
has greatly improved the recognition ability of the min-
ority categories. At the same time, various evalua- 065 LGBM- LGBM- LGBM- HS-LGBM-
tion indicators also show that it is a good classifier, which HSCV SKF cv cv
. . . .. .. .. Method
can effectively identify the cause of civil aviation inci- -
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dents. 0.95
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4.4.1 Cross validation 0.85F
This article compares three LGBM models with different 3 0.80 |
CV methods: LGBM-CV, which is the regular £-fold CV; 075
LGBM-SKF, which is the general stratified k-fold CV;
and LGBM-HSCV, which is the hybrid sampling k-fold 0.70 F
CV. In particular, the hybrid sampling followed by CV 0.65 " . . .
approach, HS-LGBM-CV, is also utilized for comparison, I}_IGS%\\@ L(S}IE]FV[_ LGC]i/M_ HS'E(;’,BM'
and the results prove that the method proposed in this Method

paper is still the best. The comparisons are shown in Fig. 9. (¢) Recall
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The results show that among the three CV methods
LGBM-CV, LGBM-SKF, and LGBM-HSCV, LGBM-
HSCV is the best method. Therefore, to determine
whether it is due to balancing the data before mixing the
samples, LGBM-HSCV and HS-LGBM-CV are com-
pared. The results show that although the hybrid sam-
pling to achieve balance improves the accuracy, the per-
formance of LGBM-HSCV put forward in this paper is
still better, that is, balancing the sub-sample after k-fold is
better than balancing the sample and then dividing into &
folds.

442 K-fold

The influence with different folds of the LGBM-HSCV is
also compared in Fig. 10. The comparison of different
folds shows that five-fold is the best.
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Fig. 10 Evaluation indeices with different folds

We also double-check on this basis. Secondary CV is
supposed to be performed for each balanced fold, with
the fold result being the average of the acquired secon-
dary CV (LGBM-HSCV-CV) results, and then the full

five-fold model being averaged. The LGBM-HSCV-CV
model’s evaluation indices are listed in Table 4. The
indices show that without further fold, LGBM-HSCYV is
appropriate.

Table 4  Evaluation indices of LGBM-HSCV-CV and LGBM-
HSCV
Model Accuracy  Precision  Recall F1
LGBM-HSCV-CV 0.897 0.899 0.897 0.891
LGBM-HSCV 0.896 0.901 0.912 0.899

5. Summary and conclusions

This work develops an improved CV model based on
LGBM for analyzing the causes of incidents in the air
transportation system. The LGBM model is trained with
categorical and numerical data, and the improvement is
based on CV hybrid sampling. By using the LGBM-
HSCV model, we formulate a classifier model to identify
the causes of hazardous events outcomes using 24 753
reports on incidents/accidents reported from January
2009 to December 2018.

Several contributions have been made to this paper.
First, the ASRS data are collected and identified in accor-
dance with commercial transportation. Second, following
data cleaning and feature selection, a classifier model
based on LGBM is created to extract the difficult ASRS
data. Third, to improve the LGBM model, Optuna with
Bayes is employed for hyperparameter adjustment.
Finally, to improve the categorization, an innovative CV
algorithm is designed. This approach is compared to se-
veral CV methods in particular. It is also compared to the
same procedure with different k& folds at the same time.
The findings show that the developed classifier model
outperforms the individual models in terms of accuracy,
precision, recall, and F1 score when using hybrid sam-
pling £-fold CV to balance the ASRS data. This improved
classifier will be able to better analyze similar incident
reports in the future, resulting in more efficient and accu-
rate incident cause categorization and improved civil avi-
ation safety management.
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