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Abstract: To address the shortcomings of single-step decision
making in the existing deep reinforcement learning based
unmanned aerial vehicle (UAV) real-time path planning problem,
a real-time UAV path planning algorithm based on long short-
term memory (RPP-LSTM) network is proposed, which com-
bines the memory characteristics of recurrent neural network
(RNN) and the deep reinforcement learning algorithm. LSTM net-
works are used in this algorithm as Q-value networks for the
deep Q network (DQN) algorithm, which makes the decision of
the Q-value network has some memory. Thanks to LSTM net-
work, the Q-value network can use the previous environmental
information and action information which effectively avoids the
problem of single-step decision considering only the current
environment. Besides, the algorithm proposes a hierarchical
reward and punishment function for the specific problem of UAV
real-time path planning, so that the UAV can more reasonably
perform path planning. Simulation verification shows that com-
pared with the traditional feed-forward neural network (FNN)
based UAV autonomous path planning algorithm, the RPP-LSTM
proposed in this paper can adapt to more complex environ-
ments and has significantly improved robustness and accuracy
when performing UAV real-time path planning.
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1. Introduction

Nowadays, unmanned aerial vehicles (UAVs) are widely
used in daily life and excel in search, rescue, mapping,
surveillance, and other fields [1—4]. As the main problem
faced in UAV applications, the UAV path planning prob-
lem has also received more and more attention [5]. Real-
time UAV path planning is an important factor in whether
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the UAV can complete its mission and conduct
autonomous controlled flight, and its goal is to obtain a
path that satisfies the requirements from the origin to the
intended destination with unknown environmental infor-
mation, and the path needs to satisfy constraints such as
UAYV maneuverability and endurance time [6].

The real-time path planning problem has been studied
by many research results, like D* algorithm [7—10], life-
long planning A* (LPA*) algorithm [11-13], and D*Lite
algorithm [14—16], but when high-dimensional obstacle
data are detected from unknown environment, the tradi-
tional map-based algorithms have some limitations due to
the difficulty of mapping. Moreover, when the unknown
environment for real-time path planning is dynamic, it
can cause the constructed maps to lose timeliness and
become inaccurate [17].

The rise of deep reinforcement learning has provided a
new way of thinking for path planning. In the past
decade, the performance of deep reinforcement learning
techniques has improved significantly and has been
widely used in various fields such as autonomous driving
[18,19], natural language processing [20,21], and com-
puter vision [22,23]. It combines the powerful perceptual
and representational capabilities of deep neural networks
for processing high-dimensional decision information
with the decision learning capabilities of reinforcement
learning through trial and error, and has excellent perfor-
mance in solving complex problems [24]. The neural net-
works are trained by deep reinforcement learning algo-
rithms and the trained neural networks are used for real-
time path planning to obtain the best path. This method
does not depend on map mapping and is able to perform
path planning even without obstacle maps, which can
effectively overcome the problems of traditional algo-
rithms [25].
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2. Related work

Currently, deep learning and reinforcement learning have
been applied in the field of path planning. In 2020, Ven-
turini et al. [26] proposed a path planning method based
on a deep reinforcement learning that was able to suc-
cessfully perform path planning on a square cell map. In
2021, another simulation experiment based on a real map
was conducted [27], but the success of the method was
very dependent on the initialization. A deep reinforce-
ment learning method for UAV path planning in dynamic
environments with potential enemy threats was proposed
in the [28], which uses a series of situational map neural
networks to obtain the Q-value of the action set to plan
the path, but the action set direction of this method is
fixed and does not consider the UAV motion constraint,
and the obtained path may not be suitable for UAV flight.

Chen et al. [29] implemented an UAV obstacle avoi-
dance model based on feed-forward neural network
(FNN), in which the UAV can effectively avoid obsta-
cles and plan a reasonable path using the trained FNN.
However, the FNN only considers the current environ-
mental input, and path planning as a complex decision
problem is not accurate enough to make a single-step
decision only by relying on the current environmental sit-
uation.

A local path planning method for mobile robots based
on long short-term memory (LSTM) networks and rein-
forcement learning was implemented in [30]. The method
combines LSTM network with reinforcement learning
algorithms to solve the problem of local deadlock and
path redundancy in the robot’s planning process in
unknown and complex environments, and the method is
also able to improve the success rate of path planning and
optimize the path length. However, the path planning
problem in dynamic environments is not mature enough
and has certain defects.

The above literature show that there are still many
shortcomings in the research of UAV path planning based
on deep reinforcement learning. The existing research is
mainly based on FNN, but FNN can only use the current
environmental information and cannot use the previously
explored environment information, which will make the
intelligent body make judgment with insufficient infor-
mation and lead to problems such as low accuracy or
poor robustness of path planning. The memory function
of LSTM neural networks is suitable for complex multi-
step decision problems such as UAV path planning [31],
but the current LSTM network-based UAV real-time path
planning is not comprehensive enough. In this paper, a

real-time UAV path planning algorithm based on LSTM
(RPP-LSTM) is proposed to address the current prob-
lems of deep reinforcement learning for UAV real-time
path planning.

The algorithm introduces the LSTM network as the
Q-value network of the DQN algorithm, which enables
the intelligent body to effectively use the historical infor-
mation when making decisions and solves the problem
that the FNN decision only considers the current environ-
ment. In addition to the introduction of the LSTM
network, a hierarchical reward and punishment func-
tion is also proposed in order to adapt the DQN
model based on the LSTM network. Because of these
improvements, the RPP-LSTM effectively improves the
accuracy and robustness of the real-time UAV path plan-
ning model based on the deep reinforcement learning
algorithm.

The way this paper develops is shown as follows:
Firstly, we establish the UAV real-time path planning
model. Secondly, we construct the Markov decision pro-
cess based on the UAV motion model and the motion
scenario, and get the DQN algorithm model based on the
Markov decision process. Then we combine the DQN
algorithm with the LSTM network to get the RPP-LSTM.
Finally, through simulation experiments and result analy-
sis, we verify the feasibility and validity of the proposed
algorithm through simulation experiments and result
analysis.

3. Modeling the UAYV path planning problem

Based on the UAV motion process and motion con-
straints, the UAV motion model is established. Then
combine the real-time path planning constraints to get the
UAV path planning problem model.

3.1 UAY motion model

In this paper, assuming that the UAV flight altitude is a
certain constant, the motion of the UAV can be reduced
to a two-dimensional motion in the X-Y plane. Based on
this assumption, the two-dimensional fixed coordinate
system (x;,y,) is used to represent the absolute position of
the UAV at the moment of ¢. i, is used to represent the
yaw angle of the UAV’s current trajectory, so [x;,V,,¢,]
can represent the current position state of the UAV.

The change in the UAV position state quantity is then
controlled by the UAV control variables [w;,v,,Af],
including the UAV’s trajectory yaw rate w, at the
moment of 7, the flight speed v, and the time step Ar.
Based on this variable, the equation for the increment of
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the position state variable is as follows:
AY, = w,At
Ax, = v [sin(AY, +¢,) —siny, ] /w,, w;#0 . (1)
Ay, = v[cos(AY, +¥,) —cosy]/w,, w,#0

Then the position state variable at the next moment
is

Xi+1 X Ax,
Vet | =Y [+ Ay | (2)
le ‘//t A‘vl’r

In (2), t+1 =7+ At indicates the next decision time.

Due to the limitations of their own physical conditions,
UAVs have some limiting properties during flight, and if
the UAV operating parameters exceed these limiting
property values, the safety of the UAV itself decreases
significantly, so the following constraints exist for UAVs
in flight.

(i) Maximum cornering angle constraint

Assuming that the UAV flies at a constant speed V and
its sampling time is AT, then the step length L can be
approximated as L =V -AT. The maximum lateral over-
load of the UAV is N, and the track deflection angle is
x. Then the UAV makes a horizontal turn as shown in
Fig. 1.

Fig.1 Aircraft turning angle diagram

Point 4 is the current track point, V, is the current
velocity direction, B is the next track point, and Vj is the
velocity direction of the next track point.

Due to the limitation of the maximum lateral overload,
the UAV horizontal turn in a certain step of the existence
of the maximum horizontal turn angle /..

L
max = 2Qrcsi 3
X arcsm( 2Rmin) 3)
where
V2
Rpyjn= ——. 4)
8 N)Z’milx - 1

(i) Maximum flight distance constraint
Assuming that a path is planned with » path points, the

maximum flight distance constraint is obtained by intro-
ducing the error amount A; taking into account the air-
craft engine performance. This is shown in

L+AL:ZL,-+AL<LW )

i=1

where L is the total path length, A; is the amount of
travel error, L; is the distance between path point i and
path point i+1, and L, is the maximum flight distance.

Based on the above UAV motion model, the motion
process of the UAV for each decision can be obtained as
shown in Fig. 2.
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Fig.2 UAY decision making process

[x;, ¥, vi,¥,] is the motion parameter of the current path
point, [X,41,Yi1>Vis1,Wis1] is the motion parameter of the
next path point, and the arc between the two path points
is the actual track.

3.2 Path planning evaluation indicators

In the process of real-time path planning, the UAV will
encounter various types of obstacles. The UAV needs to
make decisions based on the current position state and
environment, so that the UAV can successfully avoid
obstacles, reach the target point and complete the task.
For different decision making methods, the final paths
obtained are often different. In order to judge the merit of
the UAV path, it can be judged based on the following
indicators.

(1) Length of path

Path length is the most obvious indicator to judge the
merit of a path. For a path, the shorter the path length is,
the better the path is, provided that it can reach the target
point smoothly. The equation for calculating the path
length L, is as follows:

n

L= valit (6)

k=1
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where n is the total step length of the planned path. v, is
the velocity of the UAV of moment k. Az, is the time step
of moment .

(i1) Path smoothness

The path smoothness expresses the adjustment of the
trajectory yaw angle during the overall process of the
UAV path from the starting point to the target point. In
this paper, the variance o7, of the trajectory yaw angle is
used to determine this metric.

S w9
2 _ =l

v ()

7 n—1

For a path, a smaller o7, indicates a smaller change in
the yaw angle of the path trajectory and a smoother UAV
path. When o7}, is 0, the path is a straight line.

(iii) Minimum distance between the path point and the
obstacle

In the case of two paths with the same trend and little
difference in length, the minimum distance between the
path point and the obstacle is the key indicator to judge
the superiority of the two paths. Under the premise of ensu-
ring the safety distance, when the distance between the
path point and the obstacle is smaller, it shows that the
higher the avoidance accuracy of the path. The equation
for calculating the minimum distance between the path
point and the obstacle is

dmin = min(dt] > dt27 T 9dtn) (8)

where d,; is the minimum distance between path point i
and the obstacle.

UAVs are generally equipped with a variety of sensors,
including cameras, radar, and ultrasonic rangefinders, in
order to obtain the current environmental conditions dur-
ing path planning. The environmental information is
obtained based on the data measured by these sensors.
Since the sensors such as camera and radar have their
own limitations, this paper adopts the distance informa-
tion measured by ultrasonic rangefinder as the current
environment information.

The distance information of ultrasonic range finder is
shown in Fig. 3, when the UAV detects the surrounding
environment information d; at the moment ¢, it can get
the distance information of obstacles in different direc-
tions. When the obstacle distance is greater than the maxi-
mum distance d,,, of the ultrasonic detector, d; = d -
When d; is small, it means that the UAV has approached
the obstacle in that direction.

Fig.3 Obstacle distance information schematic

4. UAV real-time path planning decision
model

The UAV path planning model is transformed into an
MDP, and the RPP-LSTM algorithm is proposed based
on the DQN algorithm, using the memory property of the
LSTM network.

4.1 Constructing Markov decision processes

The MDP is usually defined as an (S,A,p, f) quadruplet,
where S is the set of all environmental states s,, s, is the
environmental state the agent is in at moment ¢, A is the
set of all actions «; the agent can make, r; ~ p(s;,q;) is the
immediate reward the agent receives for making an action
a; in environment §,, and s,.; ~ f(s,,a;) is the probability
that the agent may make an action a; at s, to move to the
next environmental state s,,,.

For the purpose of this paper, the state space of the
path planning problem is

szz[xr’)’nD,lﬁ,a’Aa,dl7d2,d3’"',d9]~ (9)

(x;,y,) is the position coordinates of the current track
point, D is the distance between the current track point
and the target point, ¢ is the yaw angle of the current
track, « is the angle between the line of the UAV’s cur-
rent position and the target and the due north direction,
and A« is the difference between ¥ and «. d; is the dis-
tance of the obstacle within a certain angle in front of the
UAV, and nine of the angle data are selected.

In this paper, the action set of the path planning prob-
lem is the difference in yaw angle of the UAV trajectory
A, 0 < AYi < Xmax -

Based on the obtained state set and the action set of the
UAV path planning problem, an MDP can be con-
structed. The UAV starts from moment ¢, gets the sur-
rounding environment state s, by the current position
information and ultrasonic rangefinder, and makes cer-
tain actions based on this environment state to reach the
next path point. After reaching the next path point, the
immediate reward value r, is obtained according to
the reward and punishment function, and then the above
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behavior is repeated. The specific flow is shown in

Fig. 4.
; %
State Reward Action

S r a,

F T
S Environment -

Fig. 4 MDP flow chart

For each action performed by the UAV, an immediate
reward value is returned after interacting with the envi-
ronment, but the Q value in the DQN algorithm is not
simply a superposition of immediate reward values. Since
the Markov decision process satisfies that the state of the
next moment depends only on the state of the current
moment and is independent of the previous state, when
G, is used to represent the reward value that the current
tense has, then G, is a superposition of the immediate
reward r, for all future moments.

o

Gt=rt+|+Art+2+'”:z/lkrt+k+] (10)

k=0

where A is the discount factor, which is generally less
than 1. A* decreases as k increases, indicating that for G,,
the immediate reward of the current action is the most
important, and the influence of the subsequent rewards
gradually decreases. However, it is difficult to calculate
the value of all rewards after the current moment, there-
fore, a value function needs to be introduced to evaluate
the potential value of the current action. The equation of
the value function is as follows:

Q!(stvat) = Ql(shat) + a(rt+l+
Amax Q,(s..1,a,)) —aQ,(s,,a,) (11)

where Q,(s;,a,) at this point is the reward value for ma-
king the action a, in the environment s,, and « is the lear-
ning rate.

42 DQN

The DQN algorithm is an algorithm that combines a neu-
ral network with a Q-learning algorithm. Using the po-
werful training ability of the Q-learning algorithm and the
excellent fitting ability of the neural network, the DQN
algorithm enables the system to learn from complex
inputs and outputs.

The basic principle of the DQN algorithm is shown in
Fig. 5.

Initialization

Whether in
training
period ?

Loop End
initialization

Aanalyze the
next action

Sample
replay buffer

Perform the
action

A
Yes [Update environmental state
variable s,.,

Use Q target value
network to predict
s,., action

\ Yes

Store to replay Y

buffer Get the maximum| o
immediate reward
value
Whether to *
ue%g\?éﬁr:kc% Get the new Q
value

Update Q current]
network

Fig. 5 DQN calculation process

Firstly, initialize the system, input the environment
state quantity s into the current Q-value network, and get
the action a that can get the maximum Q-value accor-
ding to the action selection strategy. Transmit the execu-
tion action a to the environment system, get the next state
environment state quantity s,,; and the current reward r
according to the environment information and the reward
and punishment function, and then judge whether to ter-
minate the current exploration by the current position.
The obtained vector (s,a,r,s,,;) is stored in the playback
memory unit during the exploration process; then, the
playback memory unit is sampled after a certain period of
time. The target value network uses the sampled vector
(s,a,r,s,.) to calculate the new a, and uses the stochas-
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tic gradient descent algorithm to update the relevant
parameters of the current value network to achieve the
approximation of the complex function.

From Fig. 5, we can see that the important factors
affecting the results of the DQN algorithm are action
selection strategy and reward and punishment function.
For the UAV path planning problem, this paper proposes
a matching action selection strategy and reward and pu-
nishment function.

(1) Action selection strategy

Generally speaking, the probability of exploration is
higher and the probability of utilization is lower in the
early stage of path planning, while the probability of
exploration is lower and the probability of utilization is
higher in the later stage. Pursuing accurate estimation in
the early stage and maximizing the reward as much as
possible in the late stage will be able to accomplish the
path planning task better. In this paper, we choose to use
the improved e-greedy strategy to explore as much as
possible in the early stage and utilize as much as possible
in the late stage in order to improve the training effi-
ciency of the neural network and achieve the largest pos-
sible average reward. The equation is as follows:

(12)

{gj_’_As.enum_eplsode’ 8_/' < Emax
Ein = .
Jj+1

Emaxs €lSE

(i1) Reward and punishment function
The reward and punishment function in this paper is
shown in

Fobstacle s |qt(xay) - f]o(X,)’)| < Dsafe

Vooals X, - X, <L
L L7 |g:(x.3) — g, (x.)| a3

rW’ |wt_a|<¢{r
re, di—d,; <0

where ¢,(x,y) is the coordinates of the current UAV posi-
tion. go(x,y) is the coordinates of the obstacle position.
q.(x,y) is the coordinates of the target point position.
Dy is the minimum safe distance. L is the step length.
¥, is the yaw angle of the current trajectory. « is the
angle between the line of the current position of the UAV
and the target and the due north direction. ¢, is a con-
stant value, and let it be the reward trajectory angle. d,
and d,_, are the distances between the UAV and the tar-
get at this moment and the previous moment, respec-
tively.

When the distance between the obstacle and the UAV
is less than the safe distance, it is considered that the
UAV collides with the obstacle, and the reward and pun-
ishment function returns the collision reward value
Fobsacle- When the distance between the target point and
the UAYV is less than the step size, it is considered that the
UAYV reaches the target point and the mission is com-

pleted, and the reward and punishment function returns
the arrival reward value ry,.

When the absolute value of the difference between
angle « and the current track yaw angle ¢, is less than the
reward track angle ., the UAV track direction is consid-
ered correct and the reward function returns the track
angle reward value r,. When the UAV is closer to the tar-
get point position than the previous step, i.e., d,—d,_; <0,
the reward function returns the distance reward value r,.

The priority of these four types of rewards is shown in
Table 1.

Table 1 Priority of each reward

Reward type Priority
Collision reward 1
Arrival reward 2
Track angle reward 3
Distance reward 4

43 LSTM

The DQN algorithm has obvious advantages in solving
complex problems. Since the Q-network of the basic
DQN algorithm is an FNN, its action decision only con-
siders the current environment state, so there are certain
limitations for multi-step decision problems. The UAV
real-time path planning problem is a typical multi-step
decision problem, in which not only the current environ-
ment state but also the previous environment state needs
to be considered when making the current decision. Thus
this paper introduces LSTM network to solve the problem.

LSTM networks, as a type of recurrent neural network
(RNN), have a more refined information transfer mecha-
nism than traditional RNN. Through a special network
design, LSTM networks are able to change memory in a
very precise way, applying a specialized learning mecha-
nism to remember and update information, which helps to
track information over a longer period of time and can
remember historical information with very long time
intervals. For the path planning problem in this paper, the
LSTM network is theoretically well adapted and is used
as the Q-network in the DQN algorithm.

The input of the LSTM network is the time series
information. In this paper, the information of the pre-
vious path point and the information of this path point are
used as the input of the time series X,_,, X,_;, X, com-
posed of the environmental state quantities s, ,, §,_;, §;,
and the actions a,_,, a,_;, a,. The output is the Q value
corresponding to the action a,. When a single-layer
LSTM network is used for training, the specific network
construction is shown in Fig. 6.
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Input layer

Hidden layer

Middle layer

Output layer

X;: Input vector;

-: Hyperbolic tangent;

Q: Output;
[[2]: Sigmoid;

Fig. 6 LSTM network structure

Based on the MDP model, the state space can be
obtained as (9). Therefore, the input time series of the Q-
value network is a 15-dimensional vector, and the input
layer of the Q-value network is 15%3 neurons. the para-
meters of the hidden layer of the Q-value network need to
be tested in a large number of experiments to get the opti-
mal results. In this paper, the experimental test results for
the number of layers and the number of implicit layer
LSTM networks show that a two-layer LSTM network
with 40 LSTM networks in the first layer and 16 LSTM
networks in the second layer are the best results. Since
the output of the Q-value network is Q-value, the output
layer is 1 neuron. The final Q-value network obtained is
shown in Fig. 7.

X, {6
16
imensions
X < K
16
imensions
‘XZ*Z - A3
16
dimensions

Fig.7 Q-value network

h, ,: Previous output;

¢, Previous memory;
. Element wise addition ® Element wise
concatenation; multiplication.

The LSTM neural network is selected as the Q-value
network and applied to the DQN algorithm to obtain the
RPP-LSTM algorithm, and the detailed steps are shown
in Algorithm 1.

Algorithm 1 RPP-LSTM algorithm
1. Initialize replay memory D to capacity N

2. Initialize action-value function Q with random weights
3. The Q uses expert samples for preliminary learning
4. For episode = 1 to M do
5. Receive an initial observation s,
6. Initialize empty history A,
7. Fort=1to T do
8 With probability & select a random action q,
9 Otherwise obtain avoid and acquire action from
eval-network by
Using e-greedy policy

10. Execute action a, in emulator and observe reward
11. Store transition (8,_»,d;,_», 8,1, 1,8, 0z, Sse1, 1, ) 10
D

12. Select a random number of historical tracks from
D

13. Set

r;, for terminnal s,
Vit r+ ymax Q, for non-terminnal s;.,
14. Update target-network
15. End for
16. End for
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5. Experiments

This section shows that the RPP-LSTM algorithm has
better performance in the UAV path planning problem by
comparing it with the traditional DQN algorithm based
on FNN in different environment maps based on exten-
sive simulation experiments.

5.1 Experimental settings

Set the size of the mission map for the simulation experi-
ment as 20 kmx20 km, assume that the UAV flies at a
certain altitude, the speed v=200 m/s of the UAV, the dis-
crete time interval AT is 1 s, and the maximum lateral
overload of the UAV is 0.9. The calculated step length is
about 200 m, the maximum trajectory yaw angle of the
UAV is +£10°, and the minimum safety distance is 200 m.
Choose the starting point of the UAV as (0,0,0.6) and the
target point is (20,20,0.6) for training.

In addition to the above assumptions, the UAV ultra-
sonic rangefinder also needs to be able to detect the dis-
tance of obstacles at a certain angle directly in front of it.
The maximum detection distance of the UAV radar is
now set to two kilometers, the maximum detection angle
is in front of the UAV, and obstacle distance sampling is
performed at every interval.

The obstacles in the environmental space are regular
geometric shapes, and the cylindrical obstacles are
mainly selected in this paper. When the distance between
UAYV and obstacles is less than the minimum safe dis-
tance, the path planning is considered to fail.

Based on the above simulation conditions, the specific
training parameters of the DQN algorithm are given as
shown in Table 2.

Table2 DQN parameter

Parameter Priority
Collision reward -10
Arrival reward 20
Track angle reward 5
Distance reward 5

Y 0.8
a 0.8
Dgafe /km 0.2

5.2 Experiment I: path planning capability valida-
tion

This experiment is used to test whether there is a signifi-
cant difference in the path planning ability of the two Q-
value networks in the original network training environ-
ment, and to verify whether the RPP-LSTM algorithm

has excellent path planning ability.

In the original network training environment there are
12 cylindrical obstacles with different radii. The starting
coordinates of the UAV in this environment are (0,3,0.6)
and the coordinates of the target point are (20,20,0.6), and
the distance units in all experiments are kilometers. The
direction from the starting point to the target point is
taken as the initial velocity direction of the UAV, and the
trained FNN and LSTM network are used for real-time
UAV path planning, respectively, and the obtained results
are shown in Fig. 8.

4
56 7 3 91011121314

Y/km
—: FNN; : LSTM;
: Target point; - : Start point of UAV.

Fig. 8 Original environment path planning

In Fig. 8, the path planned based on FNN is assumed to
be path 1, and the path planned based on LSTM network
is path 2. It can be seen that the overall trend of path 1
and path 2 is the same, and both paths are relatively
smooth and suitable for UAV flight. And both paths are
sensitive to obstacle positions, and the distance between
each path point and the obstacle is greater than the mini-
mum safe distance, which can achieve effective obstacle
avoidance and reach the target point safely. The experi-
mental results show that both FNN and LSTM network
can complete the path planning task and have good
UAV path planning ability in the original training envi-
ronment.

However, there are some differences between the two
paths. Based on the formula of the path evaluation index,
we can get the relevant evaluation of the two paths as
shown in Table 3. It can be seen that the length of path 2
is smaller than the length of path 1, and the UAV can
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reach the target point faster, saving the mission time and
mission cost. The variance o, of the track yaw angle of
path 1 is also greater than the variance o7, of the track
yaw angle of path 2, indicating that path 2 is smoother
and requires less maneuverability for the UAV.

Table 3 Path data comparison 1

Evaluation indicator FNN LSTM

Path length/km 243 24.12
Trajectory yaw angle variance 738.85 188.58
Minimum distance to obstacle/m 430.7 354.4

Fig. 9 shows the curve of the minimum distance
between the UAV and the obstacle as a function of time.
The minimum distance between path 1 and the obstacle is
430.7 m, and the minimum distance between path 2 and
the obstacle is 354.4 m, and path 1 as a whole is further
away from the obstacle compared to path 2.
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Fig. 9 Change in distance between path point and obstacle

From these indicators, it can be seen that although both
paths successfully plan feasible paths, path 2 is shorter in
length, requires less maneuverability from the UAV, and
also has higher obstacle avoidance accuracy, which is
better than path 1.

5.3 Experiment II: dynamic reprogramming capa-
bility

This experiment is designed to test the path planning abi-

lity of two neural networks for dynamic target points and

is used to verify whether the dynamic replanning ability

of RPP-LSTM algorithm is better.

The two networks are applied to the dynamic target
point environment for path planning. In this scenario, the
starting coordinates of the UAV are (0,3,0.6), the starting
coordinates of the target point are (20,20,0.6), and the tar-
get point moves in a straight line along a certain direc-
tion. The trained FNN and LSTM network are used for

UAV path planning respectively, and the results are
shown in Fig. 10.
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Fig. 10 Dynamic path planning

Assuming that the FNN-based UAV path is path 3 and
the LSTM-based UAV path is path 4 in Fig. 10, it can be
seen that for the same motion target, the path planned by
the FNN is completely different from the path planned by
the LSTM network. However, both paths can success-
fully complete the task and reach the target point, and
there is no significant difference in advantages and disad-
vantages with the paths planned in the static scene. It
shows that both FNN and LSTM network can accom-
plish the dynamic target point path planning task and
have better dynamic target point path planning ability.

Based on the data in Table 4, in terms of path length,
the two paths are of the same length with no obvious
advantages and disadvantages, but there is still a certain
difference in the variance of track yaw angle between
them. The variance of the track yaw angle of path 3 is
still larger than the variance of the track yaw angle diffe-
rence of path 4, which indicates that the FNN still has the
problem of large UAV flight angle change and high
maneuverability requirement in dynamic target point
planning.

Table 4 Path data comparison 2

Evaluation indicator FNN LSTM
Path length/km 21.24 21.24
Trajectory yaw angle variance 269.79 257.85
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In terms of the minimum distance between the path and
the obstacle, the two paths are not compared because they
have different trends.

5.4 Experiment III: robustness testing

This experiment is designed to test the path planning abi-
lity of LSTM networks and FNN in unfamiliar environ-
ments, and is used to investigate whether the RPP-LSTM
algorithm have better robustness in path planning prob-
lems.

Both are applied to an unfamiliar environment for path
planning, which is still 12 cylindrical obstacles, but with
random values of position and radius. The starting coordi-
nates of the UAV in this environment are the point
(0,3,0.6) and the coordinates of the target point are
(20,16,0.6). The direction from the starting point to the
target point is chosen as the initial velocity direction of
the UAV. In the completely unfamiliar environment, the
FNN and LSTM network obtained from the training were
used for UAV path planning, and the results are shown in
Fig. 11.
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Fig. 11 Path planning in unfamiliar environments

In Fig. 11, it is assumed that the path planned based on
FNN network is path 5 and the path planned based on
LSTM network is path 6. It can be seen that the FNN net-
work fails to complete the path planning task because it is
too close to the obstacle, resulting in the path planning
failure, and the LSTM network successfully completes
the path planning task and reaches the target point. Two
paths of the specific data are shown in Table 5.

Table 5 Path data comparison 3

Evaluation indicator FNN LSTM
Path length/km Undone 25.2
Trajectory yaw angle variance Undone 363.1
Minimum distance to obstacle/m Undone 344.7

Although path 5 does not complete the task, the
planned part shows that the FNN also has some environ-
mental adaptability. The previous part of path 5 achieves
effective obstacle avoidance in unfamiliar environments.
However, compared with the LSTM network, the FNN is
significantly less adaptable to the unfamiliar environ-
ment. The RPP-LSTM can use the environmental infor-
mation to achieve effective obstacle avoidance and reach
the target point with strong robustness.

In addition to the above path metrics evaluation, the
path planning speed of the neural network is also consi-
dered in the path planning problem. In this paper, 25
paths are planned using two neural networks, and the
average single-step time for planning each path is
obtained, and the results are shown in Fig. 12.
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Fig. 12 Aircraft turning angle diagram

5.5 Experiment analyzing

Based on all the above simulation results and analysis, it
can be seen that the trained LSTM network can perform
UAV path planning very well, and can successfully plan
feasible paths in both the original training environment
and the unfamiliar environment, and has many advan-
tages compared to the FNN.

The path planning problem is a complex problem that
needs to take into account many factors. The FNN only
considers the current environment and makes action
selection, which can achieve effective obstacle avoid-
ance and reach the target point in the training environ-
ment. However, because the action selection is only
based on the current environment, the planned path does
not consider the previous path planning, and its obstacle
avoidance accuracy is not high enough, and it often
chooses to avoid obstacles at a long distance when it
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finds them, and the planned path length is also longer.
Most importantly, its adaptability to complex environ-
ments is very poor, and its robustness is poor.

The RPP-LSTM is not only based on current environ-
ment information when making action selection, but also
relies on historical information, which has memory for
past path planning and can effectively use the previous
environment and action information for path planning.
Due to the participation of historical information, the RPP-
LSTM has higher accuracy in obstacle avoidance, can
grasp the minimum safety distance well, and does not
blindly avoid obstacles at a long distance, and the
planned path is often better. The application of historical
information also enables the RPP-LSTM to better adapt
to the complex environment and improve the robustness
to complete the path planning task successfully.

6. Conclusions

In this paper, a deep reinforcement learning algorithm
based on LSTM networks is proposed for solving the
UAV real-time path planning problem. The UAV real-
time path planning problem is a complex multi-step deci-
sion problem. In this paper, the DQN algorithm is used as
a framework to combine the UAV motion constraints and
path planning requirements to construct action selection
strategies, reward and punishment functions, and then
build Q-value functions based on LSTM networks. The
LSTM networks have the ability of “temporal memory”,
which can effectively solve the shortcomings of the DQN
algorithm in dealing with multi-step decision problems.
The obtained DQN model is used for neural network
training, and the final mature neural network is used for
UAV real-time path planning. The experimental simula-
tion results show that the RPP-LSTM is practical and fea-
sible, and the obtained LSTM network has better path
planning capability compared with the traditional FNN,
and is also significantly better than the FNN in terms of
dynamic replanning capability and robustness. Among
the deep reinforcement learning methods, there are other
algorithms besides the DQN algorithm, and in the next
work, the LSTM network will be trained using different
deep reinforcement learning methods for comparative
study.
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