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Abstract: Aerial threat assessment is a crucial link in modern air
combat, whose result counts a great deal for commanders to
make decisions. With the consideration that the existing threat
assessment methods have difficulties in dealing with high
dimensional time series target data, a threat assessment method
based on self-attention mechanism and gated recurrent unit (SA-
GRU) is proposed. Firstly, a threat feature system including air
combat situations and capability features is established. More-
over, a data augmentation process based on fractional Fourier
transform (FRFT) is applied to extract more valuable information
from time series situation features. Furthermore, aiming to cap-
ture key characteristics of battlefield evolution, a bidirectional
GRU and SA mechanisms are designed for enhanced features.
Subsequently, after the concatenation of the processed air com-
bat situation and capability features, the target threat level will
be predicted by fully connected neural layers and the softmax
classifier. Finally, in order to validate this model, an air combat
dataset generated by a combat simulation system is introduced
for model training and testing. The comparison experiments
show the proposed model has structural rationality and can per-
form threat assessment faster and more accurately than the
other existing models based on deep learning.
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1. Introduction

In modern air-to-air combat, target threat assessment
plays a significant role in improving the operational effi-
ciency and self-survival probability of our aerial unit [1].
Its main task is to analyze the situation information of
enemy targets (aircraft, missiles, etc.) detected by our
aerial unit’s sensors, evaluate the threat degree of enemy
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combat units, and provide effective references for situa-
tion awareness [2] and decision-making [3] for our com-
manders. Generally, the higher the threat level of the tar-
get, the more dangerous it is, and the higher the priority
of weapon allocation.

At present, threat assessment focuses mainly on the air
battlefields. The most common traditional theories are
operations research and statistical methods, such as multi-
attribute decision-making theory [4], technique for order
preference by similarity to an ideal solution (TOPSIS)
theory [5], Bayesian network [6], and fuzzy theory [7].
Zhen et al. [6] established the threat indicator system and
constructed a threat level model based on expert experi-
ence and dynamic Bayesian theory, which can reliably
and dynamically evaluate the threat of group targets in
complex environments. Gao et al. [8] and Xu et al. [9]
combined the intuitionistic fuzzy theory with the multi-
attribute decision-making method to handle the target
threat assessment. Due to the constraint that the tradi-
tional methods depend on subjective experience, these
methods mainly focused on some specific scenarios with
small-scale data. Some troubles of these methods will be
exposed when dealing with problems with large-scale
data threat assessment.

With the rapid development of battlefield big data
technology, how to process nonlinear and complex infor-
mation in the battlefield situation has become a difficult
issue. Meanwhile, the availability of large datasets and
rapid software and hardware advances enables artificial
intelligence technology to grow dramatically [10]. Mac-
hine learning and deep learning inspired some scholars to
establish threat assessment models for medium and large-
scale situation data. Yang et al. [11] combined the -
means method with the analytic hierarchy process. This
combination not only improves the data scale the model
can handle but also overcomes the subjectivity of a sin-
gle evaluation method. Wang et al. [12] designed an air
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target threat assessment model based on rough set theory
and support vector machine (SVM), which is an effective
attempt to apply machine learning to threat assessment.

When the scale of situation data increases to a certain
degree, the disadvantages of machine learning algo-
rithms are highlighted: feature selections have shown
immense influence on the evaluation results and the solu-
tion speed. Therefore, threat assessment models based on
deep learning have been proposed. Through learning a
large number of data generated by expert systems or other
methods, the deep learning method can facilitate continu-
ously improving the generalization ability of the model,
reduce the subjectivity of a single commander, and estab-
lish a model with rapidity and high accuracy. Chen et al.
[13] integrated wavelet transformation into a neural net-
work optimized by the genetic algorithm. The threat
assessment model achieved good adaptive resolution, fine
approximation ability, and fault tolerance. Zhai et al. [14]
introduced the residual structure into the fully connected
neural network to improve the accuracy of the evaluation
of individual targets’ threats. Yue et al. [15] optimized the
grey neural network evaluation model with an improved
moth extinguishing algorithm and verified the effective-
ness of the model through simulation experiments. Yuan
et al. [16] and Xi et al. [17] introduced intelligent opti-
mization algorithms to optimize the parameter of the
extreme learning machine (ELM) model, which effec-
tively shortened the training time of the threat assess-
ment model. The models in [13—17] are mainly based on
multi-layer perceptron. Although they have been
improved in different aspects, the main problems of these
multilayer perceptron models still remain, such as para-
meter inflation, falling into local optimization, and diffi-
culty in handling high-dimensional timing data.

Based on the above analysis, traditional threat assess-
ment methods have limited ability to process large-scale
time series situation data on the battlefield. Aiming to
assess the aerial threat in air-to-air combat, a deep learn-
ing based assessment method is proposed to deal with
these difficulties. Initially, a threat characteristic system
is designed, which divides the threat features into air
combat situation features and air combat capability fea-
tures. Furthermore, on the basis of the encoder-decoder
network structure, a threat assessment model based on the
self-attention mechanism and gated recurrent unit (SA-
GRU) is proposed. To be specific, the air combat situa-
tion features are firstly augmented based on fractional
Fourier transform (FRFT) to expand the form of feature
representation. Secondly, SA and GRU network are
designed to extract the key time relationship between the
enhanced data, and weaken the performance of redun-
dant features. Thirdly, the extracted key situation feature

information and air combat capability feature data are
fused as the key input of the fully connected layers to
obtain the threat level result of the target. Finally, through
the comparison experiments, the proposed threat assess-
ment method is verified to perform the characteristics of
high accuracy and strong real-time. The major contribu-
tions are the followings:

(1) The SA-GRU model extends the machine learning
based threat assessment method to satisfy the threat
assessments with large-scale, high-dimensional, and time
series situation data in modern air combat.

(i) The data augmentation process is introduced to
extract more high-dimensional abstract information in the
air combat situation features. In the data augmentation
process, FRFT is employed to map the limited air com-
bat situation features into different frequency domains.
After fusing the data with multiple FRFT with the origi-
nal data, the difference between data will be amplified.
This advantage of FRFT provides the SA-GRU model
with more abundant situation features to analyze, making
the threat assessment model more accurate.

(iii) The bidirectional GRU (BiGRU) structure and SA
mechanism designed in this paper improve the classic
encoder-decoder structure network based on GRU in air
combat threat assessment. BiGRU structure is capable of
extracting deep information on the historical status and
subsequent flight status of the target in both directions. At
the same time, the SA mechanism filters the features
extracted by BiGRU, and gives high weights to key fea-
tures. Benefited by these structures, the crucial evolution
information can be captured and the accuracy of the
model increases dramatically. It also provides a brand-
new method for the design of threat assessments with
time series data.

2. Threat feature system construction

The air combat target threat information includes the tar-
get timing information obtained by sensors as well as the
uncertain information from the commander’s experience,
leading to the complexity, strong coupling, and nonlinea-
rity of the combat information. Therefore, establishing a
reasonable threat feature system is the basis of obtaining
scientific evaluation results. Among massive factors
influencing the target threat degree, the features to be
selected should not only meet the requirements of com-
pleteness, significance, and commonality but also reflect
nonlinear relations between the enemy situation data and
the threat degree.

With the comprehensive consideration of the detection
capability and air combat features of airborne equipment,
a threat feature system is constructed from two aspects:
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air combat capability and air combat situation, as shown
in Fig. 1. The air combat capabilities represent the static
attributes of targets, including target type, strike capabi-
lity, and jamming capability. The air combat situations
indicate the target’s dynamic attributes from the time
sequence situation information, including angle threat,
speed threat, and distance threat of the target.

Target type

Air combat
capability

— Strike ability

Jamming ability

Threat feature
system

Angle threat

situation

Speed threat

Distance threat

Fig.1 Threat feature system

2.1 Air combat capability features

Account of the qualitative characteristics of air combat
capability, the description language of these features
needs to be quantified. Three typical air combat capabi-
lity features are considered and processed based on the
nine-level quantification theory [18].

(i) Target type. In air combat, different types of targets
have their own features in attack intention, attack mode,
and attack intensity, resulting in different threat degrees.
This paper divides the target type into large targets (such
as bombers, fighters, and missiles), medium targets (such
as jammers and armed helicopters), and small targets
such as unmanned aerial vehicles (UAVs) and reconnais-
sance aircraft. These target types’ threat values are quan-
tified as 0.9, 0.6, and 0.3 respectively.

(ii) Strike ability. Strike ability refers to the ability of
the target to cause damage without being affected by the
defense system. The stronger the target strike, the greater
the lethality to our side, and the greater the threat. Divide
the strike ability into very strong, strong, relatively
strong, medium, relatively low, and low, which is quanti-
fied as 0.9, 0.8, 0.6, 0.5, 0.4, and 0.3 in turn.

(iii)) Jamming ability. Jamming capability represents
the targets’ ability to destroy or disturb our radio equip-
ment through their communication countermeasure
equipment. The jamming capability is divided into four
types: strong, medium, weak, and none, corresponding to
0.8, 0.6, 0.4, and 0.2.

2.2 Air combat situation features

Air combat situation features belong to complex time

sequence data, reflecting the movement of attack targets
and the transformation of battlefield situations. This
paper mainly selects three typical air combat situation
features: angle threat, speed threat, and distance threat [19].

(i) Angle threat. Motivated by [20,21], in which schol-
ars adopt the attack angle of both sides to directly mea-
sure the threat value of the angle, this paper employs the
attack angles of red army’s weapons and the blue army’s
weapons to reflect the threat of angles. When red army’s
firepower is opposite to the target, the threat of the target
would be greater. Meanwhile, the threat would be higher
if the blue army’s attack angle is toward the red army. As
shown in Fig. 2, 6y represents the angle the red army
weapon deviates from the blue army’s. The increase of
0y would cause deviation from the enemy, meaning that
the red army cannot quickly turn to attack the blue army.
Thus, a higher threat shall be given. 8; represents the
angle of the blue army’s weapon attack direction oppo-
site to red army. As the angle increases, the blue army’s
weapons will gradually turn to the red army, resulting in
the rise of threat. Both 6, and 6; have strong positive
correlations with the angle threat. Therefore, the follow-
ing angle threat equation is adopted:

o Owt0r
Y3600

where the sum of 6y, and 6; is employed to indicate the
angle threat which ranges from 0 to 1 through normaliza-
tion.

Fig. 2 further shows the relationship of (1) and the
angle threat.

(M

Red army'’s direction

Blue army'’s direction

(a) Low angle threat

Red army's direction ¢,

i

Blue army’s direction
(b) High angle threat
Fig.2 Sketch map of the angle threat situation

The situation with a small threat value is shown in
Fig. 2 (a). At this time, the red army’s weapons point at
the blue army, and the blue army’s attack angle is away
from the red army. Therefore, red army’s direct attack on
the target is prevailing while the blue army is difficult to
fight back, resulting in a small threat. As the two angles
increase, the red army’s weapons are close to the oppo-
site direction of the blue army, and the blue army’s
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weapons will directly point at the red army (Fig. 2 (b)). It
is more likely to be directly attacked and difficult to
quickly counter attack, leading to a greater threat.

(i1) Speed threat. Target speed reflects the change of
target motion. Since both sides of the combat are air-
moving bodies, the speed of red army’s aerial unit and the
blue army’ are both relevant to the target’s speed threat,
indicating that the relation between their speeds must be
considered. In specific, when red army’s speed prevails
over the blue army’s, a threat caused by the blue army
would be relatively small owing to red army’s advantage
in mobility. Furthermore, as the blue army’s speed rises,
its locomotivity would be strengthened, leading to an
increase in the speed threat. Moreover, a high threat shall
be given providing the blue army’s speed is much over
the red army’s. Based on the above analysis, the threat of
speed is divided into three sections, which are calculated by

0.1, v, < 0.6v,
vA
T ={-0.5+—, 0.6, <v;< L5y, ()

i

1.0, V; > 1.5\),'

where v; and v; represent the speed of the target 7; and
our aerial unit W,.

In (2), the threat of speed is divided into three sections.
When the blue army’s speed is 0.6 times lower than the
red army’, it is considered that the blue army’s mobility
performance is far lower than the red army’s, leading to a
relatively low threat value of 0.1. Similarly, if the blue
army’s speed exceeds 1.5 times of the red army’s, an
extremely high threat value of 1 should be given to the
blue army for its exceptional ability in speed. When the
blue army’s speed is within the above range, the threat
value of the blue army will rise as the speed difference
increases, from 0.1 to 1.

(iii) Distance threat. Target distance is a significant
indicator to measure the threat degree of the target. Tradi-
tional target distance feature quantization only considers
the distance between the two sides, which implies that the
farther the distance is, the less the threat is. Considering
the influence of the maximum attack distance and physi-
cal distance of both sides, a comprehensive distance
threat quantization method is designed in this paper.

Suppose D is the distance between the two sides, Dy
is the maximum attack distance of the red army’s
weapon, and D; is the maximum attack distance of the
blue army’s weapon. Considering the relation among Dy,
Dy and D, the definition of the distance threat is pro-
cessed by segments.

Given that distance D exceeds the range of the blue
army’s weapon Dy, the threat of the blue army’s would
be the least, namely D > Dy

T! =0. 3)

If the blue army’s weapon is within range Dy, and the
red army’s weapon is beyond the range Dy, the highest
threat will be generated, namely Dy < D < Dy:

T =1. 4)

Provided that both aerial units are in their ranges, the
threat value will be decided by the relation of Dy and
Dy, which can be divided into two situations.

When D < Dy < Dy, the blue army can attack the red
army in a longer distance, leading to the circumstance
that the red army’s aerial unit would be attacked unilater-
ally before coming into the range. When the red army’s
unit initially comes into the distance capable of attacking
the blue army, the threat of the blue army will decrease.
Moreover, as the distance decreases, the influence of
ranges would be slight, and the distance would be the
dominant factor of the blue army’s threat. The threat will
rise as distance reduces. Hence, the distance can be calcu-
lated by

D
1-0.625—, 0<D<0.8Dy

Dy,

T!= ®)

D .
2.5D— —1.5, 0.8Dy <D < Dy

w

In (5), when the red army initially comes into the
attack range (0.8Dy < D < Dy), the threat of the blue
army will decrease from 1 to 0.5. Furthermore, if the dis-
tance between them is lower than 0.8 times of the red
army’s range, it is considered distance D would domi-
nate the blue army’s threat. As a result, the threat will rise
from 0.5 to 1 as distance reduces.

When D < D; < Dy, red army attack range exceeds the
blue army’s range. Before the blue army comes into its
range, the red army can attack the blue army unilateral,
indicating the least threat. Thus, when the blue army is
close enough to attack the red army, the threat value
would increase with the decrease of the distance. Hence,
the definition of distance threat under D < Dy < Dy is

D
d
T = 1—0.9D—T. (6)

In (6), when the blue army shifts from the state of
beyond range to the state that is able to attack the red
army, the threat value would increase from 0.1 to 1 as
distance reduces.

3. Air target threat assessment model
based on SA-GRU

3.1 Problem description and analysis

Air combat situation data has the characteristic of being
complex and diverse. After being extracted from the fea-
ture system, the threat features data can be divided into
two types: time series air combat situation features and
static air combat capability features. Air target threat asse-
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ssment is a process of extracting systematic threat fea-
tures from situation information and classifying threat lev-
els, which can be defined as a multi-classification problem.

Based on the above analysis, the air target threat
assessment problem can be described in detail. Assuming
that red army’s sensor captures the situation information
of multiple blue army targets, the threat feature set of the
target i after extraction is defined as O; ={D;,S;}, where
D;={D;,Dy,---,D,,} represent m air combat capability
features of target i and S; ={S;,S,, --,S;} indicate n
air combat situation features of it. Any element in the set
S; includes the time series information S, ={S",
§i2,--+ 8}, which implies the jth time series feature
of the target i from time ¢+ 1 to 7+ At. The goal of threat
assessment can be described as evaluating the threat level

Air combat  Ajr combat
Threat situation

r based on the threat feature set O;, which can be mathe-
matically described as » = F(O;). F represents the predic-
tion function, which is the learning target of the threat
assessment model.

3.2 Structure of the SA-GRU model

Target threat assessment is a mapping process from threat
features to threat levels. The structure of the air target
threat assessment model SA-GRU is shown in Fig. 3. The
model input is threat feature data based on the threat fea-
ture system, including air combat situation features and
air combat capability features. The model structure
mainly includes three parts: situation feature augmenta-
tion, time series feature extraction, and feature fusion and
classification.

capability
feature features features
data
288 S
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(1) Situation feature augmentation (ii) Time series feature extraction (iii) Feature fusion and classification

Fig.3 Architecture of SA-GRU

The description of each part is as follows.

(i) Situation feature augmentation. The features of air
combat situations are time series data with strong cou-
pling and high complexity. Hence, to learn the potential
time sequence relationship of air combat situation fea-
tures and mine the evolution law of the battlefield, a data
augmentation method based on FRFT is introduced to
transform time sequence information into high-order
abstract information.

(i) Time series feature extraction. For the augmented
high-dimensional situation features, an encoder-decoder
neural network that embeds BiGRU structure is designed
to handle the time relationship among situation features.
Meanwhile, to reduce the impact of irrelevant features in
high-dimensional data on the evaluation results, the self-
attention mechanism is employed to weight the hidden
states of all the time steps from the encoder.

(iii) Feature fusion and classification. The abstract situ-
ation features extracted from time series features are
fused with air combat capability features by channel con-
catenation. Finally, the target threat classification level is
obtained by fully connected layers.

3.3 Situation feature augmentation

Data augmentation technology enables the model to make
full use of limited information, facilitating to improve the
feature extraction ability and prediction accuracy of the
model. The augmentation has two steps[22]: map the
original situation data set S,,,, to new feature set S,,,,, and
merge S, with S, to obtain the augmented data
Suse = [Staws Soap].

Aiming to extract high-dimensional abstract features, a
time series data augmentation technology based on FRFT
is adopted which transforms the air combat situation fea-
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tures into the frequency domain. FRFT is an important
method for time-frequency analysis [23], mapping time
domain data to different frequency domain spaces. For
time series threat features, it is an effective method to
extract high-dimensional abstract features. Through
FRFT, air combat situations can be comprehensively
interpreted, and the difference between data is fully
amplified.

Denote the original air combat situation features as
Seaw = [1(0), £2(0),---, fy()], where fi(t) represents the
time series feature data. The calculation process of FRFT
on any fi(t) in S, is

fw = K@nfwd (7
where
A exp[jm(u*cota—
2utcsca + Pcota)], @ # nm
K,(u,t) = . ®

o(u—t), a=2nn
o(u+t), a=C2n+1)n
In (8), @ = pn/2 indicates the angle between the time
axis and the u axis with p € (0,1), and A, is defined as
exp[—jmsgn(sine)/4 +ja /2]

A, = :
“ | sin o]/

)

Since each data in the air combat situation features can
be regarded as a discrete signal, the application of (7)
needs to be discretized. Ozaktas sampling discrete me-
thod [24] is adopted to adjust the transformation:

()

{exp [jnyu(;—x)z] f(%)} (10)

where B=csca, y=cota. The order p in A, is an
important parameter in FRFT, which considerably affects
the performance [25].

The data augmentation process is shown in Fig. 4.

A N
700 = 223 exp fmne)exy
-N

N-dimensional data

M times FRFT

Extract real parts

First
N-dimensional data

The Mth
N-dimensional data

N-dimensional |
data

(M+1)N
dimensional data

Fig. 4 Data augmentation process

Initially, all N dimensional data S, are mapped m
times according to (10), and the real parts of the mapped
data are taken as the new feature S,,,. Next, combine
S.w and S, to obtain the enhanced feature S, =
[S:aw>Smapl, and the dimension of S,,, becomes (M + 1)N.

Take battle simulation data as an example. The speed
threat features of an enemy target over a period of time
are extracted based on (2). Perform five FRFT with the
parameter p € {0.01,0.02,0.03,0.04,0.05}. The original
speed threat feature data and the transformed data are
shown in Fig. 5.

0.20
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010 %
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Speed threat feature
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-0.15 . L .
0 5 10 15 20
Time/s
— : Raw; :p=0.01; — :p=0.02; — : p=0.03;
— 1 p=0.04; — : p=0.05.

Fig. 5 Sketch of speed threat feature augmentation

Red represents the original speed threat feature, and
the other colors are the results after the transformation
of different orders. After FRFT, slight changes of speed
threat features in time domain are fully reflected in the
frequency domain, and the differences between features
are amplified, which is conducive to improving the classi-
fication ability of the assessment model.

3.4 Time series feature extraction

3.4.1 Encoder-decoder structure

After data augmentation, the situation features become
high-order complex sequences. In order to effectively
learn the rich semantic information, an encoding-decod-
ing structure based on sequence to sequence (seq2seq) is
adopted. The main modules are encoder and decoder,
which employ BiGRU network.

GRU network has ability to memorize time series
information and effectively avoid the gradient vanishing
problem. In the past few years, it has been widely applied
in time series data processing. Compared with the popu-
lar time series feature extraction model short-term and
long-term memory (LSTM) network, GRU introduces an
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update gate to control the amount of information retained
from the historical state, instead of additional memory
units. Hence, relatively few parameters and a relatively
small amount of calculation will be involved in GRU
model. The structure of GRU is shown in Fig. 6.

Fig. 6 Architecture of GRU

The input of each unit is the state at time ¢ and the hid-
den state at time 7 — 1, and the output is the hidden state at
the current time. The status update method of GRU net-

work is
rr=c(Wx,+U.h,_,+b,), (11)
z.=0c(Wx,+Uh,_+b,), (12)
h, = tanh[W,x, + U,(p. O h,_y) + by, (13)
h,=z,0h_1+(1-2)0h,, (14)

where W,,W_ W, are weight matrices, b,,b.,b, are bias
vectors, z, and r, are update gate and reset gate, o states
Sigmoid function, and © represents Hadamard product of
matrices.

In the actual battlefield environment, the situation
threat degree of the target at a certain time is dynami-
cally related to the historical status and subsequent status.
However, GRU is only able to sense the context informa-
tion in the forward direction, leading to difficulties in
learning the relationship between the future and current
status in the reverse direction. Therefore, the BiGRU
module is adopted in the encoder and decoder to extract
the deep information in the enhanced feature from the
forward and backward directions. The BiGRU structure is
shown in Fig. 7.

Output

Backward

GRU ‘GRU GRU GRUJ
Forward [GRU GRU GRU’
GRU

mput (X, X,

Fig. 7 Architecture of BIGRU

In BiGRU, two GRU networks with opposite direc-
tions are employed to process sequential and reverse situ-
ation feature sequences respectively. The output of the
model is the combination of hidden layer states in two
directions

Y, = [GRU(X,, k! ,),GRU(X,, k", )] (15)

+

where h/ | represents the hidden layer states of the for-
ward GRU, and h’,, represents the hidden layer states

+

from the backward GRU.
3.4.2 SA mechanism

Due to the structure characteristic, the encoder-decoder
module will compress the input sequence on the last out-
put vector of the encoder. When the input sequence is too
long, the weight assigned to the effective information will
be reduced, resulting in the omission of high-value input
information. SA mechanism is widely used to model rela-
tionship among information from sequences [26]. There-
fore, to solve the problem of information compression in
long sequences, the SA module is designed [27]. In the
structure shown in Fig. 3, an SA module is added
between the decoder and encoder to enhance the depen-
dency information among time series. Meanwhile, a
residual mechanism is introduced to prevent the gradient
from disappearing during network training. The proce-
dure of the self-attention mechanism is presented as fol-
lows.

Step 1 Calculate the output sequence of the encoder
model S,, through the augmented input situation sequ-
ence Sy, = [51,82,-+,8y].

Step 2 Combine the input sequence S,,, and pro-
cessed sequence S, to get the input feature of the atten-
tion model H =8, +Sou = [h1,h2,--- , hy].

Step 3 Map feature H to three linear spaces by li-
near transformations to obtain the query matrix Q, key
matrix K, and value matrix V:

Q=HW,
K = HW, (16)
V = HW,



368 Journal of Systems Engineering and Electronics Vol. 35, No. 2, April 2024

in which W,,W,,W, € RN are the parameter matries of
three linear mappings determined by experiments.

Step 4 Normalize the attention weight matrix based
on the following equation:

KT
W = softmax(Q ) (17)
Vd
Step 5 Compute the weighted sum of the value
matrix V and weights W, to obtain the output of the SA
module out,,:

outy, =Wy -V. (18)

Through the above procedures, the output information
of the encoder module has been weighted with different
values, which strengths the key features and weakens oth-
ers.

3.5 Feature fusion and classification

The target threat degrees have a close relation to the fea-
tures of the target air combat capability. Therefore, after
extracting the time sequence relationship in the situation
features, the output of the decoder S, and air combat
capability feature D are concatenated to obtain the fusion
feature, which is expressed as M = [S,,; D]. The fully
connected network is applied to map the fusion features
into threat categories by

y=f(W'M+b) (19)

where WTstates the weight matrix, and b represents the
bias vector.

The probability of each threat level can be generated
through the softmax function:

p,-:ez‘/Zezf, ie[1,N] (20)

=

where p; indicates the probability of threat level i, Z; is

the score of the ith output of the fully connected layer.
Finally, the threat level with the highest probability

would be selected as the current output of the network.

3.6 Loss function

In virtue of the multi-classification nature of the target
threat assessment problem, the cross-entropy function is
employed as the loss function:

1 M N
Loss = Z Z p(x) In[g(x;))] 1)

where M represents the number of samples, N is the
number of threat level categories, p(x;;) states the

expected probability that the ith sample has the jth
threat level, and g(x;;) indicates the output probability of
the model.

4. Simulation experiments and result analysis
4.1 Dataset generation and processing

Since no public battlefield situation dataset exists in this
research area, this paper generates the original situation
information through a combat simulation system.
Through multiple groups of combat scenarios simulated
in this system, an assessment dataset is generated based
on the data collected in the simulation deduction.

A battle scenario is shown in Fig. 8.

Building1
&

Building!3
Bu\\dmg 2

a5

Fig. 8 Air combat scenario

The blue army sent four planes to attack the red army,
while the red army had four fighters to fight with them
and protect three buildings. During simulation, the red
army’s sensor will capture the enemies’ information con-
tinuously and transmit it to the background, including the
position, speed, and other information.

Extract multiple groups of air-to-air combat counter
information from the system as the original dataset.
Meanwhile, referring to the structure entropy weight
method in [16], the threat level of all targets at each time
step is calculated as set L. To make the dataset more suit-
able for training, sample data is preprocessed as follows.

Step 1 Extract the target air combat situation and cap-
ability features based on the index system from the simu-
lation system, which is denoted as S and D respectively.

Step 2 Aiming to avoid the impact of data with huge
dimensions on small dimension index data [28], combat
situation data S;; is normalized. The normalized element
§; can be calculated by

, S;;—min(S ;)
97 max(S ;) —min(S ;)

(22)
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Step 3 Based on (10), enhance all air combat situa-
tion features in S, for five times with parameter p = {0.1,
0.3,0.5,0.7,0.9}. The enhanced data set is denoted as
S g -

Step 4 In order to enable the form of input data to
meet the actual battlefield demand, S, is reconstructed
by sliding window [29].

Initially, fix the sliding window with a time step of
100. Subsequently, extract the data of this sliding win-
dow size from S,,,, and aggregate it with the correspond-
ing data from set D. Furthermore, choose the threat level
in set L at the last timestamp ¢ of the sliding window as
the corresponding label of the current sliding window
data. Finally, move the sliding window to the next time
step until all data processing is completed.

After the above procedures, the threat assessment
dataset is created with a total of 75 751 samples, and the
threat levels range from 1 to 11. The specific information
is shown in Table 1.

Table 1 Information of threat assessment dataset

Threat level Samples number Ratio/%
1 7124 9.40
2 6412 8.46
3 11 809 15.59
4 10 346 13.66
5 6 689 8.83
6 5420 7.16
7 6085 8.03
8 7 665 10.12
9 8 891 11.74
10 3310 437
11 2 000 2.64

For the threat assessment dataset, divide 70% of it into
the training set, 10% into the validation set, and the
remaining 20% into the test set to verify the performance
of the model.

4.2 Evaluation metrics

Metrics for the evaluation are further discussed. In
machine learning, true positive (TP) and true negative
(TN) denote the correctly predicted positive samples and
negative samples, respectively; false positive (FP) repre-
sents the scenario that the actual class is negative and the
predicted class is positive [30]; false negative (FN) repre-
sents the opposite situation of FP.

Based on the above four parameters, this paper adopts

accuracy, precision, recall, and Fl-score to evaluate the
comprehensive performance of the model.

Accuracy: This index states the proportion of the num-
ber of samples with correct classification to the total
number of samples. The accuracy indicates the overall
prediction performance of the model under all threat le-
vels.

TP+TN
TP+FP+FN+TN

Accuracy = (23)

Precision: It represents the proportion that the threat
level predicted by the model is real. The higher precision
is, the lower the false alarm is.

TP
TP + FP

Precision = (24)

Recall: This indicator represents the ratio of the targets
correctly identified as level r to all incoming targets with
threat level r.

TP

Recall = ——
A= TP IEN

(25)

Fl-score: The weighted macro average method is
adopted to represent the harmonic average of accuracy
and recall, which can reduce the impact of category
imbalance on the results [31]. The higher Fl-score
behaves, the better the balance between accuracy and
recall is achieved.

L
Fl= Z(P,-+Rl- ~cui) (26)

where w; is the proportion of level i in the total category,
and L represents the number of total categories. P; and R;
are precision and recall of the level i.

4.3 Experimental environment and parameters

The proposed model is achieved based on PyTorch
framework by Python 3.7.7. The hardware environment is
Intel (R) Xeon (R) Silver 4210R CPU@2.40 GHz, 128G
memory, NVIDIA GeForce RTX 3090 GPU.

The super parameters and training strategy are set as
follows. The number of training iterations is set to 60. In
the process of model training, the Adam optimizer is used
to optimize model parameters with an initial learning rate
value of 0.01, which decreases by 30% every five genera-
tions. For the encoder-decoder layer, the number of neu-
rons in the encoder and decoder hidden layer is deter-
mined to be 64 by the grid search method of the range
{32,64,128}. For fully connected layers, the number of
layers is set to 3, and the number of hidden layer nodes
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M is decided to be 115 according to the Kolmogorov for-
mula M =+m+n+a, where m and n are the input and
output data dimension, and a € {x € Z|1 < x < 10}.

4.4 Performance evaluation

Train the SA-GRU model with the training set and vali-
dation set, the accuracy and loss curve in the training pro-
cess is shown in Fig. 9.
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(b) Loss curve of SA-GRU
Fig.9 Training curve of SA-GRU

From the curve, the trend of the validation curve is
basically the same as the training curve. When the model
starts training, the fluctuation range of the accuracy curve
is relatively large. With the increase in the number of iter-
ations, the fluctuation range of the curve decreases, and
the model gradually converges. After training for 60 iter-
ations, the loss and accuracy curves of the validation set
reach convergence. The accuracy of the model exceeds
90%, and the value of the loss function is stable below
0.4.

The classification performance of SA-GRU under dif-
ferent threat levels based on the test is shown in Table 2.

Table 2 Performance of the SA-GRU %
Threat level Precision Recall Fl-score
1 92.5 92.0 92.3
2 93.2 91.3 92.2
3 90.6 82.5 86.4
4 89.7 92.7 91.1
5 95.7 93.9 94.8
6 81.9 99.0 89.6
7 84.0 56.8 67.7
8 79.8 77.0 78.0
9 82.5 87.1 84.7
10 934 90.7 92.0
11 93.5 91.8 92.6

The accuracy of the proposed model for most samples
exceeds more than 90%, although the recognition ability
for samples with threat levels of 7 and 8 is slightly poor.
The classification result shows that the SA-GRU model
can fit the data law of air combat features well and
achieve an ideal classification effect.

4.5 Model comparison experiments

In order to further verify the effectiveness of the pro-
posed model, three typical threat assessment models
based on deep learning is selected for comparative experi-
ments: the single-hidden-layer fuzzy recurrent wavelet
neural network optimized by genetic algorithm (GA-
SLFRWNN) [13]; ELM optimized by improved glow-
worm swarm (IGSO-ELM) [16]; ResNet [14], a fully
connected neural network model combining batch stan-
dardization and residual structure. Meanwhile, the typi-
cal time series processing model LSTM-seq2seq model
(LSTM-LSTM) [32] is also selected to compare with the
proposed model.

Train the five models based on the threat assessment
dataset. The accuracy curve during the training process is
shown in Fig. 10.
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Fig. 10 Comparison of accuracy curves
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From the change curve, SA-GRU model performs sig-
nificantly better than other network models. The lowest
oscillation amplitude of the accuracy curve and the high-
est convergence value of the model are shown in the SA-
GRU, indicating that the proposed model can more effec-
tively learn the relationship between enemy target threat
feature data and threat level.

The performances of the different algorithms on test
sets are shown in Table 3.

Table3 Performance comparison A
Model Accuracy Precision Recall F1
SA-GRU 90.4 90.4 90.5 90.3
GA-SLFRWNN 64.2 64.2 64.1 63.4
IGSO-ELM 55.6 55.6 56.0 55.3
ResNet 41.9 41.9 43.5 36.0
LSTM-LSTM 76.7 79.3 77.4 77.4

From Table 3, SA-GRU model behaves better than the
other four algorithms. Having partial similarity in struc-
ture, IGSO-ELM and ResNet are suitable for small-scale
non-sequential data processing, leading to poor effects in
large-scale sequential threat assessment experiments.
Therefore, their classification accuracy is less than 60%.
GA-SLFRWNN adopts the wavelet function as the neu-
ron activation function, which improves the time-fre-
quency analysis ability of the model [33], and can fit the
threat feature data to a certain extent. However, its effect
is still not ideal. Owing to inherent advantages in time
series data processing, LSTM-LSTM can achieve a rela-
tively better performance than the others except for SA-
GRU.

Aiming to test the real-time quality of models, 10 000
pieces of data are selected from the data set as the input
of five models to calculate the prediction time. The com-
parison of results is shown in Fig. 11.
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Fig. 11 Comparison of running time

Based on the experimental results, all models take less
than 3 s when processing 10000 data, meeting the real-
time requirements. ResNet works in the longest predic-
tion time of 2.57 s, and SA-GRU and IGSO-ELM run for
less than 0.5 s, which takes the least time.

4.6 Ablation experiment

In order to verify the necessity of situation feature data
augmentation and the rationality of model structure
design, data ablation experiments and model structure
ablation experiments are set up in this section.

In SA-GRU, the air combat situation features are aug-
mented by the FRFT, increasing the data dimension from
3 to 18. To verify the effect of the data augmentation, the
model with the dataset before and after augmentation is
trained to compare the performance, as shown in Table 4.

Table4 Performance comparison of data augmentation ¢,

Augmentation Accuracy Precision Recall F1
No 60.3 69.7 60.3 57.0
Yes 90.4 90.4 90.5 90.3

Through data augmentation, the accuracy of the model
increases from 60.3% to 90.4%, and the F'1-score also has
a high increase by 33.3%. Therefore, the FRFT assisted
model obtains more abstract features, leading to a signifi-
cant improvement of all metrics.

SA-GRU mainly includes three components: encoder-
decoder structure (denote as seq2seq), SA module, and
residual module. Aiming to evaluate the function of each
module, all modules are combined with others, as shown
in Table 5, where 0 means that the module is not applied
and 1 means that the module is applied.

Table 5 Definition of combined model

Model seq2seq SA Residual
ResNet 0 0 1
seq2seq 1 0 0
Res-seq2seq 1 0 1
SA-seq2seq 1 1 0
SA-GRU 1 1 1

Based on the threat assessment dataset, the classifica-
tion performance of all combined models is shown in
Table 6.

Table 6 Performance comparison of combined model %

Model Accuracy Precision Recall Fl1
ResNet 41.9 41.9 43.5 36.0
seq2seq 75.4 75.3 76.2 75.7
Res-seq2seq 80.0 79.6 80.1 79.8
SA-seq2seq 86.2 86.3 85.7 86.0
SA-GRU 90.4 90.4 90.5 90.3
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As can be seen from Table 6, without the seq2seq
structure and self-attention modules, the ResNet model
only achieves relatively low behaviors, indicating that the
combination of situation feature processed by the time
series feature extraction module and the air combat capa-
bilities contains more valuable information than the direct
combination of them. Subsequently, due to the seq2seq
structure’s inherent advantages in processing time series
data, its accuracy and Fl-score reach 75.4% and 75.7%.
Meanwhile, the accuracy and Fl-score of the Res-
seq2seq model are 4.6% and 4.1% higher than seq2seq
respectively, indicating that the residual structure plays a
certain role in improving the effectiveness of the model.
Further more, all the indexes of the SA-seq2seq model
exceed the first two, proving that the self-attention me-
chanism can effectively extract the depth information in
the battlefield situation features and facilitate to improve
the overall performance of the model. Among all the
models, SA-GRU achieves the best behavior, verifying
the effectiveness of the proposed structure and self-atten-
tion module in threat assessment missions.

5. Conclusions

Considering that the existing threat assessment methods
are difficult to deal with high-dimensional time series tar-
get data, an air-to-air combat target threat assessment
model SA-GRU is proposed. The SA-GRU model can
simultaneously process high-dimensional time series situ-
ation features and static air combat capability features
data. Through comparison and ablation simulation experi-
ments, the following conclusions are drawn:

(1) Situation features augmentation enables the model
to fully mine the deep information in battlefield evolu-
tion. Compared with no data enhancement, the classifica-
tion accuracy of the model improves from 60.3% to
90.4%, leading to a significant improvement in the per-
formance of the model.

(1) SA mechanism assists to filter the features
extracted by BiGRU by giving high weights to key fea-
tures and weakening the others. Ablation experiments
have proved the superiority of SA-GRU model structure.

(ii1)) SA-GRU model is able to better extract the time
series relationship in the threat features and fuse them
with the air combat capability features to realize the accu-
rate identification of the target threat level.

(iv) The threat assessment model based on deep learn-
ing is capable of performing good nonlinear approxima-
tion ability and response speed. SA-GRU model can pro-
cess large-scale situation data with faster speed and
higher accuracy, meeting the requirements of real-time
and accuracy.
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