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Abstract: Aiming at the shortcoming that the traditional indus-
trial manipulator using off-line programming cannot change
along with the change of external environment, the key technolo-
gies such as machine vision and manipulator control are studied,
and a complete manipulator vision tracking system is designed.
Firstly, Denavit-Hartenberg (D-H) parameters method is used to
construct the model of the manipulator and analyze the forward
and inverse kinematics equations of the manipulator. At the
same time, a binocular camera is used to obtain the three-
dimensional position of the target. Secondly, in order to make
the manipulator track the target more accurately, the fuzzy adap-
tive square root unscented Kalman filter (FSRUKF) is proposed
to estimate the target state. Finally, the manipulator tracking sys-
tem is built by using the position-based visual servo. The simula-
tion experiments show that FSRUKF converges faster and with
less error than the square root unscented Kalman filter (SRUKEF),
which meets the application requirements of the manipulator
tracking system, and basically meets the application require-
ments of the manipulator tracking system in the practical experi-
ments.
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1. Introduction

Since the world’s first industrial robot was introduced in
1959, robotics research has made tremendous progress
and has been widely used in manufacturing, service,
defense security, and space exploration [1]. In traditional
industrial production lines, the operational movements of
the manipulator are usually planned by means of offline
programming or teach-in programming, but those me-
thods require that the motion state of the manipulator’s
operating object must be completely known, and once the
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motion of the operating object changes, the operation of
the manipulator will deviate, leading to operational fail-
ure. With the demand for more diverse functions of the
manipulator in the automated production process, mani-
pulators are more often faced with operating objects with
changing motion states, which poses a challenge to the
traditional method of manipulator operation [2]. In recent
years, with the improvement of hardware computing
power, machine vision technology has developed rapidly
and has been widely used in the industrial field, which
greatly improves the efficiency of industrial production.
It is a general trend to combine manipulator control with
machine vision technology to expand the application sce-
narios of manipulators. The combination of machine
vision and manipulators solves the problem of insuffi-
cient autonomy and intelligence in complex working
environments and tasks, and improves the flexibility of
manipulators [3].

In the area of manipulator tracking combined with
machine vision, researchers have adopted many methods
and achieved many impressive results, such as Kalman
filtering (KF) [4], extended KF (EKF) [5], unscented KF
(UKF) [6], particle filter 7], machine learning, and artifi-
cial intelligence [8]. Frese et al. [9,10] adopted EKF for
tracking random motion targets based on machine vision,
but the tracking effect of EKF is not satisfactory for
strongly nonlinear motion such as random motion. Paing
et al. [11] improved the estimation of object trajectories
via KF for the capture of flying objects and proposed a
least squares fit to accurately predict the capture time,
position, and velocity of the manipulator. An improved
UKF algorithm was introduced and used in [12]. Com-
pared with the estimation algorithm of the standard UKF,
the new algorithm effectively reduces the state estima-
tion error and improves the tracking stability and the
tracking accuracy. References [13,14] showed that the
particle-based filter can track the strongly nonlinear tar-
gets better, but its accuracy is proportional to the number
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of particles, and the conflict between accuracy and real-
time performance is still a direction worthy of further
research. In [15], a machine learning algorithm was used
to learn the trajectory of a throwing object. By predicting
the target trajectory and classifying it, the corresponding
optimal capture action is selected and the capture of a
high-speed throwing target is achieved, but the method
has some limitations for the capture of random motion
targets. Luo et al. [16] proposed a manipulator capture
method by predicting the trajectory of a moving target in
camera space. This method, although capable of fast-
tracking targets, requires a large amount of data from spe-
cific motion models for learning and is not universal.

As the research progressed, researchers introduced the
concept of “adaptive” into various filtering algorithms to
achieve better target tracking results, which is imple-
mented in different aspects. Qu et al. [17] introduced the
adaptive fading KF (AFKF) algorithm and proposed the
calculation of the forgetting factor for target tracking in
the case of temporary occlusion of moving target image
features, which applies to the extraction of non-robust tar-
get features for robot-operated vision tracking tasks. Li et
al. [18] introduced and used an improved UKF to track
moving targets for application on radar systems, where
the scale factor is adaptively chosen to have a simplex
sampling with the minimum bias. The algorithm reduces
the computational effort and improves the accuracy of
tracking the target. Zhang et al. [19] proposed an adap-
tive multi-level resampling-based particle filtering
(ARPF) algorithm, which divides the particle resampling
weight space algorithm into multiple levels and resam-
ples the diversity of resampled particles through a rank
entropy measure to improve the filtering accuracy.

With the rising of artificial intelligence technology in
recent years, it has been widely used in various industries.
The methods such as deep learning, reinforcement lear-
ning, and deep reinforcement learning have been applied
to manipulator arm grasping and have achieved positive
results.

The synthesis of the above references shows that there
are limitations in the currently used tracking methods.
EKF is not ideal for tracking random motion targets,
while the pre-defined equations of motion approach will
make the error accumulation impossible to predict the
tracking for a long time, and the particle filtering
approach cannot balance accuracy and real-time. While
the introduction of “fuzzy” and “adaptive” has achieved
better results in other target tracking.

In this paper, fuzzy adaptive square root UKF
(FSRUKF) is proposed to solve the problems that KF is
not applicable to non-linear motion and particle filtering
is computationally intensive. The fuzzy inference system
is applied to improve suqare root UKF (SRUKF), and the

adaptive adjustment of SRUKF measurement noise vari-
ance matrix is achieved, which improves the estimation
accuracy of the traditional algorithm. And the position-
based visual servo is utilized to overcome the problem of
conducting random motion targets that are difficult to
track for a long time. The robot arm tracking system
designed in this paper is able to complete the target track-
ing task through experimental verification.

This paper is organized as follows: Section 2 presents
the modeling and kinematic analysis of the manipulator
of the DOBOT four-degree-of-freedom manipulator plat-
form. Section 3 introduces the imaging principle of the
camera and builds the imaging model. Section 4 intro-
duces SRUKF and FSRUKEF respectively, and compares
the two algorithms. Section 5 designs the experimental
protocols using SRUKF and FSRUKF proposed in this
paper, respectively, and conducts the practical experi-
mental comparisons. Finally, conclusions are summa-
rized in Section 6 .

2. Manipulator modeling and kinematic
analysis

2.1 Manipulator modeling

A manipulator is essentially an open kinematic chain
composed of jointed rods. According to the standard
Denavit-Hartenberg (D-H) modeling method [20], four
parameters are used to describe adjacent links and joints,
where the position relationship between adjacent joint
axes is described by the link length a; and the link tor-
sion angle «;, and the position relationship between adja-
cent rods is described by the link offset d; and the link
rotation angle 6;. The DOBOT four-degree-of-freedom
manipulator platform is used in this paper. The structure
of the manipulator and the joint coordinate system are
shown in Fig. 1.

Fig. 1 DOBOT manipulator structure and joint coordinate system

According to the definition of each parameter in the
D-H modeling method, the D-H parameter table of the
DOBOT manipulator is obtained as shown in Table 1.
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Table1 DOBOT manipulator D-H parameter table

Link Link rotation Link torsion
serial number angle 6;/(°) Link offset d;/mm Link length a;/mm angle @;/(°)
1 0, 138 0 -90
2 0> 0 135 0
3 03 0 147
4 04 0 0

The coordinate transformation between adjacent links
of the manipulator can be represented by a homogeneous
coordinate transformation matrix, as follows:

cosf;, -—sinf;cosq; sin;sina; a;cos0;
i sind; cosf;cosa; —cosé;sina; a;sinb;
! 0 sinq; cosq; d;
0 0 0 1
(1)

The transformation relationship from the base coordi-
nate system of the manipulator to the end-effector coordi-
nate system is obtained by multiplying the adjacent
homogeneous coordinate  transformation  matrices
together, which is represented by the positive kinematic
equation of the manipulator, as follows:

a 0 =51 c(aentaxc)
op _omimamagn_| S 0 o si(asentax)
4T_1T2T3T4T_ O -1 0 dl—a2s2—613S23
0 O 0 1
2)
where ¢ = COSG], S = Sin@l, Cy3 = COS(92 +03), Sz =

sin(6, + 65).
2.2 Inverse kinematic equation

Inverse kinematics can calculate the value of each joint
angle of the manipulator for known end-effector poses.
The form of the end-effector’s pose transformation matrix
concerning the base is known, and it is assumed that the
desired pose of the end-effector relative to the base is
known and can be expressed as

a, b, c. I
|l a by ¢ I
o @
0O 0 0 1
Let
\T=T-yT5T-,T = Tgpa. 4
There is
a0 =51 ci(aseis+axc,) a, b, c I
s; O C si(azcas + ascy) a, b, ¢ |
0 -1 0 d] —ddySy —A38y3 B a, bz C, lz
0 O 0 1 0O 0 O
(5)

Then the value of each joint angle of the manipulator is
calculated by (6), (7), (8), and (9) as follows:

01 = tan_l (ly/lx)s (6)
cosf; = (e, +lysl)2 +(d, - lz)z —a,’ —ay’ ’ %)
2‘02&3
cosfs = (di = 1) ass; + (Ley + 1y si)(ases + ap) ®)
’ (a3c3+ar)” + (ass3) '
0, = —(6, +65). )

3. Camera imaging principles and binocular
camera distance measurement

When a camera captures a subject, the light from the sub-
ject first enters the camera through the camera aperture,
where the camera’s internal light sensor captures the light
and converts the light signal from the subject into a digi-
tal signal for storage. The image acquired by the camera
can then be read by a computer to obtain the stored data.
This structural model can be approximated as a pinhole
model [21]. The camera imaging model is shown in
Fig. 2.

Imaging plane

Fig.2 Camera imaging model

Among them, O is the origin of the camera coordinate
system, OA is the optical axis of the camera, A is the fea-
ture point on the target surface, and « is the mapping
point of the feature point on the imaging plane.

In order to accurately describe the three-dimensional
(3D) coordinates of the target in space, the following con-
ventions are applied to the coordinate system used in the
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camera imaging process. 0,X,Y,.Z, is the world coordi-
nate system, which is used to describe the location of the
target in real space; O.X.Y.Z. is the camera coordinate
system, which is used to describe the spatial location of
the target object relative to the camera; O, XY is the
image coordinate system, whose origin is located on the
camera imaging plane center; Oyuv is the pixel coordi-
nate system, and its origin is located in the upper left cor-
ner of the camera imaging plane. The relationship of each
coordinate system is shown in Fig. 3.

Y u

Fig.3 Relationship between coordinate systems

The conversion relationship between the world coordi-
nate system and the camera coordinate system can be
expressed as

X Xy
Ye |=R| » |+¢ (10)
Z(,’ Zw

where (x.,.,z.) is the coordinate of the target in the cam-
era coordinate system, (x,,Y,,Z,) is the coordinate of the
target in the world coordinate system, R is the rotation
matrix between the world coordinate system and the cam-
era coordinate system, and ¢ is the relative position vec-
tor between the camera coordinate system and the world
coordinate system.

The conversion relationship between the coordinates in
the image coordinate system and those in the camera
coordinate system can be expressed as follows:

x=fx (11)
Ze

y=r, (12)
Ze

where x and y are the coordinates of the target point in
the image coordinate system, x.,Y.,z. are the coordinates
of the target point in the camera coordinate system, and f
is the camera focal length.

The conversion relationship between the image coordi-
nate system and the pixel coordinate system can be
expressed as follows:

X
u= &+u0, (13)
V= dy—y+v0, (14)

where u and v are the coordinates in the pixel coordinate
system, u, and v, are the coordinates of the image coordi-
nate origin in the pixel coordinate system, dx and dy rep-
resent the size of each pixel on each row and column
respectively, and x, y are the coordinates in the image
coordinate system.

The world coordinate system to pixel coordinate sys-
tem conversion relationship, namely the camera linear
imaging model, is obtained by associating the conversion
relationships between the coordinate systems, as follows:

1

u dx Yo lrf 0 00
o v |= oo 0o
1 dy 00 10
0 0 1
Xw X
R t Yw f 0 Ho 0 R 1t Yw
0 1 o AR | N
o 00 1 0 o
1 1
(15)
f 0 u O
where | O/ Vo O | s called the internal parameters
00 1 0

R 1t
of the camera, and 0 1 } is called as the external

parameters of the camera.

In this paper, the ZED binocular camera from Stereo-
labs is used as a vision sensor to obtain the coordinates of
a point in 3D space by capturing the image of the object
under test using two left and right cameras simultane-
ously [22] to obtain the distance z. of the target in the
depth direction to the camera. The basic principle of
binocular vision ranging is shown in Fig. 4.
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Fig. 4 Binocular camera distance measuring principle
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Given that point P is a point in space, its position on
the left and right imaging planes changes continuously as
point P moves along the optical axis of the camera. The
parallax d of point P is the distance between the x-coor-
dinates of point P in the left and right image planes. The
distance Z of the point P in the depth direction is
inversely proportional to the parallax d, which can be
deviated from the center of the projection point on the left
and right imaging planes by subtracting the center dis-
tance T of the optical axis of the two cameras. The dis-
tance 7' between the centers of the two camera axes can
be obtained by camera calibration.

4. FSRUKF
4.1 SRUKF

UKEF solves the problem that KF cannot be applied to non-
linear systems, and offers higher estimation accuracy than
EKF, as well as being easier to implement in engineering
than EKF. The square root of the state covariance matrix
needs to be calculated at each iteration of the Sigma sam-
pling point update, which is the largest time overhead in
the computation. In addition, as the filtering proceeds, the
presence of computer rounding errors will cause the error
covariance matrix and the state covariance matrix to lose
their positivity, leading to filtering failure. In order to
improve the efficiency and numerical stability of the fil-
tering calculation, a square root form of UKF is derived
[23].

The recursive formula of SRUKF in this paper is as
follows [24].

Assume the following equations for the discrete non-
linear system:

X, = f(Xeor, w0, (16)

i = h(xi,vi), 17

where f(-) and h(-) are non-linear functions; u, and v;
are procedure noise and measurement noise, respectively,
and their corresponding covariance matrices are O, and
R,.

Step 1 Initialization.
%o = E[xo], (18)
So = chol((xy —£0) (xo —20)"), (19)

where %o, S, are the initial system state quantities and the
initial square root of the error covariance matrix, respec-
tively. chol(-) denotes the square root of the error covari-
ance matrix obtained by Cholesky decomposition.

Step 2 Constructing Sigma sampling points.

Xi-1 2[ T X +vSi X —ySia ] (20)

where x;., denotes the (k—1)th Sigma vector,
A=a*(L+x)—L is a scaling parameter, @ determines the
dispersion of Sigma sampling points. It is usually taken
as a small positive number. k is usually set to O,

v=VL+A.
Step 3 Time update.
Xuk-1 = f (Xeers i), (21)

2L

Rt = Z Wl-(m)X iklk—=15 (22)

i=0

S, = qr{[ Y Wic) (Y 12vdp—1 — Bapr) \/é]}s (23)

S, = cholupdate {S; s (OXose1 = Xiger) W((f)} s (24)

yk\k—l = h(/\/k|k—l7vk—l)7 (25)
2L
yklk—l = Z W,-(m)y iklk—15 (26)

i=0

where qr(-) is the QR decomposition of the matrix,
cholupdate(-) is the update function of decomposition,
W™ is the mean value weight, and W is the covariance
weight.

Step4 Measurement update.

S5, = qr{[ 1Y, Wfﬂ) (Y ronppet = Fu-1) ‘/E]} s 27

S.W = cholupdate {ka N (yo,k"(,l _ﬁk\k—l) N W(()C)} N (28)

2L
P, = Z W,v(c) [/\/i,klk—l —-f'kuc—l] [«y i Jele—1 _5’k\k—1]T7 29
i=0

K. =(P,,/S})/S;. (30)

£ =B + K 0= P (31
U=KS,, (32)

S, = cholupdate{S;,U,—1}, (33)

where P,,, is cross-covariance between vectors x; and
Yi, K is filter gain matrix, S, is the square root of the
error covariance matrix at the current moment.

4.2 FSRUKF

SRUKEF improves the numerical stability of the filter. The
statistical properties of system and measurement noise are
generally assumed to be Gaussian white noise with
known mean and covariance in the filtering process.
However, due to uncertainties in the actual system, such
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as the internal and external environment, the real system
noise and measurement noise statistical properties are not
known exactly. If the artificially set noise covariance is
significantly different from the real covariance, it will
lead to a decrease in filtering accuracy and may even lead
to filtering divergence. To solve this problem, this paper
introduces a fuzzy inference system to achieve real-time
adjustment of the measurement noise covariance matrix

so that filtering can be performed stably.

The fuzzy inference system is based on fuzzy set the-
ory and fuzzy inference method, with fuzzy logic as the
main computational tool and a system with the ability to
handle fuzzy information. The fuzzy inference system is
mainly composed of fuzzification, fuzzy inference, fuzzy
inference rules, and defuzzification. The structure of the
fuzzy inference system is shown in Fig. 5.

|:> Fuzzification |:> Fuzzy inference |:> Defuzzification
Input
module module module

Fuzzy
inference rules

Fig.5 Fuzzy inference system structure

The residual is defined as the difference between the
real and the estimated measurements of the filter, which
can be expressed as follows:

r=72-27. (34)

Assuming that N represents a window of time in the
filtering process, the estimate of the residuals can be cal-
culated by

Cx~— ririT (35)

where C,; represents the residual estimation at moment
k, and r; represents the measured residual at time i.

The theoretical value of the residuals is calculated as
follows:

2L
Pu= > WO (Vs = 2) (Yuwes ~ Z.) +Riy (36)
i=0

where W is the covariance weight, Y., is the Sigma
sample point after the nonlinear change of the measure-
ment equation, and R,_; is the measurement noise covari-
ance matrix at k— 1.

qiis defined as the ratio of the residual estimated value
to the theoretical residual value, then

_ tr(Cr,k)

= WP, @7

Gk

where tr(-) represents the trace of the mean value.
If the mathematical model is accurate, ¢, the ratio of
the estimated residual variance to the theoretical value of

the filtered residual variance should be around 1. If the
ratio deviates from 1, it indicates that the measurement
noise has changed, and the measurement noise covari-
ance matrix R, needs to be adjusted to bring g, back to
around 1. From (37), it can be obtained that increasing R,
can decrease ¢g;, and decreasing R, can increase g.
Therefore, g, can be adjusted by R;.

Rk = s]’ij—] (38)

where b is a positive number that deflates the adjustment
coefficient s;.

R, is adjusted by s,. When s, is greater than 1, R, is
increased; when s; is less than 1, R, is decreased; when
s is 1, Ry is unchanged.

Taking g, as the input of the fuzzy inference system,
the adjustment coefficient s, of the measurement noise
covariance matrix is obtained after the fuzzy operation.

Define the input fuzzy subsets LESS to be less than 1,
MORE to be greater than 1, EQUAL to be around 1. The
corresponding output fuzzy subsets are DECREASE,
INCREASE, and UNCHANGE respectively. Input and
output fuzzy subset intervals and fuzzy partitions are
shown in Table 2 and Table 3.

Table 2 Input fuzzy subset interval and fuzzy division

Input Fuzzy division
[0,0.96] LESS
[0.5,1.5] EQUAL

[1.06,Inf] MORE
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Table 3 Output fuzzy subset interval and fuzzy division

Output Fuzzy division
[0,0.98] DECREASE
[0.6,1.4] UNCHANGE
[1.02,Inf] INCREASE

The fuzzy affiliation functions of the input and output
variables are shown in Fig. 6 (a) and Fig. 6(b) respec-
tively. g represents g, and s represents s;.
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(b) Output affiliation function
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Fig. 6 Fuzzy system input and output affiliation function

According to the above-mentioned relationship
between input and output variables, fuzzy inference rules
are established as follows:

IF ¢, € EQUAL, THEN s, € UNCHANGE;
IF g, € MORE, THEN s, € INCREASE;
IF ¢, € LESS, THEN s, € DECREASE.

Because the center of gravity (COG) method of
defuzzification can take into account all the relevant
information about the fuzzy quantity and has better
robustness, this paper adopts COG for defuzzification to
obtain s;.

FSRUKEF is mainly modified in SRUKF measurement
update phase. The ratio of the residual covariance esti-

mated value to the theoretical value is obtained through
the fuzzy inference system to obtain the adaptive adjust-
ment coefficient s;. The updated measurement noise vari-
ance R, is obtained by updating the current measurement
noise variance matrix R, using the adaptive adjustment
coefficient, and then the updated measurement noise vari-
ance R, at k=k+1 is substituted into (39) for the QR
decomposition.

S, = qr{[ RY, ch) (Y 1onpi-1 = Fue-1) VRkl}} 39)

Then the new square root of the covariance is obtained
by factoring the update via (40).

Sik = cholupdate {Sﬂ , (yo,k\kfl - j’k|k—1) s W(()C)} (40)

The algorithm flow of FSRUKEF is shown in Fig. 7.

Initialize x,, S, R,
Set parameter N, b

v

Perform N-step filtering in the
first sliding window

¢!

QR decomposition using the

current measurement noise
variance R,_,

v

Calculate the theoretical value
of the residuals P, ;, the
estimated value of the
residuals C,, and the ratio of
the two ¢,

v

Calculate the adaptive
adjustment factor s, by means
of a fuzzy inference system

v

Update the measurement noise
variance matrix R, using s,

v

k=k+1, R=R,_,
Sliding window movement for
filtering

Eligible for
closure?

Fig. 7

FSRUKEF algorithm flow
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4.3 Simulation results and comparison

A typical highly nonlinear model, the univariate nonsta-
tionary growth model (UNGM), is used to validate the
effectiveness of the improved algorithm, and the dynamic
state-space model of UNGM is as follows:

Xj—
X=X+ +kx‘2 +ycos(-(k=1)+w,  (41)
k-1
= T-xi + Ve, (42)

where a, B, v, 1, and 7 are the nonlinear system parame-
ters, k is the sampling moment, w; and v, are the process
noise and measurement noise, respectively, and the sys-
tem model parameters are set to @ =0.5, =25, y=8,
n=12,and 7 =0.05.

The exponential term b of the adaptive regulation coef-
ficient indirectly affects the regulation of the measure-
ment noise variance matrix R, by influencing the adap-
tive regulation coefficient k. In order to select a suitable
value for parameter b, it is necessary to investigate the
influence of parameter b on the regulation of the system.
Through a variety of simulation experiments, in general,
the larger the value of parameter b is, the stronger the
regulation effect on the system, and the shorter the transi-
tion time for the ratio g of the covariance estimate to the
theoretical value to converge to 1. The smaller the value
of parameter b is, the weaker the regulation effect on the
system, and the longer the transition time for the ratio g
of the covariance estimate to the theoretical value to con-
verge to 1. When b > 1, it means that the adaptive adjust-
ment coefficient is enlarged and the system can be
adjusted faster, but the error is larger and the ratio g will
oscillate around 1. When b < 1, it means that the adap-
tive adjustment coefficient is reduced, and the system can
adjust more slowly, but the adjustment effect is more
accurate. After the comprehensive analysis of the above,
through multiple experimental simulations, the exponen-
tial term b = 1.5 of the adaptive adjustment coefficient is
selected.

The nonlinear model is estimated by using SRUKF and
FSRUKF. SRUKF and FSRUKF are run for 100 itera-
tions with simulation times of 0.0029 s and 0.05 s. The
state estimation results and the absolute error of estima-
tion are shown in Fig. 8 and Fig. 9, respectively.

M
el

0 10 20 30 40 50 60 70 80 90 100
t

: SRUKF; -~ : FSRUKEF.

State value x

— : Real state;

Fig. 8 Result of filtering estimation

Error e

i U]\/’\Vdvfwmwww

0 10 20 30 40 50 60 70 80 90 100
t

N O NN RN

: SRUKF; -+ : FSRUKF.

Fig. 9 Absolute error of estimation

From Fig. 8 and Fig. 9, it can be seen that both
FSRUKF and SRUKF can complete the state estimation
for the nonlinear model, but the estimation effect of
FSRUKEF is better than that of SRUKF. It can be seen
from the figures that at the beginning, both FSRUKF and
SRUKF perform the state estimation for the nonlinear
model, and the difference between the two estimations is
not large, while the error with the true value is larger.
After the 22nd step, the error between SRUKF and the
true value is still large, while FSRUKEF can track the true
value more accurately, so the filtering effect of FSRUKF
is better than that of SRUKF. In addition, the conver-
gence speed of FSRUKEF is faster than SRUKF, and the
error of FSRUKF is maintained at a relatively small level
after the 22nd step, while the error of SRUKF is basi-
cally above FSRUKF.

In summary, FSRUKF has the following characteris-
tics compared with SRUKF.

(1) FSRUKF can obtain higher estimation accuracy
than SRUKF for nonlinear models with unknown mea-
surement noise variance matrices.

(i) FSRUKF is capable of adaptive adjustment of the
noise variance matrix and thus has a faster convergence
speed compared to SRUKF.

(iii)) FSRUKEF has a higher algorithm complexity than
SRUKEF because it uses a fuzzy inference system, which
adds extra computational effort.

Therefore, in scenarios where the nonlinear system is
used with an unknown measurement noise variance
matrix and no strict requirements on algorithm complex-
ity, FSRUKF may give better results than SRUKF in
practical applications.

5. Experimental protocol design and experi-
mental validation

5.1 Overall system solution

Based on the previous simulation experiments, it can be
seen that FSRUKEF has better convergence speed and esti-
mation accuracy. Based on the proposed FSRUKEF, the
following experimental scheme is designed.

Firstly, the binocular camera continuously detects the
change in target position, then corrects the measured tar-
get position information to compensate for the effects of
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various time delays in the system, and compares the cor-
rected target position information with the current end
position of the manipulator to calculate the error between
the two, and judges whether the error is less than the error
threshold set in advance. If it is less than the grasping
condition, the manipulator performs the grasping action
to grasp the target; if not, the error is sent to the visual
servo control system to plan the movement of the mani-
pulator, and the control variables of each joint of the
manipulator are calculated and sent to the manipulator
controller to drive the manipulator to track the target.
After the arm movement is completed, the position of the
manipulator’s end effector is updated and compared again
with the target position information obtained by the
binocular camera. The above steps are repeated until the
grasping conditions are met. The position-based visual
servo grasping system is shown in Fig. 10.

Target position

Y

Vision sensors

v
FSRUKEF estimation

Grabbing operations

algorithm
Yes
v
Correction of target + Error less than
location threshold
B No
Robot arm update
position Law of control
A
A
Robot arm Track planning
movement model

A

\ 4
Robot arm
controller

Fig. 10 Block diagram of position-based visual servo grasping sys-
tem

5.2 Gripping system construction and experimental
validation

The hardware devices used in the grasping experiment
are Yuejiang DOBOT Magician manipulator, a stereo-
labs ZED binocular camera, a target object, and a PC

control unit. The experimental scenario involves a human
holding the target object in motion. The experimental
platform for the manipulator tracking and grabbing sys-
tem is shown in Fig. 11.

Fig. 11 Grabbing system experiment platform

Two types of target motion are tested separately. One
is that the speed and direction of motion of the target do
not change abruptly, in other words, the target moves in a
straight line. The other is that the target’s speed and
direction of motion will undergo abrupt changes, in other
words, the target performs random movements. The ori-
gin of the coordinate system of the experimental scene
coincides with the origin of the manipulator coordinate
system, where the direction of the Z-axis is perpendicular
to the ground upwards, the direction of the X-axis is per-
pendicular to the Z-axis pointing straight ahead, and the
direction of the Y-axis can be determined according to the
right-handed criterion. The definition of each coordinate
axis is shown in Fig. 11, and the coordinate axes are in
centimeters.

Firstly, the target’s speed and direction are tested with-
out sudden changes. The target is held in a straight line
on the horizontal ground, of which the maximum speed is
controlled to be no more than 200 m/s so that the speed of
the arm is always greater than the speed of the target to
ensure that the arm could successfully track and grasp it.
The position-based visual servo grasping system is used
to track and grasp the target, and the movement direction
of the target is shown in Fig. 12.

Fig. 12 Target direction
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The initial position of the target is [173.31, =30, —10],
and the initial position of the manipulator is
[200,—-50,—8]. The target starts to move along the Y-axis
of the manipulator coordinate system. The manipulator
starts to track the target after receiving the measurement
data from the camera and coincides with the target at
position [175,26,—10] to achieve grasping. The experi-
mental results are shown in Fig. 13.

(a) Initial position (b) Uniform linear motion

of the target

(c) Tracking of the manipulator

(d) Grip of the target

Fig. 13 Tracking crawling effect at a constant speed

Under the condition that the dynamic characteristics of
the target are the same, the linear tracking and grasping
experiments are repeated. The experimental data are
counted to obtain the tracking and grasping results with-
out sudden changes in the speed and direction of the tar-
get, as shown in Table 4.

Table 4 Tracking and crawling results without sudden changes in

speed
Nummber of Number of S A
Algorithm um. ero successful uccess Yerage
experiments rate  tracking time/s
crawls/%
FSRUKF 20 17 85.00 0.74
SRUKF 20 15 75.00 0.91

From the experimental results, it can be seen that the
grasping success rate and the average tracking time of
FSRUKEF algorithm are better than those of SRUKF when
compared with SRUKF without sudden changes in target
speed and direction, reflecting the superiority of
FSRUKF proposed in this paper in target tracking and
grasping.

In the following test, the velocity and direction of the
target are suddenly changed, and the target is held in a 3D
space with random motion, and the velocity of the target
does not exceed 200 m/s. The experimental results are
shown in Fig. 14. The manipulator begins to track the tar-
get after receiving the measurement data from the ca-
mera, as shown in Fig. 14 (a) and Fig. 14(b). In order to

detect the manipulator’s ability to track the target in the
case of sudden acceleration movement of the target, the
speed, and direction of the target are suddenly changed
when the manipulator is about to coincide with the target,
as shown in Fig. 14(c) and Fig. 14(d). After the manipu-
lator moves to the planning position, it does not coincide
with the target object and fails to grasp the target. Then
the vision servo grasping system regains the target posi-
tion and plans the trajectory of the manipulator, which
tracks the target again along the planned trajectory, as
shown in Fig. 14 (e), until the end of the manipulator is
tracked to coincide with the target position to achieve the
gripping of the target as shown in Fig. 14 (f).

e

(a) Initial position

(b)The first random motion
of the target

(d) The second random motion
of the target

(c) Tracking and approaching
of the manipulator

(f) Grip of the target

(e) Recalculating and tracking
of the manipulator

Fig. 14 Tracking crawling effect with sudden changes in speed

The experiments are repeated several times under the
same conditions of the target dynamic characteristics, and
the results are counted to obtain the tracking and grasp-
ing results under the sudden change of target speed and
direction, as shown in Table 5.

Table 5 Tracking and capturing results of sudden changes in
speed
. Number of Number of  Success Average
Algorithm . L
experiments successful crawls rate/% tracking time/s
FSRUKF 20 12 60.00 3.27
SRUKF 20 8 40.00 3.86

As can be seen from the experimental results, although
the manipulator fails to track the position of the target in
time due to the sudden change in the speed and direction
of the target during the target tracking process, the visual
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servo is always detecting the tracking error of the mani-
pulator. When the tracking error does not meet the condi-
tions for successful grasping, the vision servo control will
drive the manipulator to track the target again until the
tracking and grasping conditions are met and the grasp-
ing system successfully grasps the target. The grasping
strategy based on tracking error can ensure that when the
manipulator fails to track the target in time, the grasping
system immediately re-tracks and grasps the target,
ensuring that the tracking and grasping system has cer-
tain robustness. In addition, compared with SRUKF,
FSRUKF shows a higher success rate and a shorter ave-
rage tracking time when grasping targets with abrupt
changes in speed and direction, demonstrating the better
robustness and advancement of the FSRUKF proposed in
this paper.

6. Conclusions

This paper investigates the problem of motion target
grasping and proposes a tracking and grasping scheme
combining FSRUKF with a position-based visual servo.
An experimental platform for a grasping system based on
a visual servo is built, and experiments are conducted for
both linear and random motion of the target. The experi-
mental results show that the designed tracking and grasp-
ing system can achieve autonomous tracking and grasp-
ing of moving targets, with good feasibility and robust-
ness.
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